JPS62207802A - Apparatus for forming ultrafine particle - Google Patents

Apparatus for forming ultrafine particle

Info

Publication number
JPS62207802A
JPS62207802A JP5039386A JP5039386A JPS62207802A JP S62207802 A JPS62207802 A JP S62207802A JP 5039386 A JP5039386 A JP 5039386A JP 5039386 A JP5039386 A JP 5039386A JP S62207802 A JPS62207802 A JP S62207802A
Authority
JP
Japan
Prior art keywords
ultrafine particles
arc
ultrafine
ultrafine particle
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5039386A
Other languages
Japanese (ja)
Inventor
Takeshi Araya
荒谷 雄
Yoshiaki Ibaraki
茨木 善朗
Kiju Endo
喜重 遠藤
Masatoshi Kanamaru
昌敏 金丸
Susumu Hioki
日置 進
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5039386A priority Critical patent/JPS62207802A/en
Priority to US06/898,600 priority patent/US4732369A/en
Priority to DE8686111902T priority patent/DE3687157T2/en
Priority to EP86111902A priority patent/EP0220420B1/en
Publication of JPS62207802A publication Critical patent/JPS62207802A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain high-quality ultrafine particles with high efficiency by inclining an electrode relative to a base material, generating magnetic blow in an arc, providing a suction hole in the blown direction, cooling the formed metallic vapor and capturing the same as the ultrafine particles. CONSTITUTION:The tungsten electrode 2 is inclined by about 30-60 deg. to the opposite side to the suction hole 4 and the arc 19 is generated in an atmosphere of He, etc., having a high thermal pinch effect by using an arc power source 6 having substantially high load voltage, for example, about 80V dropping characteristic. The base material 5 is melted and evaporated by the energy thereof to form the ultrafine particles. An unbalance of electromagnetic force is generated by the inclination of the electrode 2, by which the ultrafine particles formed by the magnetic blow effect are migrated to the suction hole 4. The ultrafine particles are passed through a cooler 10 and are carried by a circulating gas to a capturing chamber 11, where the ultrafine particles are captured by a filter. The circulating gas is returned by a circulation pump 16 to the generating chamber 1. Since the fresh metallic surface is thereby repeatedly exposed on the base material 5, the ultrafine particles are formed with the high efficiency.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は超微粒子を高効率に、かつ高品質に生成する際
に好適な装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an apparatus suitable for producing ultrafine particles with high efficiency and high quality.

〔従来技術〕[Prior art]

従来の技術は特公昭55−44125号に記載のように
高周波誘導加熱で溶かした金属に、アークエネルギをあ
てて金属を蒸発させ、さらに必要に応じて別熱源で加熱
したガスを噴出して冷却装置に運ぶ装置があり、この装
置ではまだ十分な生成量が得られず、また生成した超微
粒子の粒径もそろっていない。
The conventional technology, as described in Japanese Patent Publication No. 55-44125, is to evaporate metal by applying arc energy to metal melted by high-frequency induction heating, and then, if necessary, cool it by blowing out gas heated by a separate heat source. There is a device that transports the particles to the device, but this device is not yet able to produce a sufficient amount, and the particle sizes of the ultrafine particles produced are not uniform.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記技術は生成した超微粒子の粒径なそろえるだめの配
慮がされておらず、またアークのエネルギーを十分効率
よく利用していないっ本発明はこの両者を満足させるこ
とが可能な超微粒子生成装置を提供することにある。
The above technology does not take into consideration the particle size of the generated ultrafine particles, nor does it utilize arc energy sufficiently efficiently.The present invention is an ultrafine particle generation device that can satisfy both of these requirements. Our goal is to provide the following.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は(1)斜向電極によるアークを利用する、(
2)アーク雰囲気に熱ピンチ効果の大きいガスを用いる
、(3)高周波パルス電流でアークをピンチさせること
により生成量を高効率化することで達成できる。
The above objectives are (1) to utilize an arc by diagonal electrodes; (
This can be achieved by 2) using a gas with a large thermal pinch effect in the arc atmosphere, and (3) increasing the efficiency of the generation amount by pinching the arc with a high-frequency pulse current.

また粒径のそろった高品質超微粒子を得るためには(1
)プラズマフレームに冷却ガスを吹キつける、(2)複
合エネルギーを用いる方法で、−次生成した直後に、再
蒸発させて、冷却すること釦よって達成される。
In addition, in order to obtain high quality ultrafine particles with uniform particle size (1
(2) By blowing a cooling gas onto the plasma flame, (2) By using a method using combined energy, the plasma flame is reevaporated and cooled immediately after being generated.

〔作用〕[Effect]

高効率化に関する前記手段の(1)は斜向電極による電
磁力のアンバランスでアークの磁気吹き現象が生じ、そ
の結果金属表面で蒸発した金属蒸気がプラズマ気流で強
制移送されるために、常に新しぃ金属表面が露出し、蒸
発、移送が効率よ(<す返えされる。前記手段の(2)
は熱ピンチの大きいH,、)(、水蒸気、 O,、N、
等のガスを利用したり、十分冷却したガスをアーク近傍
に流すことにより、アークが熱ピンチし、その結果アー
クが金属表面に集中して、効率よく蒸発を促進する。ま
た分子ガスを利用するとアーク熱で解離したガス原子が
、金属表面で分子化する際に発生するエネルギーで金属
表面を加熱し、より効率よく蒸発させることができる。
(1) of the above means for improving efficiency is that the magnetic arc blowing phenomenon occurs due to the imbalance of electromagnetic force caused by the diagonal electrodes, and as a result, the metal vapor evaporated on the metal surface is forcibly transported by the plasma airflow, so The new metal surface is exposed, and the evaporation and transfer are efficient (returned.
is a large thermal pinch H, ) (, water vapor, O,, N,
By using a gas such as, or by flowing a sufficiently cooled gas near the arc, the arc is thermally pinched, and as a result, the arc is concentrated on the metal surface, promoting efficient evaporation. Furthermore, when molecular gas is used, the gas atoms dissociated by arc heat are generated when molecules form on the metal surface, which heats the metal surface and evaporates it more efficiently.

また前期手段の(3)でアーク電流をパルス電流にする
ととKより、電磁ピンチ力によりアークをピンチさせ、
金属表面を効率よく蒸発させることができる。
Also, if the arc current is made into a pulse current in step (3) of the previous step, the arc will be pinched by the electromagnetic pinch force,
Metal surfaces can be efficiently evaporated.

高品質化に関する前期手段の(1)はプラズマフレーム
中の金属蒸気に、冷却したガスを吹きつけて急冷するこ
とにより、超微粒子の粒径生長を停止させることができ
、粒径の整った超微粒子を得ることができる。また前期
手段の(2)はプラズマフレームで移送された超微粒子
を他の熱源で再蒸発させ、冷却する方法で、冷却速度の
制御により所望−〇粒径分布の超微粒子を得ることがで
きる。また再蒸発した時に、メタン、アンモニア、1l
li窒素ガス等の反応ガスを添加することKより、種々
の化合物超微粒子、酸化物超微粒子、炭火物超微粒子、
窒化物超微粒子等を得ることができる。
(1) of the first method for improving quality is that by rapidly cooling the metal vapor in the plasma flame by blowing cooled gas, it is possible to stop the particle size growth of ultrafine particles, and it is possible to stop the particle size growth of ultrafine particles. Fine particles can be obtained. The first method (2) is a method in which the ultrafine particles transferred by the plasma flame are reevaporated using another heat source and cooled, and ultrafine particles with a desired -0 particle size distribution can be obtained by controlling the cooling rate. Also, when re-evaporated, methane, ammonia, 1 liter
By adding a reactive gas such as li nitrogen gas, various ultrafine compound particles, ultrafine oxide particles, ultrafine charcoal particles,
Ultrafine nitride particles etc. can be obtained.

〔実施例〕〔Example〕

超微粒子を生成する装置の実施例を第1図に示す5発生
室1で生成した超微粒子は循環ガスによって冷却器10
を通して捕集室11に運ばれフィルター11AK捕捉さ
れろうなおガスは循環ポンプ16によって発生室1に送
り返される。ここでタングステン又は安定剤としてトリ
ウム、シリコニウム等の入ったタングステン電極2を吸
引孔4と反対側に50〜60度傾け、負荷電圧の十分高
い、例えば80vを重下特性の電源6を用いて、熱ピン
チ効果の大きいヘリウム、水素、水蒸気。
An embodiment of an apparatus for generating ultrafine particles is shown in FIG.
The remaining gas that would be transported to the collection chamber 11 through the filter 11AK and captured by the filter 11AK is sent back to the generation chamber 1 by the circulation pump 16. Here, the tungsten electrode 2 containing tungsten or thorium, siliconium, etc. as a stabilizer is tilted 50 to 60 degrees to the side opposite to the suction hole 4, and using a power supply 6 with a sufficiently high load voltage, for example, 80V, Helium, hydrogen, and water vapor have a large thermal pinch effect.

窒素、酸素等のガス、又はアルゴンとの混合ガス雰囲気
でアーク19を発生させ、このエネルギーで母材5を溶
融、蒸発させて超微粒子を生成するっこの時、電極2の
斜向化により、電磁力のアンバランスが生じ、磁気吹き
効果で生成した超微粒子が吸引孔4に向って移行する。
An arc 19 is generated in a mixed gas atmosphere with a gas such as nitrogen, oxygen, or argon, and the base material 5 is melted and evaporated with this energy to generate ultrafine particles.At this time, by tilting the electrode 2, An imbalance of electromagnetic force occurs, and ultrafine particles generated by the magnetic blowing effect move toward the suction hole 4.

その結果、新しい金属表面がくり返し表われるので高効
率に超微粒子を生成することができるっ電極2を頌けな
い場合と傾けて磁気吹き効果で生成した場合の、各種材
料の生成量比較を第1表に示すっ表から分るように材料
によって異なるが、多いものでは26倍の生成量が得ら
れることが分る。なお、アーク電流を増大すれば第2表
に示すようにより生成量は相対的に増大する。なお、第
1図において、7はアーク長制御装置、8は母材5を上
下させるためのモータ、9.10はガスを冷却する冷却
器、12はバルブ、15はガス圧力、流量を制御する圧
力流量調整器、14はガスボンベ、15は真空ポンプ、
16はガスを循環させるための循環ポンプ、17は冷却
水入口、18は冷却水出口であるっまたアーク19をピ
ンチさせて、母材表面の熱集中を高めて、生成量を増大
させるために、第2表に示したようにピンチ効果の大き
いH,ガス 又は水蒸気、H・、  N、  、  0
. ガスを雰囲気に使用するとよい。また第2図(a)
(b)に示すピンチガス供給器5により、アーク周辺又
は近傍に、液体窒素又は水等で冷却(第1図参照)した
ガスを吹きつけると有効である。
As a result, new metal surfaces appear over and over again, making it possible to generate ultrafine particles with high efficiency.A comparison of the amounts of various materials produced when the electrode 2 is not placed and when it is tilted and generated using the magnetic blowing effect. As can be seen from the table shown in Table 1, it varies depending on the material, but it can be seen that 26 times the production amount can be obtained with a large amount. Note that, as shown in Table 2, as the arc current increases, the amount produced increases relatively. In Fig. 1, 7 is an arc length control device, 8 is a motor for moving the base material 5 up and down, 9.10 is a cooler for cooling the gas, 12 is a valve, and 15 is a gas pressure and flow rate control device. A pressure flow regulator, 14 a gas cylinder, 15 a vacuum pump,
16 is a circulation pump for circulating gas; 17 is a cooling water inlet; 18 is a cooling water outlet; , as shown in Table 2, H, gas or water vapor, which has a large pinch effect, H, N, , 0
.. It is recommended to use gas as an atmosphere. Also, Figure 2(a)
It is effective to spray gas cooled with liquid nitrogen or water (see FIG. 1) around or near the arc using the pinch gas supply device 5 shown in (b).

さらにアーク19の電流波形を第4図に示すように、5
QHz〜20 KHzの高周波電流にすることによって
、アーク19はピンチされ、母材表面への熱集中を高め
、高効率に蒸発超微粒子を提進することができる。アー
ク19のピンチは第5図に示すように、電極2の周囲に
ピンチ効果の大きい水素ガス、H・ ガス等をピンチガ
スノズル20を通して別途流すこと疋よっても、同様の
効果が得られる。なお、図中21は母材台である。また
高周波電流とピンチガスを併用することで、より高効率
化が可能である。
Furthermore, the current waveform of the arc 19 is as shown in FIG.
By using a high frequency current of QHz to 20 KHz, the arc 19 is pinched, heat concentration on the base material surface is increased, and vaporized ultrafine particles can be propelled with high efficiency. As shown in FIG. 5, the pinching of the arc 19 can also be achieved by separately flowing hydrogen gas, H. gas, etc., which have a large pinching effect, around the electrode 2 through a pinch gas nozzle 20. In addition, 21 in the figure is a base material stand. Further, higher efficiency can be achieved by using a high frequency current and pinch gas together.

第  1  表 θ:母材に対する電離角度 アーク電流:20OA 雰囲気ガ、x、 : Ar + 50%H2第2表 電極:φ6.4タングステン 母材:Ni 次に超微粒子の品質を向上するためには、粒径の分布範
囲を狭くする必要があるっその手段として、第5図に示
すように冷却ガス供給器22により、冷却ガスを冷却ガ
ス人口25から液体窒素、水等で十分冷却し、冷却ガス
出口24から吸引孔4に向って吹き出し、プラズマフレ
ーム中の母材蒸気を急冷しながら吸引孔4に吸い込むよ
うにした循環ガスを母材蒸気を含むプラズマガスに吹き
付けることでも同様の効果が得られる。
Table 1: θ: Ionization angle relative to base material Arc current: 20OA Atmosphere, x: Ar + 50% H2 Table 2 Electrode: φ6.4 Tungsten Base material: Ni Next, to improve the quality of ultrafine particles As a further means for narrowing the particle size distribution range, as shown in FIG. A similar effect can be obtained by blowing circulating gas, which is blown out from the gas outlet 24 toward the suction hole 4 and sucked into the suction hole 4 while rapidly cooling the base material vapor in the plasma flame, onto the plasma gas containing the base material vapor. It will be done.

また発生室1から出た移送中の超微粒子を別熱源、例え
ば高周波誘導プラズマ、赤外線ヒータ。
In addition, the ultrafine particles being transferred out of the generation chamber 1 are treated with another heat source, such as a high frequency induction plasma or an infrared heater.

抵抗加熱等により再蒸発させて、冷却することにより、
粒径の整った超微粒子が得られるっ第6図は発生室1の
吸引孔4と捕集室11間に石英管26を取りつけ、これ
に高周波誘導コイル25を巻き、接続された発信器28
.整合器27を通し、捕集するものである。なお、図に
おいて50は冷却水入口、51は冷却水出口、52は反
応ガス供給口である7発生室1のアークフレーム19、
母材蒸気に誘導コイル25を接近させて配置することで
、より安定なプラズマが得られる。アルゴン・水素ガス
雰囲気中でタングステン電極とニッケル母材間にアーク
を発生させ、蒸発したニッケルの超微粒子を高周波誘導
プラズマで再蒸発させ、急冷して得た超微粒子の粒度分
布を第7図に示すつアークエネルギで得た超微粒子に比
較して、整粒化されている様子がわかろう 使用する材料に合金を用いて、その合金の組成を適宜選
定することにより、所望の組成の超微粒子が得られる。
By reevaporating and cooling using resistance heating, etc.
Ultrafine particles with a uniform particle size can be obtained. Fig. 6 shows a quartz tube 26 installed between the suction hole 4 of the generation chamber 1 and the collection chamber 11, a high-frequency induction coil 25 wound around it, and a transmitter 28 connected to it.
.. It passes through a matching box 27 and collects it. In the figure, 50 is a cooling water inlet, 51 is a cooling water outlet, and 52 is a reactant gas supply port. 7 Arc frame 19 of the generation chamber 1;
By arranging the induction coil 25 close to the base material vapor, more stable plasma can be obtained. Figure 7 shows the particle size distribution of the ultrafine particles obtained by generating an arc between the tungsten electrode and the nickel base material in an argon/hydrogen gas atmosphere, reevaporating the evaporated ultrafine nickel particles using high-frequency induction plasma, and rapidly cooling them. It can be seen that the grains are more regular compared to the ultrafine particles obtained using arc energy. By using an alloy as the material and selecting the composition of the alloy appropriately, ultrafine particles with the desired composition can be obtained. is obtained.

また雰囲気ガスに徨々の反応ガス(アンモニア、メタン
、窒素、酸素等)を混合することにより、所望の化合物
超微粒子(炭化物。
In addition, by mixing various reactive gases (ammonia, methane, nitrogen, oxygen, etc.) with the atmospheric gas, ultrafine particles of the desired compound (carbide) can be produced.

窒化物、酸化物等)が得られるっ 〔発明の効果〕 本発明によれば種々の金属、合金、化合物を高効率で多
量に得られ、また整粒化された高品質な超微粒子が得ら
れる。
[Effects of the Invention] According to the present invention, various metals, alloys, and compounds can be obtained in large quantities with high efficiency, and sized, high-quality ultrafine particles can be obtained. It will be done.

【図面の簡単な説明】[Brief explanation of drawings]

第1図から第7図は本発明に係る超微粒子生成装置の断
面図で、第1図は装置の断面図、第2図はピンチガス供
給器の詳細図、第5図はピンチガスを電極周囲から供給
する説明図、第4図は高周波電流を用いてアークをピン
チさせる時の′電流波形の説明図、第5図は母材蒸気を
急冷して超微粒子の粒径を一様化する説明図、第6図は
他の実施例の部分図、wcZ図は従来の装置と本発明装
置とにより生成された超微粒子の粒径分布図であるっ第
 1 図 第 2 図 第゛3図 第4図 第 5 図 22−  吟糎ゼ′虐命器 第 6 図 (nm)
Figures 1 to 7 are cross-sectional views of the ultrafine particle generation device according to the present invention, where Figure 1 is a cross-sectional view of the device, Figure 2 is a detailed view of the pinch gas supply device, and Figure 5 is the pinch gas supplied from around the electrodes. Figure 4 is an explanatory diagram of the current waveform when pinching the arc using high-frequency current, and Figure 5 is an explanatory diagram of how the base metal vapor is rapidly cooled to make the particle size of ultrafine particles uniform. , FIG. 6 is a partial view of another example, and the wcZ diagram is a particle size distribution diagram of ultrafine particles produced by the conventional device and the device of the present invention. Figure 5 Figure 22- Ginze's death device Figure 6 (nm)

Claims (1)

【特許請求の範囲】 1、アークエネルギで超微粒子を生成する装置において
、母材に対して電極を傾斜させてアークに磁気吹きを生
じさせ、吹かれた方向に吸引孔を設け、生成した金属蒸
気を冷却して、捕集する超微粒子生成装置。 2、アーク周辺に冷却したガスを供給して生成する特許
請求の範囲第1項記載の超微粒子生成装置。 3、アーク電源に負荷電圧20〜80V、200〜30
0Aの重下特性電源を用いて生成する特許請求の範囲第
2項記載の超微粒子生成装置。 4、アーク電流に50Hz〜20KHzのパルス電流を
用いて生成する特許請求の範囲第3項記載の超微粒子生
成装置。 5、アーク近傍より吸引孔に向って冷却ガスを吹きつけ
て、超微粒子を生成する特許請求の範囲第1項記載の超
微粒子生成装置。 6、超微粒子発生室と捕集空間に超微粒子を再蒸発させ
る熱源を設けた特許請求の範囲第1項記載の超微粒子生
成装置。 7、再蒸発熱源と捕集室間に急冷装置を設けた特許請求
の範囲第1項記載の超微粒子生成装置。
[Claims] 1. In a device that generates ultrafine particles using arc energy, the electrode is tilted with respect to the base material to cause magnetic blowing in the arc, and suction holes are provided in the direction of the blowing, so that the generated metal Ultrafine particle generator that cools and collects steam. 2. The ultrafine particle generation device according to claim 1, which generates ultrafine particles by supplying cooled gas around the arc. 3. Load voltage 20-80V on arc power supply, 200-30V
The ultrafine particle generation device according to claim 2, which generates ultrafine particles using a 0A power supply with low voltage characteristics. 4. The ultrafine particle generation device according to claim 3, which generates ultrafine particles by using a pulse current of 50 Hz to 20 KHz as an arc current. 5. The ultrafine particle generation device according to claim 1, which generates ultrafine particles by blowing cooling gas toward the suction hole from near the arc. 6. The ultrafine particle generation device according to claim 1, wherein the ultrafine particle generation chamber and the collection space are provided with a heat source for reevaporating the ultrafine particles. 7. The ultrafine particle generating device according to claim 1, wherein a quenching device is provided between the reevaporation heat source and the collection chamber.
JP5039386A 1985-10-30 1986-03-10 Apparatus for forming ultrafine particle Pending JPS62207802A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP5039386A JPS62207802A (en) 1986-03-10 1986-03-10 Apparatus for forming ultrafine particle
US06/898,600 US4732369A (en) 1985-10-30 1986-08-21 Arc apparatus for producing ultrafine particles
DE8686111902T DE3687157T2 (en) 1985-10-30 1986-08-28 DEVICE FOR PRODUCING ULTRAFINE POWDERS.
EP86111902A EP0220420B1 (en) 1985-10-30 1986-08-28 Apparatus for producing ultrafine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5039386A JPS62207802A (en) 1986-03-10 1986-03-10 Apparatus for forming ultrafine particle

Publications (1)

Publication Number Publication Date
JPS62207802A true JPS62207802A (en) 1987-09-12

Family

ID=12857628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5039386A Pending JPS62207802A (en) 1985-10-30 1986-03-10 Apparatus for forming ultrafine particle

Country Status (1)

Country Link
JP (1) JPS62207802A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004512943A (en) * 2000-11-09 2004-04-30 サイプラス・アマックス・ミネラルズ・カンパニー Method and apparatus for producing molybdenum oxide nanoparticles
JP2008528259A (en) * 2005-01-28 2008-07-31 テクナ・プラズマ・システムズ・インコーポレーテッド Inductive plasma synthesis of nanopowder
US7883673B2 (en) 2000-11-09 2011-02-08 Cyprus Amax Minerals Company Apparatus for producing nano-particles of molybdenum oxide
CN104607647A (en) * 2015-02-13 2015-05-13 江永斌 Continuous collecting device of ultrafine metal powder production equipment
JP2022096622A (en) * 2020-12-17 2022-06-29 江蘇博遷新材料有限公司 Apparatus for manufacturing super fine powder for plasma arc atomizing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5854166A (en) * 1981-09-24 1983-03-31 新進通信株式会社 Standard structure
JPS59166605A (en) * 1983-03-11 1984-09-20 Tokyo Tekko Kk Apparatus for preparing ultra-fine particle
JPS60224706A (en) * 1984-04-20 1985-11-09 Hitachi Ltd Production of ultrafine metallic particles
JPS60228605A (en) * 1984-04-27 1985-11-13 Hitachi Ltd Manufacture of hyperfine particles
JPS60228609A (en) * 1984-04-27 1985-11-13 Hitachi Ltd Production of ultrafine particles

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5854166A (en) * 1981-09-24 1983-03-31 新進通信株式会社 Standard structure
JPS59166605A (en) * 1983-03-11 1984-09-20 Tokyo Tekko Kk Apparatus for preparing ultra-fine particle
JPS60224706A (en) * 1984-04-20 1985-11-09 Hitachi Ltd Production of ultrafine metallic particles
JPS60228605A (en) * 1984-04-27 1985-11-13 Hitachi Ltd Manufacture of hyperfine particles
JPS60228609A (en) * 1984-04-27 1985-11-13 Hitachi Ltd Production of ultrafine particles

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004512943A (en) * 2000-11-09 2004-04-30 サイプラス・アマックス・ミネラルズ・カンパニー Method and apparatus for producing molybdenum oxide nanoparticles
US7749463B2 (en) 2000-11-09 2010-07-06 Cyprus Amax Minerals Company Apparatus for producing nano-particles of molybdenum oxide
US7829060B2 (en) 2000-11-09 2010-11-09 Cyprus Amax Minerals Company Nano-particles of molybdenum oxide
US7883673B2 (en) 2000-11-09 2011-02-08 Cyprus Amax Minerals Company Apparatus for producing nano-particles of molybdenum oxide
JP2008528259A (en) * 2005-01-28 2008-07-31 テクナ・プラズマ・システムズ・インコーポレーテッド Inductive plasma synthesis of nanopowder
CN104607647A (en) * 2015-02-13 2015-05-13 江永斌 Continuous collecting device of ultrafine metal powder production equipment
JP2022096622A (en) * 2020-12-17 2022-06-29 江蘇博遷新材料有限公司 Apparatus for manufacturing super fine powder for plasma arc atomizing method

Similar Documents

Publication Publication Date Title
JPH10507227A (en) Apparatus and method for forming uniform thin films on large substrates
JPS63274762A (en) Device for forming reaction vapor-deposited film
JPS6254005A (en) Production of hyperfine particles
JPS62207802A (en) Apparatus for forming ultrafine particle
JPH03505104A (en) Plasma treatment method and plasmatron
JPH0524988B2 (en)
WO2001008795A1 (en) Fine particle manufacturing method using laser beam
JP2002220601A (en) Production method for low oxygen spherical metal powder using dc thermal plasma processing
JPS60224706A (en) Production of ultrafine metallic particles
JP2002069664A (en) Method and apparatus for plasma processing
JPH01292828A (en) Induction plasma application apparatus
JPH05266991A (en) Magnetic drive plasma reaction device
JP4521174B2 (en) Cluster manufacturing apparatus and cluster manufacturing method
JP2716844B2 (en) Thermal spray composite film forming method
Bica Plasma device for magnetic nanoparticles production
JP2595365B2 (en) Thermal plasma jet generator
JPH1053866A (en) Gas control type arc device and its method
TWI285066B (en) Plasma torch apparatus
JPS61261201A (en) Method for producing metal oxide fine powder and apparatus therefor
JP2505375B2 (en) Method and apparatus for forming compound film
JPH03215671A (en) Cvd method and device by sheet plasma
JPH01201481A (en) Method and apparatus for vapor phase synthesis of high-pressure phase boron nitride
JPS60228609A (en) Production of ultrafine particles
JP2505376B2 (en) Film forming method and apparatus
JPH07316774A (en) Low-pressure plasma thermal spraying method