JPS6221046B2 - - Google Patents

Info

Publication number
JPS6221046B2
JPS6221046B2 JP56026737A JP2673781A JPS6221046B2 JP S6221046 B2 JPS6221046 B2 JP S6221046B2 JP 56026737 A JP56026737 A JP 56026737A JP 2673781 A JP2673781 A JP 2673781A JP S6221046 B2 JPS6221046 B2 JP S6221046B2
Authority
JP
Japan
Prior art keywords
slag
mgo
fluorite
steelmaking
blast furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56026737A
Other languages
Japanese (ja)
Other versions
JPS57145918A (en
Inventor
Sunao Mototani
Katsuhiro Tabata
Masami Kuroe
Kazuya Kashiwada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinagawa Refractories Co Ltd
Original Assignee
Shinagawa Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinagawa Refractories Co Ltd filed Critical Shinagawa Refractories Co Ltd
Priority to JP56026737A priority Critical patent/JPS57145918A/en
Publication of JPS57145918A publication Critical patent/JPS57145918A/en
Publication of JPS6221046B2 publication Critical patent/JPS6221046B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は製鋼炉用造滓材の改良に関する。 製鋼炉においてマグネシアを主成分とする耐火
材料で内張りされた炉で塩基性スラグを主体に精
錬をおこなう場合、スラグ中にMgOを添加する
ことは、炉の延命操業として既に実用化されきわ
めて有効な手段であることが立証されている。こ
れは、添加したMgOが製鋼精錬初期から、生石
灰などと共に急速に溶解し、スラグ中のMgO含
有量が適切な濃度に保持されることが重要な因子
となつている。このため一般に採用されている炉
延命の操業手段は、生石灰と同様に活性度の高い
軽焼型MgOすなわちα型MgOでなければならな
いとされて、各製鉄所では1000℃以下の温度で焼
成した軽焼ドロマイトまたはα型軽焼マグネシア
が、この目的に使用されている。これらの原料は
一般にMgO品位が低い(MgO分として30%程
度)ため、大量に使用しなければならない現状で
ある。 本発明は1300℃以上の高温で死焼されたβ型
MgOを軽焼型(α型)の活性MgOと同様に、造
滓性の優れた製鋼用造滓材として提供するもの
で、その特徴は、廃材となつたマグネシア煉瓦、
β型あるいはα―β混合型のマグネシア粉末と、
造滓性を助けるアルカリ土類金属あるいは弗化物
を配合し、さらに炉内の高温スラグと接触した場
合、急速に分散細粒(粉)化し、該スラグとの反
応面積を拡大する分散材からなる製鋼・精錬用造
滓材である。 本発明はβ型あるいはα―β混合型のMgO粉
末及び/またはMgO煉瓦屑からなるMgO粒子90
〜50重量%と、高炉スラグ及び蛍石の、高炉スラ
グ:蛍石=3〜4:1の重量比の混合物を10〜50
重量%配合し、成形、造粒したことを特徴とす
る、製鋼炉用造滓材に関する。 本発明はまた、β型あるいはα―β混合型の
MgO粉末及び/またはMgO煉瓦屑からなるMgO
粒子90〜50重量%と、高炉スラグ及び蛍石の高炉
スラグ:蛍石=3〜4:1の重量比の混合物を10
〜50重量%配合し、かつ、ヒル石、黒曜石、パー
ライトから選ばれた少なくとも1種以上、及び/
またはCaCO3、MgCO3から選ばれた少なくとも
1種以上を添加し、成形、造粒したことを特徴と
する、製鋼炉用造滓材にも関する。 次に本発明を具体的に説明する。 酸素製鋼炉における製錬初期は、脱珪反応が激
しく、生成したスラグは酸性スラグであり、融点
も低いため、塩基性である炉内耐火物の寿命に大
きな影響を及ぼす。したがつて、加えられるカル
シア、マグネシアなどの造滓材は、初期の溶融性
が非常に重要になる。ここで造滓材として死焼さ
れたMgOを軽焼カルシアと併用して使用する場
合、死焼MgOは溶解速度が遅れるので特別な処
置が必要になる。 第1に、死焼MgOの溶解速度を早めるには、
適当な反応表面積が必要であるが、粉末では炉内
に供給しにくいため、適当な塊状とすることが望
ましく、このため、粉末を造粒化する工程が必要
である。 第2には、死焼MgOが比較的低温で溶解する
ための添加物を少量添加して、造滓効果を高める
必要がある。 第3には、上記塊状造滓材が炉内で熱を受け、
さらに適当ないつそう小さい小塊に***し、表面
を拡大し、精錬初期に生成したスラグよりも溶解
し易い表面状況にすることも大切である。 次に、本発明に係る配合の実施例を示し、詳説
する。
The present invention relates to improvements in slag material for steelmaking furnaces. When refining mainly basic slag in a steelmaking furnace lined with a refractory material containing magnesia as the main component, adding MgO to the slag has already been put into practical use and is extremely effective in extending the life of the furnace. It has been proven that it is a means. An important factor behind this is that the added MgO rapidly dissolves together with quicklime and the like from the early stages of steelmaking and refining, and the MgO content in the slag is maintained at an appropriate concentration. For this reason, the generally adopted operational means for extending the life of furnaces is to use lightly calcined MgO, that is, α-type MgO, which has a high activity similar to quicklime, and in each steelworks, it is calcined at a temperature of 1000℃ or less. Lightly calcined dolomite or alpha type lightly calcined magnesia is used for this purpose. These raw materials generally have a low MgO grade (approximately 30% MgO content), so they currently have to be used in large quantities. The present invention is a β type that has been dead-fired at a high temperature of 1300℃ or higher.
MgO is provided as a slag material for steelmaking with excellent slag-forming properties, similar to light-sintered (α-type) activated MgO.
β type or α-β mixed type magnesia powder,
Contains alkaline earth metals or fluorides that aid in slag-forming properties, and is made of a dispersion material that rapidly disperses into fine particles (powder) when it comes into contact with the high-temperature slag in the furnace, expanding the reaction area with the slag. It is a slag material for steelmaking and refining. The present invention provides MgO particles 90 made of β type or α-β mixed type MgO powder and/or MgO brick waste.
~50% by weight, and a mixture of blast furnace slag and fluorite in a weight ratio of blast furnace slag:fluorite = 3 to 4:1.
The present invention relates to a slag material for steelmaking furnaces, which is characterized by being blended in weight percent, molded, and granulated. The present invention also provides β-type or α-β mixed type
MgO consisting of MgO powder and/or MgO brick waste
90 to 50% by weight of particles and a mixture of blast furnace slag and fluorite in a weight ratio of blast furnace slag:fluorite = 3 to 4:1.
~50% by weight, and at least one selected from vermiculite, obsidian, and pearlite, and/
Alternatively, the present invention also relates to a slag material for a steelmaking furnace, characterized in that it is formed and granulated with the addition of at least one selected from CaCO 3 and MgCO 3 . Next, the present invention will be specifically explained. In the initial stage of smelting in an oxygen steelmaking furnace, the desiliconization reaction is intense, and the generated slag is acidic slag and has a low melting point, which greatly affects the life of the basic refractories in the furnace. Therefore, the initial meltability of the added slag materials such as calcia and magnesia is very important. If dead-burned MgO is used as a slag-forming material in combination with lightly burnt calcia, special treatment is required because dead-burned MgO slows down the dissolution rate. First, in order to accelerate the dissolution rate of dead burnt MgO,
Although a suitable reaction surface area is required, it is difficult to feed the powder into the furnace, so it is desirable to form it into a suitable lump, and therefore a step of granulating the powder is necessary. Second, it is necessary to add a small amount of an additive for dissolving the dead MgO at a relatively low temperature to enhance the slag-forming effect. Thirdly, the above-mentioned lumpy slag material receives heat in the furnace,
Furthermore, it is important to break up the slag into small agglomerates at an appropriate time, expand the surface, and create a surface condition that is easier to dissolve than the slag produced in the initial stage of smelting. Next, examples of formulations according to the present invention will be shown and explained in detail.

【表】【table】

【表】 第1表の原料をベースにして、死焼MgOの粒
度による造滓性の変化を実験した。第3表は、第
1表の配合物を17mmφ×65mmの試験片(成形圧2
トンで製作)にして、予め700℃に予熱してか
ら、不活性雰囲気の鉄ルツボ内で、1400℃に溶解
した高炉スラグ中に浸漬し、試験片を一定速度
(30r.p.m.)で180秒(3分)間回転させながらス
ラグと反応させ、反応した試験片の溶解量を調べ
た。 また、残留試験片の断面について顕微鏡観察も
おこなつた。図面aは死焼マグネシア(5)60%の場
合、bは死焼マグネシア(3)60%の場合(第1表配
合)の観察概念図を示す。 第3表に示すごとく、使用するMgOが軽焼で
あれ、死焼であれ、原料のMgO粒度が粗い程溶
解速度が速い傾向にある。
[Table] Based on the raw materials shown in Table 1, an experiment was conducted to examine changes in slag-forming properties depending on the particle size of dead burnt MgO. Table 3 shows the test pieces of 17 mmφ x 65 mm (molding pressure 2
The specimen was preheated to 700℃ and then immersed in blast furnace slag melted at 1400℃ in an iron crucible in an inert atmosphere for 180 seconds at a constant speed (30r.pm). The sample was allowed to react with the slag while being rotated for 3 minutes, and the amount of the reacted test piece dissolved was examined. Microscopic observation of the cross section of the remaining test piece was also conducted. Drawing a shows a conceptual diagram of observation in the case of 60% of dead burnt magnesia (5), and drawing b shows a case of 60% of dead burnt magnesia (3) (Table 1 formulation). As shown in Table 3, whether the MgO used is lightly burnt or dead burnt, the dissolution rate tends to be faster as the particle size of the raw material MgO becomes coarser.

【表】 顕微鏡で観察した結果は図面に示す概念図のご
とく、粗粒の方は粒間に存在する低融点の添加物
の濃度が高いため、溶融スラグに浸漬したとき、
この濃度の高い添加物を介してスラグが毛細管現
象的に反応し、MgO粒がスラグ中に分散、懸濁
化し急速に溶解する。 一方、細粒のMgOの場合は微粉であるため、
微粉の低融点添加物が微粒のMgO粒間に分散
し、溶融スラグに浸漬したときスラグの侵入が浅
く、全体として緻密な焼結体となつてしまうた
め、スラグの反応がおくれることが判つた。 この実験結果から、もし微粉のMgOを使用す
る場合は、加える添加物の粒度を粗粒側に配合す
るのが好ましいことが類推できる。 第3表では死焼マグネシアに対し微粉の低融点
の添加物配合量を0〜50wt%に変化させて調査
したが、50wt%以上では造滓性に大差を認め
ず、却つて造滓材としてのMgO品位が低下する
ので、死焼MgOの配合割合は50〜90wt%、すな
わち添加材として10〜50wt%が有効配合割合で
ある。 第4表に死焼MgO60〜80wt%配合の本発明に
係る造滓材の代表的品位を示す。
[Table] As shown in the conceptual diagram shown in the drawing, the results of microscopic observation show that coarse particles have a higher concentration of low-melting-point additives present between the particles, so when immersed in molten slag,
The slag reacts via capillary action through this highly concentrated additive, and the MgO particles are dispersed and suspended in the slag and rapidly dissolved. On the other hand, in the case of fine-grained MgO, since it is a fine powder,
It was found that the slag reaction was delayed because the fine powdered low melting point additive was dispersed between the fine MgO grains, and when immersed in the molten slag, the slag penetrated shallowly and formed a dense sintered body as a whole. Ivy. From this experimental result, it can be inferred that if fine powder MgO is used, it is preferable to blend the particle size of the additive to be added to the coarse particle side. In Table 3, we investigated the amount of finely powdered low melting point additives added to dead burnt magnesia from 0 to 50wt%, but at 50wt% or more, there was no significant difference in slag-forming properties, and on the contrary, it was used as a slag-forming material. Since the MgO quality of the MgO decreases, the blending ratio of dead burnt MgO is 50 to 90 wt%, that is, the effective blending ratio is 10 to 50 wt% as an additive. Table 4 shows typical grades of the slag material according to the present invention containing 60 to 80 wt% of dead burnt MgO.

【表】 死焼されたMgOでも、その粒度構成(とくに
3.0〜0.25mm)と微粉添加物で十分溶解性のよい
造滓材にすることができる。 この作用・効果をいつそう確実にする見地か
ら、上記配合からなる成形体中に、反応すべきス
ラグの侵入を助長する通路、および反応すべき表
面積を増加させるための膨張材の添加が有効であ
る。
[Table] Even in dead-fired MgO, its particle size composition (especially
3.0 to 0.25 mm) and fine powder additives can be used to make a slag material with sufficient solubility. From the standpoint of ensuring this action and effect, it is effective to add passages to the molded body made of the above-mentioned composition to encourage the penetration of the slag to be reacted, and an expansion agent to increase the surface area to be reacted. be.

【表】 第5表の配合は、1000℃以上の高温に急熱され
ると、添加した膨張材が膨張して成形された造粒
物が崩壊することを意図して調合した。 第5表の配合による成形体を1300℃に加熱した
炉内に投入し急熱した結果を第6表に示す。
[Table] The formulations in Table 5 were prepared with the intention that when rapidly heated to a high temperature of 1000°C or higher, the added expansion material would expand and the molded granules would collapse. Table 6 shows the results of rapidly heating the molded bodies having the formulations shown in Table 5 in a furnace heated to 1300°C.

【表】 No.1およびNo.4は瞬間的加熱によつて外観的に
は変化を示さないが、前述した17φ×65mm(成形
圧2トン)の成形体を、溶融したスラグ中で一定
速度(30r.p.m.)で回転溶解し120秒間の浸漬
後、残留した試片の断面を顕微鏡観察した結果か
ら、ヒル石またはパーライトの存在部分で膨張
し、この部分を通つてスラグが毛細管現象によつ
て成形体内に浸入し、死焼MgOがスラグ化しは
じめていることが認められた。 叙上のごとく、造滓材として死焼MgOを主原
料として使用する場合に、さらに造滓性を高める
手段として、ヒル石、黒曜石、パーライトなどの
急熱するとガスを放出したり、あるいはそれ自体
が膨張する物質を配合すると、その配合量がたと
えばヒル石の場合は4wt%程度でも溶融スラグと
反応し易い表面状況を形成することが確認でき
た。
[Table] Although No. 1 and No. 4 show no change in appearance due to instantaneous heating, the above-mentioned 17 φ After rotary melting at 30 rpm and immersion for 120 seconds, microscopic observation of the cross section of the remaining specimen revealed that the slag expands in areas where vermiculite or pearlite exists, and slag flows through these areas due to capillary action. It was observed that dead burnt MgO entered the molded body and began to turn into slag. As mentioned above, when using dead-burned MgO as the main raw material for slag-forming material, as a means to further improve slag-forming properties, it is possible to use materials such as vermiculite, obsidian, and pearlite, which release gas when rapidly heated, or to use the materials themselves. It was confirmed that when a substance that expands is mixed, a surface condition that is likely to react with molten slag is formed even if the amount of the compound is about 4wt% in the case of vermiculite.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の第1表に示す配合における
MgO粒子とスラグとの溶解状況を調べた場合
の、残面試験片断面の顕微鏡観察(50倍)による
概略組織図である。図中: aはMgO粗粒(3mm以下60%)、bはMgO細粒
(1mm以下60%)の場合を示す。
The drawings show the formulations shown in Table 1 of the present invention.
This is a schematic diagram of the structure obtained by microscopic observation (50x magnification) of a cross section of a remaining specimen when examining the state of dissolution of MgO particles and slag. In the figure: a indicates coarse MgO particles (60% below 3 mm), b indicates fine MgO particles (60% below 1 mm).

Claims (1)

【特許請求の範囲】 1 β型あるいはα―β混合型のMgO粉末及
び/またはMgO煉瓦屑からなるMgO粒子90〜50
重量%と、高炉スラグ及び蛍石の、高炉スラグ:
蛍石=3〜4:1の重量比の混合物を10〜50重量
%配合し、成形、造粒したことを特徴とする、製
鋼炉用造滓材。 2 粒径3.0〜0.20mmを主分布とするMgOを配合
する、特許請求の範囲第1項記載の製鋼炉用造滓
材。 3 β型あるいはα―β混合型のMgO粉末及
び/またはMgO煉瓦屑からなるMgO粒子90〜50
重量%と、高炉スラグ及び蛍石の高炉スラグ:蛍
石=3〜4:1の重量比の混合物を10〜50重量%
配合し、 かつ、ヒル石、黒曜石、パーライトから選ばれ
た少なくとも1種以上、及び/またはCaCO3
MgCO3から選ばれた少なくとも1種以上を添加
し、成形、造粒したことを特徴とする、製鋼炉用
造滓材。 4 粒径3.0〜0.2mmを主成分とするMgOを配合す
る、特許請求の範囲第3項記載の製鋼炉用造滓
材。
[Claims] 1. 90 to 50 MgO particles made of β type or α-β mixed type MgO powder and/or MgO brick waste
Weight percentage of blast furnace slag and fluorite, blast furnace slag:
A slag material for a steelmaking furnace, characterized in that it contains 10 to 50% by weight of a mixture with a weight ratio of fluorite = 3 to 4:1, and is formed and granulated. 2. The slag forming material for a steelmaking furnace according to claim 1, which contains MgO having a main distribution of particle sizes of 3.0 to 0.20 mm. 3 90-50 MgO particles made of β type or α-β mixed type MgO powder and/or MgO brick waste
and a mixture of blast furnace slag and fluorite in a weight ratio of blast furnace slag:fluorite = 3 to 4:1 to 10 to 50 weight %.
and at least one selected from vermiculite, obsidian, and pearlite, and/or CaCO 3 ,
A slag material for steelmaking furnaces, characterized in that it is formed and granulated with the addition of at least one selected from MgCO3 . 4. The slag forming material for a steelmaking furnace according to claim 3, which contains MgO having a grain size of 3.0 to 0.2 mm as a main component.
JP56026737A 1981-02-27 1981-02-27 Slag forming material Granted JPS57145918A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56026737A JPS57145918A (en) 1981-02-27 1981-02-27 Slag forming material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56026737A JPS57145918A (en) 1981-02-27 1981-02-27 Slag forming material

Publications (2)

Publication Number Publication Date
JPS57145918A JPS57145918A (en) 1982-09-09
JPS6221046B2 true JPS6221046B2 (en) 1987-05-11

Family

ID=12201613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56026737A Granted JPS57145918A (en) 1981-02-27 1981-02-27 Slag forming material

Country Status (1)

Country Link
JP (1) JPS57145918A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59126707A (en) * 1983-01-07 1984-07-21 Kawasaki Steel Corp Manufacture of chromium steel by refining using chrome ore, and chromium additive
JP5303978B2 (en) * 2008-03-21 2013-10-02 宇部興産株式会社 Slag remover and removal method
JP5463644B2 (en) * 2008-10-01 2014-04-09 Jfeスチール株式会社 Method for refining molten metal
JP5441093B2 (en) * 2008-10-01 2014-03-12 Jfeスチール株式会社 Slag component modifier for protecting refractories stretched in furnace and method for producing the same
JP5391690B2 (en) * 2008-12-26 2014-01-15 新日鐵住金株式会社 Slag regulator
JP6776210B2 (en) * 2017-10-25 2020-10-28 ダイネン株式会社 Molded body for refining or smelting addition

Also Published As

Publication number Publication date
JPS57145918A (en) 1982-09-09

Similar Documents

Publication Publication Date Title
US3374085A (en) Process for producing aggregate containing oxygen steel process dust
JPS5839203B2 (en) Slag forming agent and its manufacturing method
JPS6383232A (en) Injectable agent for molten metal
JPS6221046B2 (en)
US3661555A (en) Pelletized chromium addition agents for ferro alloys production and method therefor
WO2004050921A1 (en) Process for producing molten iron
JP2561615B2 (en) Method for producing complex slag refiner for refining used in out-of-furnace refining
JP3736500B2 (en) Method for producing sintered ore
RU2381279C2 (en) Method of receiving of steel-smelting flux
JP2003328022A (en) Desulfurizing agent for molten steel and manufacturing method therefor
JP3588918B2 (en) Hot metal desulfurization method and desulfurization agent
JP2010084210A (en) Method for refining molten metal
US4657584A (en) Effect of MgO source on sinter properties
RU2244017C2 (en) Modificator for metallurgic dross of magnesia composition and method for producing the same
US2250213A (en) Synthetic ore for blast furnaces
JPS6240326A (en) Manufacture of binder
US2133672A (en) Refractory
JP2001303142A (en) Method for producing sintered ore excellent in characteristic at high temperature
JPS6148475A (en) Use of steel slag
JPH10317048A (en) Flux for electric furnace steel-making and its production
JP3684335B2 (en) Hot metal pretreatment method using oil-containing sludge
US708331A (en) Process of treating fine iron ores for blast-furnaces.
JPS60231444A (en) Use of highly basic steel slag
SU1416473A1 (en) Charge for producing fired refractory material
KR840001379B1 (en) Slag froming agent