JPS62209272A - Shaft seal device - Google Patents

Shaft seal device

Info

Publication number
JPS62209272A
JPS62209272A JP4625886A JP4625886A JPS62209272A JP S62209272 A JPS62209272 A JP S62209272A JP 4625886 A JP4625886 A JP 4625886A JP 4625886 A JP4625886 A JP 4625886A JP S62209272 A JPS62209272 A JP S62209272A
Authority
JP
Japan
Prior art keywords
seal
visco
seals
chamber
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4625886A
Other languages
Japanese (ja)
Other versions
JPH0259341B2 (en
Inventor
Sadami Korenaga
是永 定美
Hiroyuki Imai
今井 寛之
Hiroshi Takada
寛 高田
Hiroo Tagami
田上 寛男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eagle Industry Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Eagle Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Eagle Industry Co Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP4625886A priority Critical patent/JPS62209272A/en
Publication of JPS62209272A publication Critical patent/JPS62209272A/en
Publication of JPH0259341B2 publication Critical patent/JPH0259341B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Sealing Using Fluids, Sealing Without Contact, And Removal Of Oil (AREA)

Abstract

PURPOSE:To improve the extent of sealing capacity, by supplying a sealing fluid to an interval between paired visco-seals, while feeding a shielding fluid to an opposed chamber and a shield chamber, and making the sealing fluid flow from the inside seal to the inside of a housing. CONSTITUTION:A pair of visco-seals 6 and 7 are installed in a shaft hole inner wall surface of a housing 3 with a opposed chamber as a boundary, while the seal 7 and shield chambers 8 and 11 are interconnected with one another, and the shield chamber 11 and the atmosphere partitioned off by mechanical seals 14 and 15. The inside of the visco-seal 7 is narrowed, and a clearance comes to a laminar flow zone. A sealing fluid is put in a liquid tank 16, while a shielding fluid is put in the shield chamber 8, and oil for lubricating these mechanicals seals is fed to the shield chamber 11. Therefore, a perfect shaft seals function is performable owing to a multiple structure in the seal.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、軸封装置に係り、とくにビスコシールを用い
てカリウム蒸気等の化学的に活性な波体や極低温(たと
えば、−273℃付近)または高温(たとえば、600
℃以上)の流体を密封する軸封装置を提供するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a shaft seal device, and in particular uses a visco seal to protect against chemically active wave bodies such as potassium vapor and extremely low temperatures (for example, -273°C). ) or high temperatures (e.g. 600
The present invention provides a shaft sealing device that seals fluids at temperatures above 30°F (°C or higher).

〔従来の技術〕[Conventional technology]

従来から、たとえば溶融金属等の高温流体を密J・1す
るものとして竪型のナトリウムポンプの軸封装置が実用
化されているが、該装置の許容流体温度は600°C以
下となっており、この温度を超える高温の溶融金属シー
ルに関しては、宇宙T学等特殊分野の限定された条件下
における設例が散見される程度で、一般産業レベルでの
長期間安定稼動はこれまで不可部とされてきた。
Conventionally, shaft sealing devices for vertical sodium pumps have been put into practical use as sealing high-temperature fluids such as molten metal, but the permissible fluid temperature of these devices is 600°C or less. Regarding molten metal seals at temperatures exceeding this temperature, there are only a few examples under limited conditions in special fields such as space science, and long-term stable operation at the general industrial level has been considered indispensable until now. It's here.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明の軸封装置は、このような高温流体や極低温流体
さらに化学的に活性な流体を密封することを主な目的と
するものである。
The main purpose of the shaft sealing device of the present invention is to seal such high-temperature fluids, cryogenic fluids, and chemically active fluids.

〔問題点を解決するための手段〕[Means for solving problems]

この目的を達成するため1本発明の軸封装置は、タービ
ン等各種回転機器のハウジングと該/\ウジングの軸孔
に挿通した回転軸の隙間を密封するものにおいて、被密
封流体に近い側に圧いに相りに向けてポンプ圧を生じる
前後1対のビスコシールを配し、1核1対のビスコシー
ルの間に形成した対向室に液槽から密J=4旋体を供給
し、該対向室とビスコシールの外側に形成した遮蔽室を
!ノーいに連通させてここに遮蔽流体を送給し、該遮蔽
室の外側にメカニカルシール等の密封装置を配し、かつ
前記1対のビスコシールのうち外側のシールのクリアラ
ンスを層流領域となる程度に狭め、さらに内側ビスコシ
ールからハウジング内へ密封流体を流せる構成とした。
In order to achieve this object, the shaft sealing device of the present invention seals the gap between the housing of various rotating equipment such as a turbine and the rotating shaft inserted into the shaft hole of the housing. A pair of front and rear visco seals are arranged to generate a pump pressure corresponding to the pressure, and a dense J=4 solid is supplied from a liquid tank to an opposing chamber formed between a pair of visco seals. A shielding chamber formed on the outside of the opposing chamber and the Visco seal! A sealing device such as a mechanical seal is arranged outside the shielding chamber, and the clearance of the outer seal of the pair of visco seals is set to a laminar flow region. The structure is narrowed to a certain extent, and the sealing fluid can flow from the inner visco seal into the housing.

上記構成になる本発明の軸封装置は、ビスコシールと、
密封流体および遮蔽流体と、メカニカルシール等の密封
装置のそれぞれの作用が相俟って、以下に述べるように
優れた密封性能を発揮するようになる。
The shaft seal device of the present invention having the above configuration includes a visco seal,
The effects of the sealing fluid, shielding fluid, and sealing device such as a mechanical seal work together to provide excellent sealing performance as described below.

〔実 施 例〕〔Example〕

以下1本発明の実施例を図面にしたがって説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図において、符号(1)は回転軸、(2)ないしく
4)は該回転軸(1)を挿通ずる軸孔を備えた第1ない
し第3のハウジングであって、当該輔封装置行は、図上
左側の第1のハウジング(2)内にある被密封流体たる
蒸気またはガス(以下、Qiに蒸気という)が図上右方
向へ漏洩しないように働くものである。
In FIG. 1, reference numeral (1) denotes a rotating shaft, (2) or 4) denotes a first to third housing provided with a shaft hole through which the rotating shaft (1) is inserted, and the sealing device is The rows serve to prevent steam or gas (hereinafter referred to as steam for Qi), which is a fluid to be sealed, in the first housing (2) on the left side in the figure from leaking to the right in the figure.

第2のハウジング(3)の軸孔内壁面には、その軸方向
中央に設けた環状の対向室(5)を境として、左右対称
に、互いに逆方向になる1対のビスコシール(6)(7
)が設けられ、回転軸(1)が一定の方向に回転した場
合、図北左側の機内側ビスコシール(6)は第1のハウ
ジング(2)から対向室(5)へ向けて、また図上右側
の外側ビスコシール(7)は第3のハウジング(4)か
ら対向室(5)へ向けてそれぞれポンプ圧力を生じるよ
うになる。第3のハウジング(4)の軸孔内周には、図
」二人から右へ、それぞれ外部ポンプ(図示せず)に連
通ずる送気管(9)と排気管(10)および送油管(1
2)と排油管(13)を備え、かつ環状を呈する第1゛
および第2の遮蔽室(8)(11)が設けられ、外側の
ビスコシール(7)と互いに連通ずるこの第1の遮蔽室
(8)と外側の第2の遮蔽室(11)、該第2の遮蔽室
(11)と大気のそれぞれを仕切るべくメカニカルシー
ル(+4)(15)が介設されている。符号(1B)は
、”前記1対のビスコシール(8)(7)間の対向室(
5)に対して一定の水頭(h)を与える液槽で、経路(
17)により前記第1の遮蔽室(8)の送気管(8)と
連通している。前記外側のビスコシール(7)は、その
内部に挿通した回転軸(1)が部分的に大径に形成され
るか、あるいはビスコシール(7)の内側が狭められ、
クリアランスが層流領域となるように狭く形成されてい
る。
On the inner wall surface of the shaft hole of the second housing (3), a pair of visco seals (6) are symmetrically arranged in opposite directions with respect to an annular opposing chamber (5) provided in the axial center of the second housing (3). (7
), and when the rotating shaft (1) rotates in a certain direction, the inside visco seal (6) on the north left side of the figure is directed from the first housing (2) to the opposing chamber (5), and when the rotating shaft (1) rotates in a certain direction, The outer visco seals (7) on the upper right side each generate a pump pressure from the third housing (4) towards the opposing chamber (5). On the inner periphery of the shaft hole of the third housing (4), an air pipe (9), an exhaust pipe (10), and an oil pipe (1
2) and an oil drain pipe (13), and are provided with first and second shielding chambers (8) and (11) having an annular shape, and are in communication with the outer visco seal (7). Mechanical seals (+4) and (15) are interposed to partition the chamber (8) and the second shielded chamber (11) on the outside, and between the second shielded chamber (11) and the atmosphere. The code (1B) indicates “an opposing chamber between the pair of visco seals (8) and (7) (
5) is a liquid tank that gives a constant head (h) to the path (
17) communicates with the air pipe (8) of the first shielded chamber (8). The outer visco seal (7) has the rotating shaft (1) inserted therein partially formed with a large diameter, or the inner side of the visco seal (7) is narrowed,
The clearance is narrow so as to form a laminar flow region.

1ニ記構成の軸封装置を用いてカリウムタービンのカリ
ウム蒸気を密封する場合は、被密封流体たる該蒸気に対
し、該蒸気と同一物質で、かつそれらを冷却すると液化
する物質、すなわち液体カリウムを密j)流体(シーラ
ント、18)として液槽(16)内に入れ、第1の遮蔽
室(8)に外部タンクから遮蔽流体として不活性ガスた
るアルゴンガスを送給し、第2の遮蔽室(11)に外部
タンクからメカニカルシールを潤滑するためにカリウム
と反応しない油を送給する6機内側のメカニカルシール
(14)にはカリウムと反応しない材質で製せられたヘ
ローズタイプを用いる。外側のメカニカルシール(15
)の右側には、1にタービンにより駆動する発電機等が
連結される。
When sealing potassium steam in a potassium turbine using a shaft sealing device having the configuration described in (1) above, the steam, which is the fluid to be sealed, is sealed with a substance that is the same as the steam and liquefies when it is cooled, that is, liquid potassium. is placed in the liquid tank (16) as a sealant (18), and argon gas, which is an inert gas, is supplied as a shielding fluid from an external tank to the first shielding chamber (8), and the second shielding chamber Oil that does not react with potassium is supplied from an external tank to the chamber (11) in order to lubricate the mechanical seal.The mechanical seal (14) inside the six machines uses a heros type made of a material that does not react with potassium. . Outer mechanical seal (15
) is connected to 1 and a generator driven by a turbine.

今、回転軸(1)を所定の回転速度で回転させ、かつ液
槽(16)内の液体カリウム(18)の液面の高さくh
)が一定に保たれるようにし、またilのハウジング(
2)内のカリウム蒸気の圧力と第1の遮蔽室(8)内の
アルゴンガスの圧力が一定の圧力差となるように該遮蔽
室(8)内の圧力を調整する。この調整は、外部タンク
から送気管(8)を経て該遮蔽室(8)内へ送給された
アルゴンガスの一部を排気管(10)から外部へ放出す
ることにより行ない、両管(9)(10)にはこのため
の圧力調整バルブ(図示せず)が設けられている。調整
後の圧力は経路(17)を介し液槽(16)内の液面に
も加わる。
Now, rotate the rotating shaft (1) at a predetermined rotational speed, and adjust the height h of the liquid potassium (18) in the liquid tank (16).
) remains constant, and the housing of il (
2) Adjust the pressure in the shielded chamber (8) so that there is a constant pressure difference between the pressure of the potassium vapor in the first shielded chamber (8) and the pressure of the argon gas in the first shielded chamber (8). This adjustment is performed by discharging a part of the argon gas supplied from the external tank into the shielded chamber (8) via the air supply pipe (8) to the outside from the exhaust pipe (10), and ) (10) is provided with a pressure regulating valve (not shown) for this purpose. The adjusted pressure is also applied to the liquid level in the liquid tank (16) via the path (17).

既述したように、回転軸(1)が回転すると、左右のビ
スコシール(8)(7)にはそのポンプ圧力が対向室(
5)へ向けて加圧するように働く。このため図上左側の
ビスコシール(8)内には、液槽(IB)の水頭(h)
とアルゴンガス圧の和が、該ビスコシール(6)のポン
プ圧力とカリウム蒸気圧の和と釣り合うように気液界面
(19)ができる。また図上右側のビスコシール(?)
内には、水頭(h)とビスコシール(7)のポンプ圧力
が釣り合うように、今ひとつの気液界面(20)ができ
る。前者左側の気液界面(19)は、カリウム蒸気圧と
アルゴンガスの差圧の大小によって軸方向に移動するが
、後者右側の気液界面(20)はアルゴンガス圧に関係
なく一定位置に停留する。
As mentioned above, when the rotating shaft (1) rotates, the pump pressure is applied to the left and right visco seals (8) and (7) in the opposing chambers (
5) works to pressurize towards. Therefore, the water head (h) of the liquid tank (IB) is
A gas-liquid interface (19) is formed such that the sum of the pump pressure of the visco seal (6) and the potassium vapor pressure is balanced by the sum of the pump pressure of the visco seal (6) and the potassium vapor pressure. Also, the visco seal (?) on the right side of the diagram
Inside, another gas-liquid interface (20) is created so that the water head (h) and the pump pressure of the visco seal (7) are balanced. The former left gas-liquid interface (19) moves in the axial direction depending on the magnitude of the pressure difference between potassium vapor pressure and argon gas, but the latter right gas-liquid interface (20) remains at a fixed position regardless of the argon gas pressure. do.

」二記輛刃装置は、被密封流体たるカリウム蒸気に近い
側に前後1対のビスコシールを配し、このビスコシール
の中にカリウム−芯気と同種の液体カリウムを滞溜して
カリウム蒸気を直接的に封Iヒするとともに、該液体カ
リウムを、その外側に供給するアルゴンガスやメカニカ
ルシール(14)(15)を用いて封止し、かかる多爪
的構造により完全な軸封機能を奏する。
2. The machine blade device has a pair of visco seals in the front and rear on the side close to potassium vapor, which is the fluid to be sealed, and liquid potassium, which is the same type as potassium core air, is retained in these visco seals to generate potassium vapor. At the same time, the liquid potassium is sealed using argon gas supplied to the outside and mechanical seals (14) and (15), and this multi-claw structure provides a complete shaft sealing function. play.

液体カリウムとアルゴンガスが接する外側(右側)の気
液界面(20)において、いわゆるガスインジェクショ
ンを生じるとビスコシール(7)[IAの性能が低下し
、これに対処するためシール長を長くしなければならな
い等の問題が生じるが、該ビスコシール(7)のクリア
ランスを層流望域となる程度に狭めたため、ガスが巻き
込まれることはなく該気液界面(20)を安定させるこ
とができる。すなわち第5図および第6図を参照しつつ
このビスコシール(7)のクリアランス(C)について
述べると、レイノルズ数(Rec)および臨界レイノル
ズ数(Recrit)は Rec=’−月1 60ν ただしD:軸経(11) N:回転数(rpm) シ:密封流体(液体カリウム)の 動粘性係数(rn’/s) ただしγ=−立− a+b β=i土工 a、b、h:図示のとおり で表わされ、 )lec (Recritのときに層流
であるから、そのようにクリアランス(C)を設定する
。第214はその一例を示している。なおりリアランス
CC)を小さくすると当該ビスコシール(7)の組み込
み調整が困難となるが、乱流のときと同じ/ik大締切
圧(ΔPmay)を得るためには、シール長(L)を短
くできるので問題はなく、また装置のコンパクト化を図
ることが可能となる。
If so-called gas injection occurs at the gas-liquid interface (20) on the outside (right side) where liquid potassium and argon gas are in contact, the performance of the Visco seal (7) [IA will decrease, and the seal length must be increased to cope with this. However, since the clearance of the visco seal (7) is narrowed to such an extent that a laminar flow is desired, the gas-liquid interface (20) can be stabilized without entrainment of gas. That is, to describe the clearance (C) of this visco seal (7) with reference to FIGS. 5 and 6, the Reynolds number (Rec) and the critical Reynolds number (Recrit) are Rec='-month 1 60ν where D: Axial length (11) N: Rotation speed (rpm) C: Kinematic viscosity coefficient of sealing fluid (liquid potassium) (rn'/s) where γ=-stand- a+b β=i Earthwork a, b, h: As shown ) lec (Since the flow is laminar when Recrit, the clearance (C) is set accordingly. No. 214 shows an example of this. If the clearance CC) is made smaller, the corresponding visco seal (7) will be difficult to incorporate and adjust, but there is no problem because the seal length (L) can be shortened in order to obtain the same /ik large shutoff pressure (ΔPmay) as in the case of turbulent flow, and the device can be made more compact. It becomes possible to aim for.

ル:密封流体(液体カリウム)の粘 性係数(kgs/m’) L:シール長(a) Δ;シール係数 U:周速度(m/s) 一方、内側(左側)のビスコシール(6)にはクリアラ
ンスの大きな乱流型のものを用いる。この場合シール長
が少少長くても組み込みの問題はない。該ビスコシール
(8)内に形成される気液界面(19)ではカリウム蒸
気と液体カリウムが接し、両者が木来同じものであるこ
とからガスインジェクションは生じない。
L: Viscosity coefficient of sealing fluid (liquid potassium) (kgs/m') L: Seal length (a) Δ; Seal coefficient U: Circumferential speed (m/s) On the other hand, the inner (left side) visco seal (6) A turbulent flow type with large clearance is used. In this case, there is no problem with assembly even if the seal length is a little long. At the gas-liquid interface (19) formed within the visco seal (8), potassium vapor and liquid potassium come into contact, and since both are the same material, no gas injection occurs.

タービンの作動状況いかんにより第1のハウジング(2
)内の圧力が変動する場合があるが、この圧力変動はア
ルゴンガス圧を制御して吸収することができる。この制
御には差圧計、圧力調整器、圧力調整弁等を使う、他方
、圧力変動が小さく制御を必要としない場合には、第1
の遮蔽室(8)を真空引きし、絶対にガスが第1のハウ
ジング(2)側へ流れないようにする。
Depending on the operating condition of the turbine, the first housing (2
) may fluctuate, but this pressure fluctuation can be absorbed by controlling the argon gas pressure. Differential pressure gauges, pressure regulators, pressure regulating valves, etc. are used for this control.On the other hand, when pressure fluctuations are small and no control is required, the first
The shielded chamber (8) is evacuated to prevent gas from flowing toward the first housing (2).

またシール長をさらに短くする手段として、ビスコシー
ル(6)を1σくして密封流体たる液体カリウムを第1
のハウジング(2,タービン室)内へ溢流させる。この
実施例が第2図であり、図上、符号(21)は溢流密封
流体、(22)は密封流体送給管である。溢流によりビ
スコシール(8)の締切性能が、第3図に・Ilすごと
く改善され、また第1のハウジング内で回転軸(1)へ
伝わった熱が第4図に示すごとく効果的に冷却される。
In addition, as a means to further shorten the seal length, the visco seal (6) is made 1σ and liquid potassium, which is the sealing fluid, is
into the housing (2, turbine chamber). This embodiment is shown in FIG. 2, in which reference numeral (21) is an overflow sealing fluid and (22) is a sealing fluid feed pipe. Due to the overflow, the closing performance of the visco seal (8) is greatly improved as shown in Fig. 3, and the heat transferred to the rotating shaft (1) within the first housing is effectively reduced as shown in Fig. 4. cooled down.

〔発明の効果〕〔Effect of the invention〕

本発明の軸封装置は以上説明したような構成になり、密
封性能がきわめてよく、被密封流体に直接接するのが非
接触式のビスコシールであるために液密M流体の温度、
圧力、種類に関係なく使用1でき、かかる様様な条件下
で安定して運転でき。
The shaft sealing device of the present invention has the configuration as described above, and has extremely good sealing performance.Since the non-contact type Visco seal is in direct contact with the fluid to be sealed, the temperature of the liquid-tight M fluid,
It can be used regardless of pressure or type, and can operate stably under a variety of conditions.

かつ長寿命で、圧力および温度変動に追随できる特徴を
有する。また外側ビスコシールのクリアランスを層流領
域となる程度まで狭めたため、遮蔽流体が密封流体に巻
き込まれることがなく、該巻き込みを防止する機構(循
環経路など)を付設する必要がなく、かつシール長を短
くできるため装置全体がコンパクトになるものである。
It also has a long life and can follow pressure and temperature fluctuations. In addition, because the clearance of the outer visco seal is narrowed to the extent that it becomes a laminar flow region, the shielding fluid does not get caught up in the sealing fluid, there is no need to add a mechanism (circulation path, etc.) to prevent this getting caught, and the seal length Since the length can be shortened, the entire device can be made compact.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は本発明の実施例に係る軸封装置の
断面図、第3図はビスコシールの性能実験結果を示すグ
ラフ、第4図はビスコシールに予想される温度分布を示
すグラフ、第5図はビスコシールの特性を示すグラフ、
第6図はビスコシールの基本構成を示す断面図である。 (1)回転軸  (2)(3)(4)ハウジング(5)
対向室  (6)(7)ビスコシール(8)(+1)遮
蔽室  (9)送気管(10)排気管  (12)送油
管  (13)排油管(+4)(+5)メカニカルシー
ル  (16)液槽(17)経路  (18)密封流体 (+9)(20)気液界面   (21)溢流密封流体
(22)密封流体送給管
Figures 1 and 2 are cross-sectional views of a shaft sealing device according to an embodiment of the present invention, Figure 3 is a graph showing the performance test results of the Visco seal, and Figure 4 shows the temperature distribution expected for the Visco seal. Graph, Figure 5 is a graph showing the characteristics of Visco Seal,
FIG. 6 is a sectional view showing the basic structure of the Visco seal. (1) Rotating shaft (2) (3) (4) Housing (5)
Opposing chamber (6) (7) Visco seal (8) (+1) Shield chamber (9) Air pipe (10) Exhaust pipe (12) Oil pipe (13) Oil drain pipe (+4) (+5) Mechanical seal (16) Liquid Tank (17) Path (18) Sealing fluid (+9) (20) Gas-liquid interface (21) Overflowing sealing fluid (22) Sealing fluid supply pipe

Claims (1)

【特許請求の範囲】[Claims] タービン等各種回転機器のハウジングと該ハウジングの
軸孔に挿通した回転軸の隙間を密封する軸封装置におい
て、被密封流体に近い側に互いに相手に向けてポンプ圧
を生じる前後1対のビスコシールを配し、該1対のビス
コシールの間に形成した対向室に液槽から密封流体を供
給し、該対向室とビスコシールの外側に形成した遮蔽室
を互いに連通させてここに遮蔽流体を送給し、該遮蔽室
の外側にメカニカルシール等の密封装置を配し、かつ前
記1対のビスコシールのうち外側のシールのクリアラン
スを層流領域となる程度に狭めてなることおよび内側の
シールからハウジング内へ密封流体を流し、ポンプ圧力
の向上および回転軸の冷却を行なうことを特徴とする軸
封装置。
In a shaft sealing device that seals the gap between the housing of various rotating equipment such as a turbine and the rotating shaft inserted into the shaft hole of the housing, a pair of front and rear visco seals generate pump pressure toward each other on the side closer to the sealed fluid. The sealing fluid is supplied from the liquid tank to the opposing chamber formed between the pair of visco seals, and the opposing chamber and the shielding chamber formed outside the visco seals are communicated with each other to supply the shielding fluid therein. a sealing device such as a mechanical seal is arranged outside the shielded chamber, and the clearance of the outer seal of the pair of visco seals is narrowed to such an extent as to form a laminar flow region, and the inner seal A shaft sealing device characterized in that a sealing fluid flows from a housing into a housing to improve pump pressure and cool a rotating shaft.
JP4625886A 1986-03-05 1986-03-05 Shaft seal device Granted JPS62209272A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4625886A JPS62209272A (en) 1986-03-05 1986-03-05 Shaft seal device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4625886A JPS62209272A (en) 1986-03-05 1986-03-05 Shaft seal device

Publications (2)

Publication Number Publication Date
JPS62209272A true JPS62209272A (en) 1987-09-14
JPH0259341B2 JPH0259341B2 (en) 1990-12-12

Family

ID=12742170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4625886A Granted JPS62209272A (en) 1986-03-05 1986-03-05 Shaft seal device

Country Status (1)

Country Link
JP (1) JPS62209272A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013217256A (en) * 2012-04-06 2013-10-24 Nippon Soken Inc Hydraulic braking device
US8733307B2 (en) 2011-09-28 2014-05-27 Denso Corporation Hydraulic braking device and valve timing adjusting apparatus
CN110319198A (en) * 2019-07-11 2019-10-11 浙江鑫盛永磁科技有限公司 Magnetic fluid automatic injection system for sealed gearing device
JP2020060249A (en) * 2018-10-10 2020-04-16 三菱瓦斯化学株式会社 Shaft sealing device and shaft sealing system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8733307B2 (en) 2011-09-28 2014-05-27 Denso Corporation Hydraulic braking device and valve timing adjusting apparatus
JP2013217256A (en) * 2012-04-06 2013-10-24 Nippon Soken Inc Hydraulic braking device
JP2020060249A (en) * 2018-10-10 2020-04-16 三菱瓦斯化学株式会社 Shaft sealing device and shaft sealing system
CN110319198A (en) * 2019-07-11 2019-10-11 浙江鑫盛永磁科技有限公司 Magnetic fluid automatic injection system for sealed gearing device

Also Published As

Publication number Publication date
JPH0259341B2 (en) 1990-12-12

Similar Documents

Publication Publication Date Title
US3467396A (en) Internally cooled seal assembly
US5149249A (en) Shaft seal assembly, especially for high-pressure turbocompressors
JPS61131851A (en) Supporter for machine tool spindle with cooling device in spindle guide
US4848774A (en) Reactor coolant pump hydrostatic sealing assembly with externally pressurized hydraulic balance chamber
US3874676A (en) Cooling apparatus for shaft seal
JPS62209272A (en) Shaft seal device
US4358937A (en) Device for conducting cooling liquid in and out of liquid cooled rotor type rotary electric machine
US3090654A (en) Controlled-gap seal with hydrodynamic-thrust bearing
US4838559A (en) Reactor coolant pump hydrostatic sealing assembly with improved hydraulic balance
US4341093A (en) Device for leading cooling liquid out of rotary electric machine with liquid cooled rotor
KR850000352B1 (en) Axial-flow centrifugal pump for the circulation of fluid
US2534530A (en) Controlled packing construction for pumps or the like
JPH0220803B2 (en)
US2647771A (en) Shaft seal
JP6863857B2 (en) Shaft sealing device
CN109423697B (en) Furnace door device for low-pressure diffusion furnace and low-pressure diffusion furnace
US4069101A (en) Self-compensating level control for sump suction pumps
US3587638A (en) Coolant coupling head
CN208845370U (en) A kind of centrifugal pump with water-cooled pump cover and sealing gland
US2968499A (en) Shaft seal for hydrogen-cooled generator
JPS6272966A (en) Magnetic fluid seal device
JPH08557Y2 (en) Pump shaft seal cooling structure
JPS5884269A (en) Labyrinth seal structure
CN208185473U (en) Feed bin solution sealing device
CN214367749U (en) Mechanical sealing device with air cooling heat dissipation sleeve

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term