JPS62207804A - Apparatus for separating and capturing ultrafine particles - Google Patents

Apparatus for separating and capturing ultrafine particles

Info

Publication number
JPS62207804A
JPS62207804A JP61050396A JP5039686A JPS62207804A JP S62207804 A JPS62207804 A JP S62207804A JP 61050396 A JP61050396 A JP 61050396A JP 5039686 A JP5039686 A JP 5039686A JP S62207804 A JPS62207804 A JP S62207804A
Authority
JP
Japan
Prior art keywords
ultrafine particles
filter
ultrafine
particles
carrier gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61050396A
Other languages
Japanese (ja)
Inventor
Masatoshi Kanamaru
昌敏 金丸
Takeshi Araya
荒谷 雄
Yoshiaki Ibaraki
茨木 善朗
Kiju Endo
喜重 遠藤
Susumu Hioki
日置 進
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61050396A priority Critical patent/JPS62207804A/en
Publication of JPS62207804A publication Critical patent/JPS62207804A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form and capture ultrafine particles continuously for a long time by transferring the ultrafine particles formed in a generating chamber to a filter mechanism by gaseous flow to separate and capture the particles and applying oscillation to a filter thereby collecting the particles in a large-capacity capturing chamber. CONSTITUTION:The ultrafine particles formed in the ultrafine particles generating chamber 1 are entrained in the flow of a carrier gas and are transferred up to the oscillation filter mechanism 2. The ultrafine particles and the carrier gas are separated in said mechanism. The carrier gas is returned by a circulation pump 4 to the generating chamber 1. The ultrafine particles captured by the filter mechanism 2 do not stick to the filter surface and are collected into the large-capacity capturing chamber 3 as the filter is under oscillation. Valves 7a, 7b are closed and the ultrafine particles are dispersed by an ultrasonic oscillator 6 when a large amt. of the ultrafine particles are collected in the capturing chamber 3. The capturing chamber 3 is thereafter exchanged. A large amt. of the ultrafine particles are thereby efficiently and easily captured in the dispersed state.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は超微粒子の分離及び捕集装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an apparatus for separating and collecting ultrafine particles.

〔従来の技術〕[Conventional technology]

従来、アーク及びプラズマ等、超高温熱源を利用した超
微粒子の分離及び捕集装置としては、一般的に不活性ガ
スの流れに生成した超微粒子を乗せ捕集部に設置したセ
ルロース及びガラス繊維等のフィルターを用い捕集して
いた。
Conventionally, ultrafine particle separation and collection devices using ultra-high temperature heat sources such as arcs and plasmas have generally used cellulose or glass fibers, etc., in which ultrafine particles generated in a flow of inert gas are placed in a collection section. was collected using a filter.

また、ガス蒸発法を用いた場合の従来の捕集装置は超微
粒子生成容器内壁に付着した超微粒子を内壁を伝って流
れるシリコンオイル系溶液を用いて回収する装置〔特開
昭49−52163)及び生成した超微粒子を冷却によ
り固化した気体又は液体に付着せしめ、分散状態で捕集
せしめる装置(特公昭56−15442)がある。
Furthermore, a conventional collection device using the gas evaporation method is a device that collects ultrafine particles attached to the inner wall of an ultrafine particle generation container using a silicone oil-based solution flowing along the inner wall [Japanese Patent Laid-Open No. 49-52163]. There is also an apparatus (Japanese Patent Publication No. 56-15442) in which the generated ultrafine particles are attached to a gas or liquid solidified by cooling and collected in a dispersed state.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前記の従来技術は捕集部に設置したフィルタ一部で、超
微粒子が連続的にフィルター表面に積み重なる次め超微
粒子間の結合による粒子成長が考えられ、しかもある一
定量以上、捕集するとフィルターが目づまり状態の点に
ついて配慮がされておらず、キャリアガスを循環させて
いる超微粒子製造装置の場合にはキャリアガスの流量が
減少し、超微粒子の生成に悪影響を及ぼす。また、捕集
容量がフィルターの容量で決定するため、フィルターを
並列に数個、設置する構造が考えられるが、構造上複雑
となり超微粒子を操作上、大気に触nることなく捕集し
なければならないため1回収する場合には複雑な過程を
必要とする等の問題があった。
The above-mentioned conventional technology is a part of the filter installed in the collection part, and it is thought that ultrafine particles are continuously piled up on the filter surface and then particle growth occurs due to bonding between the ultrafine particles.Moreover, when a certain amount or more is collected, the filter In the case of an ultrafine particle manufacturing apparatus in which carrier gas is circulated without consideration given to the clogging state, the flow rate of the carrier gas decreases, which adversely affects the generation of ultrafine particles. In addition, since the collection capacity is determined by the capacity of the filter, a structure in which several filters are installed in parallel can be considered, but the structure is complicated and it is necessary to collect ultrafine particles without coming into contact with the atmosphere. Therefore, there were problems such as the need for a complicated process if one recovery was required.

一方、ガス蒸発法で用いられている捕集装置はアーク及
びプラズマ等、超高温熱源を利用した超微粒子生成法に
は用いることができない。その理由は超微粒子の生成に
超高温熱源を利用しているため、超微粒子を生成してい
る容器内壁に溶液を・流したシ、冷却により固化した気
体又は液体を容器内壁に固定させたりすると、溶液及び
固化した気体又は液体が蒸発し、超微粒子の生成に悪影
響を及ぼす問題があった。また、こnらの装置は捕集時
に超微粒子を分級する技術について配慮されておらず、
特にアーク法で生成された超微粒子は粒径分布が非常に
広範囲である問題点があった0本発明の目的は捕集に用
いるフィルターが目づまpt起こさず、超微粒子を大量
かつ安易に分離及び捕集する装置を提供することにある
On the other hand, the collection device used in the gas evaporation method cannot be used in the ultrafine particle generation method using an ultra-high temperature heat source such as an arc or plasma. The reason for this is that an ultra-high temperature heat source is used to generate ultrafine particles, so if a solution is poured onto the inner wall of the container where the ultrafine particles are being generated, or the gas or liquid solidified by cooling is fixed to the inner wall of the container. However, there was a problem in that the solution and solidified gas or liquid evaporated, which adversely affected the production of ultrafine particles. In addition, these devices do not take into consideration the technology for classifying ultrafine particles during collection,
In particular, the ultrafine particles generated by the arc method have a problem in that the particle size distribution is very wide.The purpose of the present invention is to easily separate a large amount of ultrafine particles without causing clogging of the filter used for collection. and to provide a device for collecting it.

また、本発明の別な目的は狭範囲の粒度分布を有する活
性な超微粒子を捕集し1分散状!II4を保持した状態
で装置より安易に取り出すことが可能な装置を提供する
ことにある。
Another object of the present invention is to collect active ultrafine particles with a narrow particle size distribution and to form a single dispersion! To provide a device capable of easily taking out II4 from the device while holding it.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

前記目的は、捕集部に設置したフィルタ一部に振動機構
を設置し、かつその振動機構の下方にバルブを介して1
個もしくは複数個の大容量捕集室を設け、その周囲に超
音波発生機構を設けることによシ、達成さnる。
The purpose is to install a vibration mechanism in a part of the filter installed in the collection section, and to install a vibration mechanism below the vibration mechanism through a valve.
This can be achieved by providing one or more large-capacity collection chambers and providing an ultrasonic generation mechanism around them.

また、前記、別な目的はキャリアガスにより運ばれた超
微粒子を、そのまま、非酸化性の界面活性剤を含む液状
物質内へ導入し、液状物質中でキャリアガスと超微粒子
の分離を促進させる機構を設け、かつその周囲に超音波
発生機構を設けることにより、達成される。
Another purpose is to directly introduce the ultrafine particles carried by the carrier gas into a liquid substance containing a non-oxidizing surfactant to promote separation of the carrier gas and the ultrafine particles in the liquid substance. This is achieved by providing a mechanism and providing an ultrasonic generation mechanism around the mechanism.

〔作用〕[Effect]

本発明では捕集部に設置したフィルターに上下。 In the present invention, the upper and lower filters are installed in the collection section.

圧右、回転もしくは不規則な運動をさせることにより、
キャリアガスで運ばれた超微粒子はフィルターでキャリ
アガスと超微粒子に分離され、フィルター表面で捕えた
超微粒子は振動状態のフィルター表面で振υ落とされ、
捕集部下部に設置した大容量捕集室内に固着しない状態
で集めらnる。
By compressing, rotating or making irregular movements,
The ultrafine particles carried by the carrier gas are separated into carrier gas and ultrafine particles by the filter, and the ultrafine particles captured on the filter surface are shaken off by the vibrating filter surface.
It is collected in a large-capacity collection chamber installed at the bottom of the collection section without sticking.

この大容量捕集室の周囲に超音波発生機構を設けること
により、集められた超微粒子は超音波によって分散さn
る機能も有している。
By providing an ultrasonic generation mechanism around this large-capacity collection chamber, the collected ultrafine particles are dispersed by ultrasonic waves.
It also has the function of

超微粒子発生室と捕集部の間の配管に超音波発生機構を
設置することにニジ、キャリアガス中の超微粒子は分散
・分級さn、同一配管内に固定した数個所のフィルター
で捕集さnる。なお、この装置にフィルターを振動させ
る機構を付7111することにより、捕集が安易となる
By installing an ultrasonic generation mechanism in the piping between the ultrafine particle generation chamber and the collection section, the ultrafine particles in the carrier gas can be dispersed and classified, and then collected using several filters fixed in the same piping. Sanru. Note that by adding a mechanism to vibrate the filter to this device, collection becomes easier.

また1本発明はアーク及びプラズマ等、超高温熱源を利
用し、生成した超微粒子をすぐに液状物質内に導入し、
液状物質内でポーラス状焼結材を用い、分離させること
によって、高品質な超微粒子を得ることができる。この
液状物質容器の周囲に超音波発生機構を設置することに
よって、非常に分散状態が良好な超微粒子が得ら【る。
In addition, the present invention utilizes an ultra-high temperature heat source such as an arc or plasma, and immediately introduces the generated ultrafine particles into a liquid substance,
High-quality ultrafine particles can be obtained by using a porous sintered material in a liquid substance and separating it. By installing an ultrasonic generation mechanism around this liquid substance container, ultrafine particles with a very good dispersion state can be obtained.

〔実施例〕〔Example〕

以下、本発明の詳細な説明する。第1図は本発明を利用
した超微粒子製造装置の一例である〇1は超微粒子発生
室、2は振動フィルター機構、3は大量の超微粒子を集
積できる捕集室、4は循環ポンプ、5は超微粒子の生成
に使用さnるガスと同一組成のガスボンベ、6は超音波
発振器、7(a)〜7(d)はバルブであり、8はガス
排気口である0次に前記装置の動作を説明する。超微粒
子発生室1内でアーク又はプラズマ等、超高温熱源を利
用して生成した超微粒子はキャリアガスの流れに乗り、
振動フィルター機構2まで移送さ几、そのフィルターで
超微粒子とキャリアガスに分離さnる。
The present invention will be explained in detail below. Fig. 1 shows an example of an ultrafine particle production device using the present invention. 〇1 is an ultrafine particle generation chamber, 2 is a vibration filter mechanism, 3 is a collection chamber that can accumulate a large amount of ultrafine particles, 4 is a circulation pump, 5 is a gas cylinder having the same composition as the gas used to generate ultrafine particles, 6 is an ultrasonic oscillator, 7(a) to 7(d) are valves, and 8 is a gas exhaust port. Explain the operation. Ultrafine particles generated in the ultrafine particle generation chamber 1 using an ultrahigh temperature heat source such as an arc or plasma ride on the flow of carrier gas.
The particles are transferred to a vibrating filter mechanism 2, where they are separated into ultrafine particles and carrier gas.

フィルターを通過したキャリアガスは循環ポンプ4によ
り、再度、超微粒子発生室1に戻さn、前記と同様のプ
ロセスをくり返す。その場合、!fit内の閉状態のバ
ルブは?(c)、 7(d)である。一方。
The carrier gas that has passed through the filter is returned to the ultrafine particle generation chamber 1 by the circulation pump 4, and the same process as described above is repeated. In that case,! Which valve in the fit is closed? (c), 7(d). on the other hand.

超微粒子はフィルターを振動させているため、フィルタ
ー表面に付着せず、大容量の捕集室3に集積する。また
、該装置内部の圧力変動に対しては、圧力が上昇した場
合はバルブ7 (C) ’e開放しガス排気口8よりガ
スを排気し、圧力が減少した場合はバルブ7(d)を開
放し、ガスを供給する。また、捕集室3に大量の超微粒
子が集積された場合はバルブ7(a)、7(b)を閉じ
、超音波発振器6により、超微粒子を分散し、捕集室3
を交換する。
Since the filter is vibrated, the ultrafine particles do not adhere to the filter surface and accumulate in the large-capacity collection chamber 3. In addition, in response to pressure fluctuations inside the device, if the pressure rises, valve 7 (C) 'e is opened to exhaust gas from the gas exhaust port 8, and if the pressure decreases, valve 7 (d) is opened. Open and supply gas. In addition, when a large amount of ultrafine particles are accumulated in the collection chamber 3, the valves 7(a) and 7(b) are closed, and the ultrasonic oscillator 6 disperses the ultrafine particles.
exchange.

本装置ではフィルターを振動させているために連続的に
移送される超微粒子がフィルター表面で積み重なること
がなく、フィルターが目づまりを起こさないで、振動フ
ィルター機構2下部に設置1、た捕集室に集積する。こ
nは、超微粒子単体は超微細で雰囲気ガスの質量より軽
いが1個々に電気的に中性状態であり、磁気結合を起こ
し数個つながった状態となるため、捕集室3に集積する
In this device, since the filter is vibrated, the continuously transferred ultrafine particles do not accumulate on the filter surface, and the filter does not become clogged. Accumulate. Although the individual ultrafine particles are ultrafine and lighter than the mass of the atmospheric gas, they are individually electrically neutral and magnetically bond to form several connected particles, so they accumulate in the collection chamber 3. .

また、捕集室3t−あらかじめ真空(10””Torr
程度)まで引いた状態で保持しその後、装置に設置し。
In addition, the collection chamber 3t is vacuumed (10"" Torr) in advance.
2), and then install it in the device.

バルブ7(a)、7(b)を開放することによシ大量の
超微粒子を瞬時に捕集することも可能である。また、超
微粒子を活性な状態を保持したまま、装置より取り出せ
ることにより、超微粒子の多種の用途に用いることが可
能である。
It is also possible to instantly collect a large amount of ultrafine particles by opening the valves 7(a) and 7(b). Furthermore, since the ultrafine particles can be taken out of the device while maintaining their active state, the ultrafine particles can be used for a variety of purposes.

本装置の振動フィルター機構の詳細を第2図に示す。9
は配管、10はベローズ、11はフィルター、12は伝
達機構、13は上下移動機構、14Fi左右移動機講で
ある。フィルター11と配管9との間にベローズ10を
接置し、配管外部に設けた上下、左右移動機構13.1
4を動作させることにより、伝達機構を媒介に動作全伝
達させフィルターを振動させる。その場合の変位はベロ
ーズ10によって吸収させる。また、フィルターに回転
運動、不規則運動をあたえることも容易に會える。本装
置の振動周期及び振動時間が自由に変更させることが可
能であるため、超微粒子の生成効率が高い場曾は連続的
にフィルターt−振動させ、生成効率が低い場合はパル
ス波的にフィルターを振動させることにより、超微粒子
の生成効率が異なる材料にも使用でき、フィルターを長
時間。
The details of the vibration filter mechanism of this device are shown in Figure 2. 9
10 is a pipe, 10 is a bellows, 11 is a filter, 12 is a transmission mechanism, 13 is a vertical movement mechanism, and 14Fi is a left and right movement mechanism. A bellows 10 is placed between the filter 11 and the pipe 9, and a vertical and horizontal movement mechanism 13.1 is provided outside the pipe.
4, the entire motion is transmitted through the transmission mechanism and the filter is vibrated. The displacement in that case is absorbed by the bellows 10. Furthermore, it is also easy to apply rotational motion or irregular motion to the filter. Since it is possible to freely change the vibration period and vibration time of this device, if the generation efficiency of ultrafine particles is high, the filter is vibrated continuously, and if the generation efficiency is low, the filter is filtered in a pulsed wave. By vibrating the filter, it can be used for materials with different ultrafine particle generation efficiency, and the filter can be used for a long time.

使用することができる特徴も有している。また、超音波
発振器6を配管9の外部より超音波を発振させることに
より、フィルターの目づまりをよりいっそう防止するこ
とが可能でるる。
It also has features that can be used. Further, by causing the ultrasonic oscillator 6 to oscillate ultrasonic waves from outside the pipe 9, it is possible to further prevent clogging of the filter.

次に従来装置と実施例との比較を行った結果について述
べる。
Next, the results of a comparison between the conventional device and the embodiment will be described.

従来装置:アーク法を用い、アーク電流300A、アー
ク電圧41Vの条件下で材料を60P重量のニッケルを
用いて実験を行った結果、実験開始後5分で外径4Ql
laIL、セルロース製のフィルターが目づまりした。
Conventional equipment: As a result of conducting an experiment using nickel with a weight of 60P under conditions of an arc current of 300A and an arc voltage of 41V using the arc method, the outer diameter decreased to 4Ql within 5 minutes after the start of the experiment.
laIL, the cellulose filter was clogged.

(ここで超微粒子生成量は100t7hである。) 嚢施例:同様の条件下で実験を行つ之結果、実験開始後
30分経過してもフィルターは目づまりしなかった。従
来法と比較して6倍以上の長時間運転が可能となりフィ
ルターの寿命ものびた。
(Here, the amount of ultrafine particles produced is 100t7h.) Bag Example: As a result of conducting an experiment under the same conditions, the filter did not become clogged even 30 minutes after the start of the experiment. Compared to the conventional method, it is possible to operate for more than six times as long, and the life of the filter has been extended.

第3図は液状物質を利用した超微粒子製造装置の一例で
ある。15は超微粒子発生室で生成さnた超微粒子、1
6はポーラス状の焼結材、17は液状物質、18は吸湿
剤、19は断熱材、20は冷却液、21は液状物質補充
室、22は大容量捕集器である。超微粒子発生室1よシ
生成した超微粒子15はキャリアガスとともに液状物質
17内へ、ボー2ス状の焼結材16を通過して導入され
、液状物質17内で超微粒子15とキャリアガスは分離
さn、超微粒子15は液状物質17内を浮遊し、キャリ
アガスだけが液状物質17を通過する。
FIG. 3 shows an example of an ultrafine particle manufacturing apparatus using a liquid substance. 15 is ultrafine particles generated in the ultrafine particle generation chamber, 1
6 is a porous sintered material, 17 is a liquid substance, 18 is a moisture absorbent, 19 is a heat insulating material, 20 is a cooling liquid, 21 is a liquid substance replenishment chamber, and 22 is a large capacity collector. The ultrafine particles 15 generated from the ultrafine particle generation chamber 1 are introduced into the liquid substance 17 together with the carrier gas through the bowl-shaped sintered material 16, and the ultrafine particles 15 and the carrier gas are separated in the liquid substance 17. Once separated, the ultrafine particles 15 float within the liquid substance 17, and only the carrier gas passes through the liquid substance 17.

また、柩状物質通過後の配管内に吸湿剤18を設け、キ
ャリアガスを通過させた。液状物質容器の周囲を断熱材
19で取り囲み、その間に冷却液20をバルブ7(C)
から供給し、充満させた。超微粒子の捕集はバルブ7 
(a) を介して大容量捕集i!22t−設け、バルブ
7 (a)を開放することによV超微粒子15全液状物
質17に混合状態のまま捕集する。
Further, a moisture absorbent 18 was provided in the pipe after the passage of the rectangular substance, and the carrier gas was allowed to pass therethrough. The liquid substance container is surrounded by a heat insulating material 19, and the cooling liquid 20 is supplied to the valve 7 (C) between the two.
Supplied and charged from Valve 7 collects ultrafine particles
(a) Large-capacity collection via i! 22t-, and by opening valve 7 (a), the V ultrafine particles 15 are collected in a mixed state with the entire liquid substance 17.

また、減少した液状物質17の補充は液状物質補充室2
1よジパルプ7(b)を操作して行う。
In addition, the reduced liquid substance 17 is replenished by the liquid substance replenishment chamber 2.
1 by operating Yojipulp 7(b).

前記、ポーラス状の焼結材は超微粒子とキャリアガスの
分離を容易に行わせるために設けたもので、この他に耐
腐食性にすぐれている材料、たとえばステンレスかセラ
ミックス等をポーラス又は格子状の構造にして用いるこ
とも可能である。超微粒子を生成直後に液状物質17内
へ導入することにより、液状物質17内で急冷さnるた
め、高品質な超微粒子が得らnる。超微粒子発生室を出
たあとのキャリアガスの温度は、超微粒子生成熱源によ
っても異なるが、300に−1000に程度である。そ
のため液状物質17の蒸気圧が低い場合は一部が蒸発し
、キャリアガスに混入するおそnがある。そnらを除去
するために配管内に吸湿剤18を設けた。また、液状物
質17が常に一定温度を保持させるために、周囲から冷
却した0この時の冷却液は液体窒素が一般イ効であるが
、冷却水を循環させる方法を用いても冷却は十分行える
O また、液状物質中に非酸化性の界面活性剤を加え、液状
物質容器外部から超音波発振器を付加することにより分
散状態が良好な超微粒子を得ることができる。
The porous sintered material mentioned above was provided to facilitate the separation of the ultrafine particles and the carrier gas.In addition, materials with excellent corrosion resistance, such as stainless steel or ceramics, were provided in a porous or lattice shape. It is also possible to use the structure as follows. By introducing the ultrafine particles into the liquid substance 17 immediately after generation, they are rapidly cooled within the liquid substance 17, so that high quality ultrafine particles can be obtained. The temperature of the carrier gas after leaving the ultrafine particle generation chamber varies depending on the ultrafine particle generation heat source, but is about 300 to -1000. Therefore, if the vapor pressure of the liquid substance 17 is low, there is a possibility that a part of it will evaporate and be mixed into the carrier gas. A moisture absorbent 18 was provided inside the piping to remove them. In addition, in order for the liquid material 17 to always maintain a constant temperature, it is generally effective to use liquid nitrogen as the cooling liquid cooled from the surroundings, but cooling can also be achieved by circulating cooling water. O Further, by adding a non-oxidizing surfactant to the liquid substance and adding an ultrasonic oscillator from outside the liquid substance container, ultrafine particles with a good dispersion state can be obtained.

本実施例によnば、液状物質を配管上部よりシャワー状
もしくは噴霧状態で落下させることにより超微粒子とキ
ャリアガスを分離する装置も提供することが可能である
。また、液状物質は非酸化性の界面活性剤を少量、混入
した有機化合物を用いることが可能で、特にカルボニル
基を用いると良好な超微粒子が得られる0また、液状物
質と超微粒子を分離する場合は液状物質を蒸発させnば
良いっ 第4図に超微粒子分級技術を用いた一例を示し友。23
は配管外部に設置した超音波発振器の振動強度分布、2
4は仕切ジ板である。超微粒子発生室1で生成した超微
粒子を含むキャリアガスが通過する配管の途中に超音波
発振器65配置し、その配管部分よシ配管内径を拡張し
、仕切シ板27を配管内に設置し、仕切り板の後方にフ
ィルター11を設は捕集する構造である。
According to this embodiment, it is also possible to provide an apparatus that separates ultrafine particles and carrier gas by dropping a liquid substance from the upper part of the pipe in a shower or spray state. In addition, as the liquid substance, it is possible to use an organic compound mixed with a small amount of non-oxidizing surfactant, and in particular, if carbonyl groups are used, good ultrafine particles can be obtained.In addition, it is possible to separate the liquid substance and ultrafine particles. Figure 4 shows an example of using ultrafine particle classification technology. 23
is the vibration intensity distribution of the ultrasonic oscillator installed outside the pipe, 2
4 is a partition plate. An ultrasonic oscillator 65 is placed in the middle of a pipe through which a carrier gas containing ultrafine particles generated in the ultrafine particle generation chamber 1 passes, the inner diameter of the pipe is expanded from that part of the pipe, and a partition plate 27 is installed inside the pipe. A filter 11 is installed behind the partition plate to collect the particles.

本実施例は配管中を流れる超微粒子に超音波波1!Ih
をあ九え、配管中で超微粒子の分散2分級を行い、狭範
囲の粒度分布に分れた超微粒子を仕切υ板に設置したフ
ィルターで捕集する装置である。
In this example, ultrasonic waves of 1! Ih
In this device, ultrafine particles are dispersed and classified into two parts in a pipe, and the ultrafine particles separated into a narrow range of particle size distribution are collected by a filter installed on a partition plate.

超微粒子に超音波をあてると粒度の小さな超微粒子はど
遠くへ移動する。また、超微粒子の分散効率を向上させ
るためには、キャリアガス流量を低量にし、超音波振動
強度を増力口させ、配管形状金丸型より角型とし、配管
を前記のように配管を拡張することにより、分級状態が
良好な超微粒子を得ることが可能である。
When ultrasonic waves are applied to ultrafine particles, the small particles move far away. In addition, in order to improve the dispersion efficiency of ultrafine particles, the carrier gas flow rate should be lowered, the ultrasonic vibration intensity should be increased, the piping should be square rather than round, and the piping should be expanded as described above. By doing so, it is possible to obtain ultrafine particles with a good classification state.

本実施例では前記したような、振動フィルター液状物質
を利用した捕集技術を用いることにより高品質でしかも
粒径分布が均一な超微粒子を大量に捕集することが可能
である。
In this example, by using a collection technique using a vibrating filter liquid material as described above, it is possible to collect a large amount of high-quality ultrafine particles with a uniform particle size distribution.

〔発明の効果〕〔Effect of the invention〕

本発明によればフィルターに振動を付加することにより
、フィルターの目づまりがなくなり、長時間、連続して
超微粒子の生成及び捕集が行える。
According to the present invention, by applying vibration to the filter, the filter is not clogged, and ultrafine particles can be continuously generated and collected for a long period of time.

また、本発°明によれば生成した直後の超微粒子を液状
物質せ冷却及び捕集上行うことができるため、大量の超
微粒子を効率良く、安易に分散状態のまま捕集すること
ができる効果がある。
Furthermore, according to the present invention, since the ultrafine particles immediately after being generated can be cooled and collected by using a liquid substance, a large amount of ultrafine particles can be efficiently and easily collected in a dispersed state. effective.

更に、本発明によれば配管中を流れる超微粒子に超音波
をあてるこ勺により、分散・分級さnた高品質の超微粒
子が得られる効果がある。
Further, according to the present invention, by applying ultrasonic waves to the ultrafine particles flowing through the pipe, it is possible to obtain high quality ultrafine particles that have been dispersed and classified.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は振動フィルター機構を用いた本発明の超微粒子
の分離及び捕集装置の断面図、tlcZ図は振動フィル
ター機構の詳細図、第3図は液状物質を用い本発明の超
微粒子の分離及び捕集装置の断面図、5g4図は本発明
に係わる装置の分級機構の説明図である。 1・・・超微粒子発生室、2・・・振動フィルター機構
、3・・・捕集呈、6・・・超音波発振器、10・・・
ベローズ。 13・・・上下移動機構、14・・・左右移動機構、1
7・・・液状物質、24・・・仕切シ板。 第 1 閣 1・・・鋺蒋躇舖 6 起怖、ヵ昏 1、=g%74JvP肩(67(”)−V+−1(++
、7’さ ・・ 坤 1ト ◆       8 ・・
  1′灯弯トF+、纏牛・・櫨’?& i;’>7@ 5・・  マパスπ2′ンベ 第 2 図 11− 7sIvグー        18°−’C’
A eL 餐jIZ  珠造磯壜 13・ ′CC切切壜・壜 42ヤ初訃塙・積 第 3 閃 19・・ 貢魅1 + +(+。 20・・・伶計屯 21・・ 漿7Iかf4’if麺を督 ス2・・・ 天31キ亀膚1− 第4 図 ZJ 、、翻暫)騎16t gkip殊痺・些 Z4−・・ 、1τ仰1尺
Figure 1 is a sectional view of the ultrafine particle separation and collection device of the present invention using a vibration filter mechanism, the tlcZ diagram is a detailed view of the vibration filter mechanism, and Figure 3 is the separation of ultrafine particles of the present invention using a liquid substance. and 5g4, a sectional view of the collection device, are explanatory diagrams of the classification mechanism of the device according to the present invention. DESCRIPTION OF SYMBOLS 1... Ultrafine particle generation chamber, 2... Vibration filter mechanism, 3... Collection device, 6... Ultrasonic oscillator, 10...
Bellows. 13... Vertical movement mechanism, 14... Horizontal movement mechanism, 1
7...Liquid substance, 24...Partition plate. 1st Cabinet 1...Ichigo Chiang Hiroshi 6 Kikai, Kakuma 1, =g%74JvP Shoulder (67('')-V+-1(++
,7'sa... gon 1to ◆ 8...
1'Tokyo F+, Matogyu...Haji'? &i;'>7@ 5... Mapas π2' Nbe 2nd Figure 11-7sIv goo 18°-'C'
A eL Dinner j IZ Juzukuri Isobottle 13, 'CC Kirikiribottle, Bottle 42ya Hatshuanan, Product 3rd Flash 19... Tribute 1 + + (+. 20...Yikeitun 21... Choi 7I? f4'if noodle control 2... Heaven 31 ki turtle skin 1- 4th figure ZJ ,, translation) ki 16t gkip shushin・sho Z4-... , 1τ elevation 1 shaku

Claims (1)

【特許請求の範囲】[Claims] 1、生成された超微粒子をガス気流に乗せフィルターを
用いて分離及び捕集する装置において、該フィルターに
振動機構を付加し、かつバルブを介して1個又は複数個
の大容量捕集室を設けたことを特徴とする超微粒子の分
離及び捕集装置。
1. In a device that uses a filter to separate and collect generated ultrafine particles in a gas stream, a vibration mechanism is added to the filter, and one or more large-capacity collection chambers are connected via a valve. 1. An apparatus for separating and collecting ultrafine particles.
JP61050396A 1986-03-10 1986-03-10 Apparatus for separating and capturing ultrafine particles Pending JPS62207804A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61050396A JPS62207804A (en) 1986-03-10 1986-03-10 Apparatus for separating and capturing ultrafine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61050396A JPS62207804A (en) 1986-03-10 1986-03-10 Apparatus for separating and capturing ultrafine particles

Publications (1)

Publication Number Publication Date
JPS62207804A true JPS62207804A (en) 1987-09-12

Family

ID=12857714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61050396A Pending JPS62207804A (en) 1986-03-10 1986-03-10 Apparatus for separating and capturing ultrafine particles

Country Status (1)

Country Link
JP (1) JPS62207804A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007503973A (en) * 2003-08-28 2007-03-01 テクナ・プラズマ・システムズ・インコーポレーテッド Methods for the synthesis, separation and purification of powder materials

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007503973A (en) * 2003-08-28 2007-03-01 テクナ・プラズマ・システムズ・インコーポレーテッド Methods for the synthesis, separation and purification of powder materials
JP4754488B2 (en) * 2003-08-28 2011-08-24 テクナ・プラズマ・システムズ・インコーポレーテッド Methods for the synthesis, separation and purification of powder materials
KR101122219B1 (en) * 2003-08-28 2012-04-18 테크나 플라즈마 시스템 인코포레이티드 Process for the synthesis, separation and purification of powder materials

Similar Documents

Publication Publication Date Title
CN100438965C (en) Process for the synthesis, separation and purification of powder materials
CN104955982B (en) Chemical vapor depsotition equipment with particle separator
JP2021533972A (en) Metal-organic framework-based water trap
CA2583486C (en) An apparatus for and method of sampling and collecting powders flowing in a gas stream
KR102010992B1 (en) An appratus for producing nano powders and a method of producing using the same
JPS63118941U (en)
US20060225817A1 (en) Gas sorbents on the basis of intermetallic compounds and a method for producing the same
TW201446341A (en) Hopper and spraying device
JPS62207804A (en) Apparatus for separating and capturing ultrafine particles
EP1600232B1 (en) New gas sorbents on the basis of intermetallic compounds and a method for producing the same
WO2007125816A1 (en) Apparatus and method for producing carbon nanohorn
JP6009947B2 (en) Nano particle production equipment
JPS60224706A (en) Production of ultrafine metallic particles
CN107081431A (en) A kind of full-automatic BGA soldered balls preparation facilities
CN208066328U (en) A kind of device of gas-liquid mixed high-pressure atomization prepare compound dusty material
CN107998995B (en) A kind of device and method of gas-liquid mixed high-pressure atomization prepare compound dusty material
JP2510932Y2 (en) Fine and ultra fine powder production equipment
Maiti et al. Phase diagram for sodium clusters
KR100719452B1 (en) method and apparatus for manufacturing metal powder of lead-free solder cream and the metal powder
JP2007084849A (en) Method and device for producing metal hyperfine particle
JPH0331477A (en) Bubbler for cvd device
KR20130098018A (en) Continous nanoink producing apparatus and producing method
JP2001226705A (en) Method for manufacturing fine metallic ball and apparatus for manufacturing fine metallic ball
JP2019137900A (en) Method for producing nanoparticles and its use
CN1213775A (en) Method of preparing magnetic liquid electron microscopic sample