JPS62211042A - Apparatus for observing distribution of specific component in living body - Google Patents

Apparatus for observing distribution of specific component in living body

Info

Publication number
JPS62211042A
JPS62211042A JP5293986A JP5293986A JPS62211042A JP S62211042 A JPS62211042 A JP S62211042A JP 5293986 A JP5293986 A JP 5293986A JP 5293986 A JP5293986 A JP 5293986A JP S62211042 A JPS62211042 A JP S62211042A
Authority
JP
Japan
Prior art keywords
living body
light source
image
light
distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5293986A
Other languages
Japanese (ja)
Inventor
秀司 藤分
和義 太田
豊 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP5293986A priority Critical patent/JPS62211042A/en
Publication of JPS62211042A publication Critical patent/JPS62211042A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、複数の光を用いて、生体内の特定成分の分布
を観測する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an apparatus for observing the distribution of specific components within a living body using a plurality of lights.

本発明による装置は、医療分野において生体組織の診断
(癌診断等)等に利用できる。
The device according to the present invention can be used in the medical field for diagnosing living tissue (cancer diagnosis, etc.).

(従来の技術) これまでの光を用いた組織の診断を行う装置として、例
えば生体観察装置(特願昭59−162134号)に示
されているように、面光源あるいは点光源から出た光を
用いて、その透過光のイメージを得るものが知られてい
る。
(Prior Art) As a device for diagnosing tissue using light, for example, as shown in a biological observation device (Japanese Patent Application No. 59-162134), light emitted from a surface light source or a point light source is used. It is known that an image of the transmitted light can be obtained using the .

また生体組織の光透過性を測定する測定装置(特願昭6
O−16198)に示されているように、組織の特定部
位の吸収スペクトルを測定し、その吸収スペクトルに基
づいて、組織に対する癌の有無等の判断を行なうものが
知られている。
Also, a measuring device for measuring the light transmittance of living tissue (patent application 1986)
As shown in No. 0-16198), a method is known in which the absorption spectrum of a specific part of a tissue is measured and the presence or absence of cancer in the tissue is determined based on the absorption spectrum.

(発明が解決しようとする問題点) 透過イメージを得る従来技術では、単色光あるいは白色
光を光源に使用していたため、得られた透過光のイメー
ジが組織のどのような成分に基づくものなのかが不明確
であった。
(Problems to be Solved by the Invention) Conventional techniques for obtaining transmitted images use monochromatic light or white light as a light source, so it is unclear what components of the tissue the resulting transmitted light images are based on. was unclear.

例えば、光源を白色光とした場合は一般的には組織中の
ヘモグロビン、メラニン等の色素の吸収に基づ(イメー
ジある。
For example, when the light source is white light, it is generally based on the absorption of pigments such as hemoglobin and melanin in tissues (there is an image).

吸収スペクトルを用いる場合、特定部位の吸収スペクト
ルが得られるのみであるから、組織全体についての判断
が困難であった。
When using an absorption spectrum, only the absorption spectrum of a specific region is obtained, making it difficult to judge the entire tissue.

発明の目的は、生体内の特定の成分、例えば、タンパク
質、炭水化物、水等の個々によるイメージを観測するこ
とができる生体内の特定成分の分布を観測する装置を提
供することにある。
An object of the invention is to provide an apparatus for observing the distribution of specific components in a living body, which can observe images of specific components in the living body, such as proteins, carbohydrates, and water.

(問題点を解決するための手段) 前記目的を達成するために、本発明による生体内の特定
成分の分布を観測する装置は、面光源あるいは点光源を
用いるスキャン方式の生体観察装置において、生体内の
特定の物質に対して異なる透過率を示す少なくとも2つ
の波長による画像を取得して、前記各画像の画素間で演
算を行うことにより、生体内の前記特定の物質のイメー
ジを観測するように構成されている。
(Means for Solving the Problems) In order to achieve the above object, the device for observing the distribution of specific components in a living body according to the present invention is a scanning living body observation device using a surface light source or a point light source. Obtain images of at least two wavelengths showing different transmittances for a specific substance in the body, and perform calculations between pixels of each image to observe an image of the specific substance in the body. It is composed of

(実施例) 以下、図面等を参照して本発明をさらに詳しく説明する
(Example) Hereinafter, the present invention will be described in more detail with reference to the drawings and the like.

第2図を参照して本発明の詳細な説明する。The present invention will be described in detail with reference to FIG.

第2国人に近赤外領域におけるタンパク質、同図已に脂
質、同図Cに炭水化物、同図りに水の吸収スペクトルを
示す。
Absorption spectra of proteins in the near-infrared region for people from a second country, lipids in the same figure, carbohydrates in C in the same figure, and water in the same figure are shown in the same figure.

第2図りに示されているように水は他の3つに比べ1,
935μmでの吸収が非常に大きい。したかも1.93
5μmに吸収を持つので1つの波区のみでは正確な水の
分布はわからない。
As shown in the second diagram, water is 1, compared to the other three.
Absorption at 935 μm is very large. Maybe 1.93
Since it has absorption at 5 μm, the exact distribution of water cannot be determined from just one wave zone.

すなわち1.680μmの光は水の吸収が少ないの・・
・・・・(11 ここでKO,Klは回帰的手法で定める定数A 1.9
35は1.935.crmでの吸光度(Absorba
nce)、A 1.680は1.680crmでの吸光
度を示す。
In other words, water absorbs less light at 1.680 μm...
......(11 Here, KO and Kl are constants A determined by the regression method 1.9
35 is 1.935. Absorbance at crm (Absorba
nce), A 1.680 indicates the absorbance at 1.680 crm.

2つの波長を使うことによって、光源の輝度変化、散乱
等の影響をキャンセルすることができる。
By using two wavelengths, effects such as changes in brightness of the light source and scattering can be canceled.

というのは、A 1.935 、 A 1.680の数
値のなかに同程度に散乱等の影響が入るからである。
This is because the effects of scattering and the like are included in the values of A 1.935 and A 1.680 to the same extent.

上式では2つの波長を用いる場合を述べたが、より一般
的には %水分−に、+に、αw + K 2αoiβ十に3α
pro+に4αcar  11j= ◆” (2)ここ
で αW=水分に最も感応するスペクトル部分の相対吸収値 αoil=油分に最も感応するスペクトル部分の相対吸
収値 αρro ”タンパク部分に最も感応するスペクトル部
分の相対吸収値 αCar ”炭水化相分に最も感応するスペクトル部分
の相対吸収値 上式において、αWは測定物中の水分含量に相関する項
であり、αoilは油分が存在するために発生する誤差
を修正する項、αproはタンパク質が存在するために
発生する誤差を修正する項、αcaは炭水化物が存在す
るために発生する誤差を修正する項である。
In the above formula, we have described the case where two wavelengths are used, but more generally, % moisture -, +, αw + K 2αoiβ + 3α
pro+4αcar 11j= ◆” (2) where αW = relative absorption value of the spectral part most sensitive to moisture αoil = relative absorption value of the spectral part most sensitive to oil content αρro ”Relative absorption value of the spectral part most sensitive to protein part Absorption value αCar ``Relative absorption value of the spectral part most sensitive to the carbohydrate phase component In the above equation, αW is a term that correlates with the water content in the measured sample, and αoil is a term that correlates to the error caused by the presence of oil. The correction term αpro is a term that corrects errors caused by the presence of proteins, and αca is a term that corrects errors caused by the presence of carbohydrates.

第1図は、前記原理による生体内の特定成分の分布を測
定する装置の実施例を示すブロック図である。
FIG. 1 is a block diagram showing an embodiment of an apparatus for measuring the distribution of a specific component in a living body based on the above principle.

光源1、コリメータ3、検出器4、検出部駆動装置5は
一体となっていて、架台6の上をY方向く図中上下方向
)移り可能である。
The light source 1, collimator 3, detector 4, and detection unit driving device 5 are integrated and can be moved on the pedestal 6 in the Y direction (up and down in the figure).

また、架台6は光源1、コリメータ3、検出部駆動装置
5を搭載したまま被検体2に対して垂直2方向(紙面に
直角方向)に移動可能である。
Furthermore, the pedestal 6 is movable in two directions perpendicular to the subject 2 (directions perpendicular to the plane of the drawing) while mounting the light source 1, collimator 3, and detection unit driving device 5.

また、架台6はその中心部を回転軸とした回転運動が可
能である。
Furthermore, the pedestal 6 is capable of rotational movement with its center serving as a rotation axis.

光源1と対向して配置された検出器4は光源の光軸方向
の光のみを検出する。
A detector 4 placed opposite the light source 1 detects only light in the optical axis direction of the light source.

被検体2を透過した光源からの光を検出する検出器4と
して、近赤外光までの感度をもつ受光素子を用いる。− 検出器4の出力はアナログディジタル変換器7にr  
よりディジタル変換され、インターフェース8を介して
演算装置9に入力される。
As the detector 4 that detects the light from the light source that has passed through the subject 2, a light receiving element having sensitivity up to near-infrared light is used. - the output of the detector 4 is sent to the analog-to-digital converter 7;
The data is then digitally converted and input to the arithmetic unit 9 via the interface 8.

検出部駆動装置5により、光源1.コリメータ3゜検出
器4は一体となって被写体のY方向に対して直線走査を
行い、1回この走査を終了するたびにZ方向へ移動する
という走査を繰り返して、役Yデータを得る。
The detection unit driving device 5 causes the light source 1. The collimator 3° detector 4 integrally performs a linear scan of the subject in the Y direction, and repeats scanning in which it moves in the Z direction each time this scan is completed, to obtain combination Y data.

さらに、架台の中心部を回転軸とした回転運動により、
被検体2全体にわたってあらゆる方向からの光透過率の
データを得ることができる。
Furthermore, due to the rotational movement with the center of the pedestal as the rotation axis,
Data on light transmittance from all directions can be obtained over the entire subject 2.

まず光源1は1.935μmの光を出し、被検体2を通
過して検出器4で検出される。記憶装置11にその透過
光のイメージを蓄積する。
First, the light source 1 emits light of 1.935 μm, which passes through the subject 2 and is detected by the detector 4 . The image of the transmitted light is stored in the storage device 11.

次に、光源1は1.680μ■1の光を出し、上述と同
様な方法でその波長での透過光のイメージを記憶装置l
lに蓄積する。
Next, the light source 1 emits light of 1.680 μι1, and the image of the transmitted light at that wavelength is stored in the storage device l in the same manner as described above.
It accumulates in l.

1.935μmで得られたイメージと1.680.cz
mで得られたイメージについて、画素ごとに(1)式で
示された演算を行う。
Images obtained at 1.935μm and 1.680. cz
For the image obtained in m, the calculation shown in equation (1) is performed for each pixel.

得られた結果は画像表示装置10に表示される。The obtained results are displayed on the image display device 10.

上述の実施例では水分含量に基ずくイメージが得られる
The embodiments described above provide images based on water content.

油分については、2.30μmと補償バンド波長2゜1
0μrnを用いることにより油分含量に基づ(イメージ
が得られる。
For oil, the compensation band wavelength is 2.30 μm and 2°1.
By using 0 μrn, an image can be obtained based on the oil content.

タンパク部分については、2.18μmと?1(itバ
ンド波長1.20μmを用いることによりクンバク質分
含■に基づくイメージが得られる。
As for the protein part, it is 2.18μm? 1 (By using the IT band wavelength of 1.20 μm, an image based on the content of Kumbak substances can be obtained.

炭水化物置については、1.45μmと補償バンド波i
1.00μmを用いることにより炭水化相分含量に基づ
くイメージが得られる。
For the carbohydrate position, 1.45 μm and compensation band wave i
By using 1.00 μm, an image based on the carbohydrate phase content is obtained.

前記の実施例では2つの波長を用いたが、より一般的に
(2)式で示される方法を用いれば測定の精度はより向
上する。
Although two wavelengths were used in the above embodiment, the accuracy of measurement can be improved more generally by using the method expressed by equation (2).

また、面光源を用いる方法においては、干渉フィルタ等
を用いて単色光としたのちに、各波長ごとのイメージを
取れば良い。
Furthermore, in the method using a surface light source, it is sufficient to create monochromatic light using an interference filter or the like, and then take an image for each wavelength.

(発明の効果) 単色光あるいは白色光を用いたこれまでの生体観察装置
においては、特定波長(あるいは全波長での平均)の生
体組織の透過特性に基づくイメージが得られる。従って
得られるイメージは散乱強度、水分吸収1色素吸収、タ
ンパク質吸収等のすべての因子を含んだものである。
(Effects of the Invention) Conventional biological observation devices using monochromatic light or white light can obtain images based on the transmission characteristics of biological tissue at a specific wavelength (or the average of all wavelengths). Therefore, the image obtained includes all factors such as scattering intensity, water absorption, dye absorption, and protein absorption.

本発明を用いるならば、上述の各々の因子を分離して各
々の因子のみのイメージを得ることが可能となる。
If the present invention is used, it becomes possible to separate each of the above-mentioned factors and obtain an image of only each factor.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による生体内の特定成分の分布を観測す
る装置の実施例を示すブロック図である。 第2図は近赤外領域の水分、脂質、炭水化物、タンパク
質の吸収スペクトルを示すグラフである。 ■・・・光源       2・・・被検体3・・・コ
リメータ    4・・・検出器5・・・検出部駆動装
置  6・・・架台7・・・アナログディジタル変換器 8・・・インターフェース 9・・・演算装置     10・・・画像表示装置1
1・・・記tα装置 12・・・架台駆動部 特許出願人 浜松ホトニクス株式会社 代理人 弁理士  井 ノ ロ  壽 ’IIAVELEN678 /a1 才2図 WAVELENldH、u篤
FIG. 1 is a block diagram showing an embodiment of an apparatus for observing the distribution of a specific component in a living body according to the present invention. FIG. 2 is a graph showing absorption spectra of water, lipids, carbohydrates, and proteins in the near-infrared region. ■... Light source 2... Subject 3... Collimator 4... Detector 5... Detection unit drive device 6... Frame 7... Analog-digital converter 8... Interface 9. ...Arithmetic device 10...Image display device 1
1... tα device 12... Frame drive unit Patent applicant Hamamatsu Photonics Co., Ltd. Agent Patent attorney Hisashi Inoro 'IIAVELEN678 /a1 2 years old WAVELENldH, u Atsushi

Claims (1)

【特許請求の範囲】[Claims] 面光源あるいは点光源を用いるスキャン方式の生体観察
装置において、生体内の特定の物質に対して異なる透過
率を示す少なくとも2つの波長による画像を取得して、
前記各画像の画素間で演算を行うことにより、生体内の
前記特定の物質のイメージを観測する生体内の特定成分
の分布を観測する装置。
In a scanning-type living body observation device that uses a surface light source or a point light source, images are obtained using at least two wavelengths that exhibit different transmittances for specific substances in the living body,
An apparatus for observing the distribution of a specific component in a living body, which observes an image of the specific substance in the living body by performing calculations between pixels of each image.
JP5293986A 1986-03-11 1986-03-11 Apparatus for observing distribution of specific component in living body Pending JPS62211042A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5293986A JPS62211042A (en) 1986-03-11 1986-03-11 Apparatus for observing distribution of specific component in living body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5293986A JPS62211042A (en) 1986-03-11 1986-03-11 Apparatus for observing distribution of specific component in living body

Publications (1)

Publication Number Publication Date
JPS62211042A true JPS62211042A (en) 1987-09-17

Family

ID=12928837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5293986A Pending JPS62211042A (en) 1986-03-11 1986-03-11 Apparatus for observing distribution of specific component in living body

Country Status (1)

Country Link
JP (1) JPS62211042A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5179382A (en) * 1974-12-31 1976-07-10 Shimadzu Corp SATSUZOZUKEIKAISEKISOCHI
JPS5540809A (en) * 1978-09-08 1980-03-22 Sanyo Chemical Ind Ltd High electrresistant imparting agent for paper
JPS6072542A (en) * 1983-09-28 1985-04-24 株式会社島津製作所 Light ray ct apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5179382A (en) * 1974-12-31 1976-07-10 Shimadzu Corp SATSUZOZUKEIKAISEKISOCHI
JPS5540809A (en) * 1978-09-08 1980-03-22 Sanyo Chemical Ind Ltd High electrresistant imparting agent for paper
JPS6072542A (en) * 1983-09-28 1985-04-24 株式会社島津製作所 Light ray ct apparatus

Similar Documents

Publication Publication Date Title
US6775565B1 (en) Imaging apparatus for displaying concentration ratios
US5372135A (en) Blood constituent determination based on differential spectral analysis
RU2562886C2 (en) Device and method for determination and monitoring of components or properties of measured medium, namely values of physiological blood indices
US4479499A (en) Method and apparatus for detecting the presence of caries in teeth using visible light
US6028311A (en) Rapid non-invasive optical analysis using broad bandpass spectral processing
US7013172B2 (en) Hyperspectral imaging calibration device
US4768513A (en) Method and device for measuring and processing light
US4290433A (en) Method and apparatus for detecting the presence of caries in teeth using visible luminescence
US20100113940A1 (en) Wound goggles
US5360004A (en) Non-invasive determination of analyte concentration using non-continuous radiation
EP1241979B1 (en) Method and device for determining local distribution of a measuring parameter
USRE31815E (en) Method and apparatus for detecting the presence of caries in teeth using visible luminescence
US20050043597A1 (en) Optical vivo probe of analyte concentration within the sterile matrix under the human nail
US20180120212A1 (en) Diagnostic spectrally encoded endoscopy apparatuses and systems and methods for use with same
AU2001240744B2 (en) Non-invasive measurement of skin bilirubin level
JPH01131436A (en) Spectroscopic measuring method for saccharide concentration
WO2007072300A2 (en) System for non-invasive measurement of blood glucose concentration
US7107087B2 (en) Method and apparatus for measuring a concentration of a component in a subject
JPS61159936A (en) Spectral image pick-up apparatus of biological tissue
US10768165B2 (en) Systems and methods for measuring water and lipid content in tissue samples
JPH0155010B2 (en)
JPS62211042A (en) Apparatus for observing distribution of specific component in living body
JP2006527018A (en) Apparatus and method for blood pH identification
Lin et al. Hyperspectral imaging with near-infrared-enabled mobile phones for tissue oximetry
JPH05161609A (en) Measuring apparatus