JPS62210610A - Manufacture of iron nitride thin film - Google Patents

Manufacture of iron nitride thin film

Info

Publication number
JPS62210610A
JPS62210610A JP5247186A JP5247186A JPS62210610A JP S62210610 A JPS62210610 A JP S62210610A JP 5247186 A JP5247186 A JP 5247186A JP 5247186 A JP5247186 A JP 5247186A JP S62210610 A JPS62210610 A JP S62210610A
Authority
JP
Japan
Prior art keywords
gas
vacuum
iron nitride
thin film
nitride thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5247186A
Other languages
Japanese (ja)
Inventor
Yuzo Kozono
小園 裕三
Shinji Narushige
成重 真治
Matahiro Komuro
又洋 小室
Masanobu Hanazono
雅信 華園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5247186A priority Critical patent/JPS62210610A/en
Publication of JPS62210610A publication Critical patent/JPS62210610A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To obtain an iron nitride thin film with high magnetic moment, by once exhausting a vacuum container into a high vacuum state and vaporizing Fe using an electron beam gun, and then introducing N2 gas controlled in an optimum ratio. CONSTITUTION:A nitrogen gas-introduced part 5 is connected to gas cylinder 12 through a mass flow controller 6. A vacuum container is exhausted into a super-high vacuum state of 10<-10>Torr or less by sing an exhaustion system. Then, Fe raw material of 5N or more in impurity is molten to be evaporated by an electron beam gun 3. A shutter 11 is opened for only a period of introducing N2 gas to observe a decrease in a vacuum degree by the use of a vacuum needle. For example, when the vacuum degree is decreased to 5X10<-8>Torr, change-over is performed. Such repetitive starts and stops of gas introduction on the Si substrate enable non-balanced iron nitride thin film having magnetic moment of the highest value out of all Fe-group magnetic materials to be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は非平衡鉄窒化物であるF e s N (Fe
IaN りを含有した高磁気モーメントを有する鉄窒化
物薄膜を形成するに好適な作製方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to non-equilibrium iron nitride Fe s N (Fe
The present invention relates to a manufacturing method suitable for forming an iron nitride thin film containing IaN and having a high magnetic moment.

〔従来の技術〕[Conventional technology]

非平衡鉄窒化物であるFe3N (Fe+aNt )は
Fel原子当り3.0μBの高磁気モーメントを持つが
、従来反応性スパッタリング、窒化反応、イオンビー 
ムf ポジション法等を利用した作製方法では最大1〜
wt%程度のFeaN’t”含む薄膜しか作製できず、
10wt%を越えるFeaNを得ることは不可能であっ
た。この原因は鉄−窒素2元状態図かられかるように、
鉄窒素間にけF ”2 N + F e4 Nなる化合
物が安定相として存在するのに対し、磁気モーメントの
高い非平衡鉄窒化物であるFe8NはB’eと安定相で
あるFe4N間で、1〜3wt%の範囲に存在するのみ
である。このため、FeaNよりも安定々高窒素濃度の
FetN 、 Fe5N 、  Fe4N相が形成し易
いことである。従来の作製方法である窒素雰囲気中での
Feターゲット’6用いた反応性スパッタリングやFe
*N?ターゲットに用いたスパッタリング、あるいはF
eターゲットを用いたイオンビームデポジション法では
、雰囲気ガスとしてN!あるいはAr+N2 ガスを用
いており、さらにガス圧がせいぜい1O−5Torr台
であるため、窒素濃度が高くなり、窒素量が過剰になる
ためFet Nが主に形成してしまうという問題があっ
た。ま念、上記した方法では、ガス圧がせいぜい1O−
S1011台であるため、N2ガス以外の不純物ガスで
ある02  、A’ * Hz等が膜中に巻き込まれ鉄
窒化物のみを形成することができず、膜全体として磁気
モーメントを低下させるという問題があった。
Fe3N (Fe+aNt), a non-equilibrium iron nitride, has a high magnetic moment of 3.0 μB per Fe atom, but conventionally reactive sputtering, nitriding reactions, and ion beam
If the manufacturing method uses the position method etc., the maximum
Only a thin film containing about wt% of FeaN't'' can be produced;
It was not possible to obtain more than 10 wt% FeaN. The cause of this can be seen from the iron-nitrogen binary phase diagram,
The compound F ''2 N + Fe4 N exists as a stable phase between iron and nitrogen, whereas Fe8N, which is a non-equilibrium iron nitride with a high magnetic moment, exists between B'e and Fe4N, which is a stable phase. Therefore, it is easier to form FetN, Fe5N, and Fe4N phases with higher nitrogen concentrations more stably than FeaN. Reactive sputtering using Fe target '6 and Fe
*N? Sputtering or F
In the ion beam deposition method using an e-target, N! Alternatively, since Ar+N2 gas is used and the gas pressure is at most on the order of 1O-5 Torr, the nitrogen concentration becomes high and the amount of nitrogen becomes excessive, causing the problem that Fet N is mainly formed. Please note that in the above method, the gas pressure is at most 1O-
Since it is a S1011 unit, there is a problem that impurity gases other than N2 gas such as 02 and A' * Hz are involved in the film, making it impossible to form only iron nitride, and reducing the magnetic moment of the film as a whole. there were.

なお、この種の技術に関連するものとしては「第6回日
本応用磁気学会学術講演概要集、P36、P231並び
に第7回同講演概要集P67」等に記載がある。
Information related to this type of technology is described in "6th Japanese Society of Applied Magnetics, Academic Lecture Summary Collection, P36, P231 and 7th Academic Lecture Summary Collection, P67".

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明の目的は、非平衡鉄窒化物であるFe8Nの含有
量が10wt%以上の、磁気モーメントの高い鉄窒化物
薄膜及びその製造方法を提供することにある。
An object of the present invention is to provide an iron nitride thin film with a high magnetic moment content of Fe8N, which is a non-equilibrium iron nitride, of 10 wt% or more, and a method for manufacturing the same.

〔問題点を解決するための手段〕[Means for solving problems]

本発明はFe5NがFeとF”4N + Fe5N+ 
Fe2Nとの間の窒素濃度に存在することに着目し、て
、真空容器内を一度超高真空に排気し、電子ビームガン
を用いてFeを蒸発させ、基板上に膜を堆積する際に、
膜中のNのwtlが1〜3係になるように真空容器内に
N2ガスを導入することによって、lQwt%を超える
Fe8Nを含有した磁気モーメントの高い鉄窒化物薄膜
の作製が達成される。
In the present invention, Fe5N is Fe and F"4N + Fe5N+
Focusing on the fact that the nitrogen concentration is between that of Fe2N, the inside of the vacuum chamber is evacuated to an ultra-high vacuum, Fe is evaporated using an electron beam gun, and a film is deposited on the substrate.
By introducing N2 gas into the vacuum chamber so that the wtl of N in the film is 1 to 3, an iron nitride thin film containing more than 1Qwt% of Fe8N and having a high magnetic moment can be produced.

〔作用〕[Effect]

真空容器内を超高真空(10−”Torr以下)に排気
する工程とN、ガスを導入しながら真空容器内を排気す
る工程を交互に繰り返す排気サイクルを設け、かつ蒸発
源からの蒸着原子であるFe原子が基板に到達するの全
しゃ断するシャッター機構を設け、Ntガス導入時のみ
シャッターを開いて基板上に膜を形成する。この時、膜
中の窒素濃度を制御するため、導入ガスの流量あるいは
真空度を制御するようにする。また超高真空に排気する
ので、窒素ガス以外の不純物ガスが膜中に巻き込まれる
ことがない。
An exhaust cycle is provided in which the process of evacuating the inside of the vacuum vessel to an ultra-high vacuum (10-''Torr or less) and the process of evacuating the inside of the vacuum vessel while introducing nitrogen and gases are repeated alternately. A shutter mechanism is provided to completely block certain Fe atoms from reaching the substrate, and the shutter is opened only when Nt gas is introduced to form a film on the substrate.At this time, in order to control the nitrogen concentration in the film, the introduced gas is The flow rate or degree of vacuum is controlled.Also, since it is evacuated to an ultra-high vacuum, impurity gases other than nitrogen gas are not drawn into the film.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。真空
容器1内に基板マニプレータ4により保持された基板2
がある。蒸発源3はFe原料を電子ビームで溶融し、蒸
発させるところの電子ビームガンである。基板2と蒸発
源3の間に蒸発源3より蒸発したFe原子を基板に到達
させるかもしくはしゃ断するかの機能をもつシャッター
11がある。一方窒素ガス導入部5はマス70−コント
ローラ6を介してガスボンベ12に接続している。
An embodiment of the present invention will be described below with reference to FIG. A substrate 2 held in a vacuum container 1 by a substrate manipulator 4
There is. The evaporation source 3 is an electron beam gun that melts and evaporates Fe raw material with an electron beam. There is a shutter 11 between the substrate 2 and the evaporation source 3 that has the function of allowing Fe atoms evaporated from the evaporation source 3 to reach the substrate or blocking them. On the other hand, the nitrogen gas introduction section 5 is connected to the gas cylinder 12 via a mass 70 and a controller 6.

また配線系にはパルプ13.14がある。また真空容器
内を超高真空に排気するため、ゲート弁10を介して主
排気ポンプであるターボ分子ポンプ7、荒引きポンプ8
、さらにチタンサブリメーションポンプ9がある。第1
図では明示していないが、真空容器内の蒸発源の周囲、
基板の周囲、チタンサブリメーションポンプの部分には
超高真空を維持するための液体窒素シニラウドがある。
Also, there are pulp 13.14 in the wiring system. In addition, in order to evacuate the inside of the vacuum container to an ultra-high vacuum, a turbo molecular pump 7, which is a main exhaust pump, and a rough evacuation pump 8 are used via a gate valve 10.
In addition, there is a titanium sublimation pump 9. 1st
Although not clearly shown in the diagram, the area around the evaporation source inside the vacuum container,
Around the substrate, there is a liquid nitrogen vacuum around the titanium sublimation pump to maintain an ultra-high vacuum.

真空容器内を上記排気系を用いて10””l’orr以
下の超高真空に排気する。その後、電子ビームガンによ
り純度5N以上のFe原料を溶融し、蒸発させる。この
時、シャッター11は閉じておく。
The inside of the vacuum container is evacuated to an ultra-high vacuum of 10""l'orr or less using the above-mentioned evacuation system. Thereafter, the Fe raw material with a purity of 5N or higher is melted and evaporated using an electron beam gun. At this time, the shutter 11 is closed.

この状態でマス70−コントローラ6によす、する時間
だけ真空容器内にガス導入部5全通してN、ガスを導入
する。このガス導入時間の間だけシャッター11を開く
ようにする。この時、ゲート弁1oFi開いた状態で排
気系は作動している。
In this state, nitrogen and gas are introduced into the vacuum container through the entire gas introduction section 5 for a time required for mass 70-controller 6. The shutter 11 is opened only during this gas introduction time. At this time, the exhaust system is operating with the gate valve 1oFi open.

以上のようにすると、WJ2図に示すような排気サイク
ルとなる。すなわちtoの時はシャッター開で、ガス導
入時、tl はシャッター閉でガス導入なし時となる。
By doing the above, an exhaust cycle as shown in Figure WJ2 will be obtained. That is, at time to, the shutter is open and gas is introduced, and at time tl, the shutter is closed and no gas is introduced.

第2図はt。=4秒t1=5秒の時である。従ってガス
導入とシャッターの開閉は同期しである。第2図におい
てガス導入の10からガス導入停止のtlへ切換えるタ
イミングは真空度の低下を真空計で監視して行なってい
る。本実施例ではP+ ” 5 X 10−”l’or
r迄低下したら切換えるようにした。以上の実施例で、
Si基板上に作製した鉄窒化物薄膜の中に含有するFe
s Hの最大量け55wt%であった。また、ガス導入
時と停止時の切換え時の真空度k 10−7TOrr台
にすると、Fe8Nの含有量は低下するが15e4以上
である。また、作製した膜の磁気モーメントを測定した
結果、純Feの220 (emu/g >i大きく上わ
まわる約280 (emu/g )の磁気モーメントを
もつことがわかつ九。これば、FeaNの含有量の増大
とともに、N2以外の不純物ガスが非常に少ない超高真
空の領域まで排気していることも作用している。なお、
ガス圧PIのコントロールはゲート弁の開閉度もしくは
ガス流量の大小によって可変できる。
Figure 2 shows t. = 4 seconds t1 = 5 seconds. Therefore, gas introduction and shutter opening/closing are synchronized. In FIG. 2, the timing of switching from gas introduction at 10 to gas introduction stop at t1 is determined by monitoring the decrease in the degree of vacuum with a vacuum gauge. In this example, P+" 5 X 10-"l'or
It was designed to switch when it drops to r. In the above example,
Fe contained in iron nitride thin film fabricated on Si substrate
The maximum amount of sH was 55 wt%. Further, when the degree of vacuum k at the time of switching between gas introduction and stop is set to the order of 10-7 TOrr, the content of Fe8N decreases but remains 15e4 or more. In addition, as a result of measuring the magnetic moment of the fabricated film, it was found that it had a magnetic moment of about 280 (emu/g), which is much higher than 220 (emu/g > i) of pure Fe. In addition to the increase in the amount of gas, the fact that it is evacuated to an ultra-high vacuum region where there are very few impurity gases other than N2 also works.
The control of the gas pressure PI can be varied by the degree of opening and closing of the gate valve or the magnitude of the gas flow rate.

なお、ガス導入とガ2導入停止時の監視方法として、真
空容器2に基板に堆積する膜を蒸着中に電子線回折法で
監視し、FeaN以外のFe4NIF es N + 
F et Nの割合が増加、すなわちFe1Nの割合が
減少してくるのを監視することによって行なうこともで
きる。
In addition, as a monitoring method when introducing gas and stopping the introduction of gas 2, the film deposited on the substrate in the vacuum container 2 was monitored by electron beam diffraction during vapor deposition, and Fe4NIF es N + other than FeN was detected.
This can also be done by monitoring the increase in the proportion of F et N, that is, the decrease in the proportion of Fe1N.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、従来のtowt4より多い非平衡鉄窒
化物薄膜が得られる。これは従来得られているFe系磁
性材料のうちで最高値の磁気モーメントラもつものであ
り、高飽和磁束密度の要求される磁性材料として磁気記
録用ヘッド材料への応用価値が大である。
According to the present invention, more non-equilibrium iron nitride thin films than conventional towt4 can be obtained. This has the highest magnetic moment tra among conventionally available Fe-based magnetic materials, and has great value in application to magnetic recording head materials as a magnetic material that requires a high saturation magnetic flux density.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発咀の一実施例を示す全体構成図、第2図は
本発明の動作説明図である。 1・・・真空容器、2・・・基板、3・・・蒸発源、4
・・・基板マニプレータ、5・・・窒素ガス導入部、6
・・・マスクローコントローラ、7・・・ターボ分子ポ
ンプ、8・・・、′−゛、 3゛、J−’ 77” 、“o−y−“″“パ゛   
 □′1、ご代理人 弁理士 小川勝男 ゛−− 第2図 時間
FIG. 1 is an overall configuration diagram showing an embodiment of the present invention, and FIG. 2 is an explanatory diagram of the operation of the present invention. 1... Vacuum container, 2... Substrate, 3... Evaporation source, 4
...Substrate manipulator, 5...Nitrogen gas introduction part, 6
... Mask low controller, 7... Turbo molecular pump, 8..., '-゛, 3゛, J-'77","o-y-""" pipe
□'1, Agent Patent Attorney Katsuo Ogawa ゛-- Figure 2 Time

Claims (1)

【特許請求の範囲】[Claims] 1、真空容器内を10^−^1^0Torr以下に排気
する工程と窒素ガスを真空容器内に導入し、10^−^
7〜10^−^9Torr台の窒素ガス雰囲気にする工
程とを備え、窒素ガス導入時に真空容器内に設置した基
板上に鉄窒化物を形成するようにしたことを特徴とする
鉄窒化物薄膜の作製方法。
1. Step of exhausting the inside of the vacuum container to below 10^-^1^0 Torr and introducing nitrogen gas into the vacuum container, 10^-^
An iron nitride thin film comprising a step of creating a nitrogen gas atmosphere at 7 to 10^-^9 Torr, and forming iron nitride on a substrate placed in a vacuum container when nitrogen gas is introduced. How to make
JP5247186A 1986-03-12 1986-03-12 Manufacture of iron nitride thin film Pending JPS62210610A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5247186A JPS62210610A (en) 1986-03-12 1986-03-12 Manufacture of iron nitride thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5247186A JPS62210610A (en) 1986-03-12 1986-03-12 Manufacture of iron nitride thin film

Publications (1)

Publication Number Publication Date
JPS62210610A true JPS62210610A (en) 1987-09-16

Family

ID=12915627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5247186A Pending JPS62210610A (en) 1986-03-12 1986-03-12 Manufacture of iron nitride thin film

Country Status (1)

Country Link
JP (1) JPS62210610A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62252122A (en) * 1986-04-25 1987-11-02 Canon Electronics Inc Magnetic thin film
CN107919201A (en) * 2013-02-07 2018-04-17 明尼苏达大学董事会 Nitrided iron permanent magnet and the technology for forming nitrided iron permanent magnet

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62252122A (en) * 1986-04-25 1987-11-02 Canon Electronics Inc Magnetic thin film
CN107919201A (en) * 2013-02-07 2018-04-17 明尼苏达大学董事会 Nitrided iron permanent magnet and the technology for forming nitrided iron permanent magnet
US10692635B2 (en) 2013-02-07 2020-06-23 Regents Of The University Of Minnesota Iron nitride permanent magnet and technique for forming iron nitride permanent magnet
CN112164539A (en) * 2013-02-07 2021-01-01 明尼苏达大学董事会 Iron nitride permanent magnet and technique for forming iron nitride permanent magnet
US11217371B2 (en) 2013-02-07 2022-01-04 Regents Of The University Of Minnesota Iron nitride permanent magnet and technique for forming iron nitride permanent magnet

Similar Documents

Publication Publication Date Title
Gavaler et al. Preparation and superconducting properties of thin films of transition metal interstitial compounds
JPS62210610A (en) Manufacture of iron nitride thin film
JP4197204B2 (en) Magnesium oxide production equipment
JP2712367B2 (en) Method and apparatus for forming thin film
Neugebauer Thin films of niobium tin by codeposition
US4591509A (en) Process for the preparation of superconducting compound materials
JP3407750B2 (en) Electron beam evaporation equipment
US3811794A (en) Ultrahigh vacuum sublimation pump
Nakahara et al. Microstructures of thin sputtered amorphous Tb0. 26Fe0. 74 and polycrystalline Fe films
US4575464A (en) Method for producing thin films of rare earth chalcogenides
RU2801394C1 (en) Method for modifying the cathode surface of a lithium-ion battery with a titanium oxide film
JPH01298151A (en) Formation of thin compound film
JPH03232530A (en) Internal diffusion thin film type getter material
JPS5772307A (en) Alloy film material for magneticstorage and manufacture of the same
JPH0310074A (en) Formation of thin film
Genqing et al. Formation of nanocrystalline TiN film by ion-beam-enhanced deposition
JPH0745706B2 (en) Method for forming titanium nitride thin film
JPH03264610A (en) Manufacture of super fine particles
US20040052935A1 (en) Magnetic thin film and production method therefor
JPH0679369B2 (en) Magnetic recording material and manufacturing method thereof
US20030209189A1 (en) Magnetic material and method for preparation thereof
JPS55124119A (en) Manufacturing method of electrochromic thin film
JPH0417315A (en) Manufacture of fe16n2 film
JPS6080137A (en) Production device of vertical magnetic recording medium
JPH07101797A (en) Formation of oxide superconducting thin film