JPS6220678A - Warming apparatus utilizing wind power - Google Patents

Warming apparatus utilizing wind power

Info

Publication number
JPS6220678A
JPS6220678A JP60160630A JP16063085A JPS6220678A JP S6220678 A JPS6220678 A JP S6220678A JP 60160630 A JP60160630 A JP 60160630A JP 16063085 A JP16063085 A JP 16063085A JP S6220678 A JPS6220678 A JP S6220678A
Authority
JP
Japan
Prior art keywords
oil
air
air compressor
hydraulic motor
thermal energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60160630A
Other languages
Japanese (ja)
Inventor
Michihisa Yonekichi
米吉 通久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Ecology Systems Co Ltd
Original Assignee
Matsushita Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Seiko Co Ltd filed Critical Matsushita Seiko Co Ltd
Priority to JP60160630A priority Critical patent/JPS6220678A/en
Publication of JPS6220678A publication Critical patent/JPS6220678A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Abstract

PURPOSE:To improve the energy conversion efficiency by using an air compressor for a heat generator and accommodating the air compressor together with an oil cooling apparatus into a heating chamber, thus avoiding the need of a heat insulating process and eliminating the thermal energy conversion loss and the thermal energy transport loss. CONSTITUTION:When a windmill 9 revolves, a hydraulic pump 10 is driven, and the high-pressure oil is supplied into a hydraulic motor 13. therefore, the hydraulic motor 13 is driven, and an air compressor 15 starts revolution. After the oil discharged from the hydraulic motor 13 is sent into an oil cooling apparatus 14, said oil is returned into an oil pump 14. While, the air is inhaled and discharged through pipings 17 and 18 by the revolution of the air compressor 15. At this time, the air pressure is increased by limiting the flow rate of the air by a valve 20. Further, cooling water is allowed to flow into a cooling device 19 and the oil cooling apparatus 14 by a circulation pump 32, and the cylinder 22 of the air compressor 15 and the oil are cooled. The above-described apparatuses 14 and 15 constituting a power transmitting apparatus are arranged inside a heating chamber 25.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は風車を利用して熱を発生させ、その熱エネルギ
ーを暖房に用いる風力暖房装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION FIELD OF INDUSTRIAL APPLICATION The present invention relates to a wind heating device that generates heat using a wind turbine and uses the thermal energy for heating.

従来の技術 従来の風力暖房装置は第2図に示゛すようを構成であっ
た。すなわち、風車1の回転動力を歯車装置3を介して
伝達する動力伝達装置2は高圧、高温の油を作る油ポン
プ6を駆動する。そしてこの油ポンプ5とこの高温の油
の熱エネルギーを水の熱エネルギーに変換する熱交換器
6から熱発生装置4を構成している。熱交換器6により
水の熱エネルギーに変換された後加温室8に収納され水
の熱エネルギーを放熱する放熱器7に送られる。この構
成によると風車1の回転エネルギーで油ポンプ6を駆動
して油を圧縮し、この圧縮によって油の温度が上昇する
ため、この熱エネルギーを熱交換器6および放熱器アを
介して加温室8の暖房に利用しようとするものである。
2. Description of the Related Art A conventional wind heating system has a configuration as shown in FIG. That is, a power transmission device 2 that transmits the rotational power of the wind turbine 1 via a gear device 3 drives an oil pump 6 that produces high-pressure, high-temperature oil. A heat generating device 4 is constituted by this oil pump 5 and a heat exchanger 6 that converts the thermal energy of this high temperature oil into thermal energy of water. After the water is converted into thermal energy by the heat exchanger 6, it is stored in a heating chamber 8 and sent to a radiator 7 which radiates the thermal energy of the water. According to this configuration, the rotational energy of the windmill 1 drives the oil pump 6 to compress the oil, and this compression increases the temperature of the oil, so this thermal energy is transferred to the heating chamber via the heat exchanger 6 and the radiator A. The plan is to use it for heating.

発明が解決しようとする問題点 このような従来の構成では、熱発生装置4と加温室8を
それぞれ分散配置するため、熱発生装置4の断熱処理を
完壁に行う必要があることと、熱交換器6による熱エネ
ルギー変換ロスや加温室までの熱エネルギー輸送ロスな
どが発生し、トータル的な風力エネルギーの熱エネルギ
ー変換効率が低くなる問題点があった。
Problems to be Solved by the Invention In such a conventional configuration, since the heat generating device 4 and the heating chamber 8 are arranged separately, it is necessary to completely insulate the heat generating device 4, and There is a problem in that a thermal energy conversion loss due to the exchanger 6 and a thermal energy transport loss to the heating room occur, resulting in a lower overall wind energy thermal energy conversion efficiency.

本発明はこのような問題点を解決するもので、熱発生装
置に空気圧縮機を用いるとともに、前記空気圧縮機を加
温室内に収納することKより、断熱処理を不要にし、し
かも熱交換器によるエネルギー変換ロスと加温室までの
熱エネルギー輸送ロスをなくしてトータル的なエネルギ
ー変換効率を向上させることを目的とするものである。
The present invention solves these problems by using an air compressor as a heat generating device and storing the air compressor in a heating chamber, thereby eliminating the need for heat insulation treatment and eliminating the need for a heat exchanger. The purpose of this is to improve the total energy conversion efficiency by eliminating the energy conversion loss caused by heat transfer and the thermal energy transport loss to the heating room.

問題点を解決するための手段 この問題点を解決するために本発明は、風車と、この風
車により駆動される油ポンプ、油圧モータおよび油冷却
装置から構成される動力伝達装置と、前記動力伝達装置
によって駆動される空気圧縮式の熱発生装置を備え、前
記動力伝達装置の油冷却装置と、前記熱発生装置を加温
室内に収納したものである。
Means for Solving the Problem In order to solve this problem, the present invention provides a power transmission device comprising a windmill, an oil pump driven by the windmill, a hydraulic motor, and an oil cooling device, It is equipped with an air compression type heat generation device driven by the device, and the oil cooling device of the power transmission device and the heat generation device are housed in a heating chamber.

作  用 上記構成により、風車の回転力でまず油ポンプが回転し
、それにより発生した圧力油のエネルギーにより油圧モ
ータが回転する。油圧モータが回転すると、それによっ
て空気圧縮機が駆動され、これにより、風車の回転エネ
ルギーは空気圧縮機の回転エネルギーとして動力伝達さ
れたことになる。空気圧縮機が駆動されると、その吐出
側の空気の圧力を上げることにより、吐出空気は高温の
熱を得る。このようにして空気圧縮機は熱発生装置とし
て機能することになる。
Operation With the above configuration, the oil pump is first rotated by the rotational force of the windmill, and the hydraulic motor is rotated by the energy of the pressure oil generated thereby. When the hydraulic motor rotates, it drives the air compressor, so that the rotational energy of the windmill is transmitted as the rotational energy of the air compressor. When the air compressor is operated, the pressure of the air on the discharge side is increased, and the discharged air gains high temperature heat. In this way, the air compressor will function as a heat generating device.

さらに、前記油ポンプおよび油圧モータを流れる油は、
温度が上昇するため、油冷却装置を用いて冷却と熱回収
を同時に行うことにより、有効な熱エネルギー利用がは
かれる。
Furthermore, the oil flowing through the oil pump and hydraulic motor is
As the temperature rises, effective use of thermal energy can be achieved by simultaneously performing cooling and heat recovery using an oil cooling device.

実施例 以下、本発明の一実施例を第1図により説明する。Example An embodiment of the present invention will be described below with reference to FIG.

第1図において、風車軸11に直結され風車9の回転エ
ネルギーにより圧力油を作る油ポンプ1゜が設置されて
いる。この油ポンプ1oにより作られた圧力油を油圧ホ
ース1211を介して油圧モータ13に送油する。この
油圧モータ5を通過した高温の油は油圧ホース12bを
介して油冷却装置14で冷却され、油圧ホース12cに
より油ポンプ1oに戻る。油圧モータ5と軸8によって
連結された空気圧縮機16は、室外から空気を吸い込む
空気吸込管17と、空気圧縮機15から吐出された空気
を室外に放出する空気吐出管18が接続され、途中に放
熱器19aと弁2oが設けである。
In FIG. 1, an oil pump 1° is installed which is directly connected to the wind turbine shaft 11 and generates pressure oil using the rotational energy of the wind turbine 9. Pressure oil produced by this oil pump 1o is sent to the hydraulic motor 13 via a hydraulic hose 1211. The high-temperature oil that has passed through the hydraulic motor 5 is cooled by an oil cooling device 14 via a hydraulic hose 12b, and is returned to the oil pump 1o via a hydraulic hose 12c. An air compressor 16 connected to a hydraulic motor 5 by a shaft 8 is connected to an air suction pipe 17 that sucks air from outside, and an air discharge pipe 18 that discharges air discharged from the air compressor 15 to the outside. A radiator 19a and a valve 2o are provided.

空気圧縮機15にはシリンダー22を冷却する冷却器2
1が設けられている。16は油冷却装置14と冷却器2
0および放熱器19bの間に水を循環させる循環ポンプ
23が設けられ、これらはそれぞれ管24a、24b、
24c、24d、24eにより連結されている。また、
油圧モータ11゜油冷却装置14.空気圧縮機15.放
熱器19a。
The air compressor 15 includes a cooler 2 that cools the cylinder 22.
1 is provided. 16 is an oil cooling device 14 and a cooler 2
A circulation pump 23 that circulates water between the radiator 19b and the radiator 19b is provided, and these pumps are connected to pipes 24a, 24b, and 19b, respectively.
They are connected by 24c, 24d, and 24e. Also,
Hydraulic motor 11° oil cooling device 14. Air compressor 15. Heat sink 19a.

19b、循環ポンプ23などは加温室25に収納されて
いる。なお油ポンプ10.油圧ホース12a。
19b, the circulation pump 23, and the like are housed in the heating chamber 25. In addition, oil pump 10. Hydraulic hose 12a.

12b、12c、油圧モータ13.油冷却装置14は風
車9の回転動力を空気圧縮機16に動力伝達する機能が
あるため、総称して動力伝達装置26と呼ぶ。
12b, 12c, hydraulic motor 13. Since the oil cooling device 14 has a function of transmitting the rotational power of the windmill 9 to the air compressor 16, it is collectively referred to as a power transmission device 26.

上記構成において、風車9が回転すると風車軸11を介
して油ポンプ1oが駆動され、これにより作られた高圧
の油は油圧ホース12を矢印のように流れ、油圧モータ
3に供給される。この圧力油によシ油圧モータ13が駆
動されると軸16を介して空気圧縮機15が回転を始め
、かくして風車9の回転動力は空気圧縮機15の回転動
力として動力伝達されたことになる。そして油圧モータ
13から出た油は油圧ホース12bを経由して油冷却装
置14に送油され、ここで一旦冷却された後油圧ホース
2Cを経由して再び油ポンプ2に戻る。
In the above configuration, when the windmill 9 rotates, the oil pump 1o is driven via the windmill shaft 11, and the high pressure oil produced thereby flows through the hydraulic hose 12 as shown by the arrow and is supplied to the hydraulic motor 3. When the hydraulic motor 13 is driven by this pressure oil, the air compressor 15 starts rotating via the shaft 16, and thus the rotational power of the windmill 9 is transmitted as the rotational power of the air compressor 15. . The oil discharged from the hydraulic motor 13 is sent to the oil cooling device 14 via the hydraulic hose 12b, where it is once cooled and then returned to the oil pump 2 via the hydraulic hose 2C.

つぎに空気圧縮機15が回転すると、空気吸込管17を
通して室外から吸引された空気は空気圧縮機15による
圧縮行程を経たのち空気吐出管18から室外へ放出され
る。ここで空気吐出管18の途中に設けた放熱器19a
および弁2oの動作について説明すると、通常空気圧縮
機15によって圧縮された空気は、空気の圧縮熱により
いくらか温度が上昇し、この熱を放熱器19aを通じて
放熱したあと室外へ放出されるのであるが、本実施例で
は空気吐出管18の途中に設けた弁2Qによって空気の
流量を制限することにより空気圧縮機15から吐出され
る空気の圧力を上げることができる。このため空気の圧
縮熱は通常の場合より大きくなり、より高温度の空気熱
エネルギーが得られる。
Next, when the air compressor 15 rotates, the air sucked from outside through the air suction pipe 17 undergoes a compression stroke by the air compressor 15, and then is discharged from the air discharge pipe 18 to the outside. Here, a radiator 19a provided in the middle of the air discharge pipe 18
To explain the operation of the valve 2o, the temperature of the air compressed by the air compressor 15 rises somewhat due to the heat of compression of the air, and after radiating this heat through the radiator 19a, it is released outside. In this embodiment, the pressure of the air discharged from the air compressor 15 can be increased by restricting the flow rate of air with a valve 2Q provided in the middle of the air discharge pipe 18. Therefore, the heat of compression of the air is greater than in the normal case, and higher temperature air thermal energy can be obtained.

一方、前記空気圧縮機毎のシリンダー22は空気の圧縮
熱によって加熱されるため連続的に運転する場合には冷
却を行う必要がある。また前記動力伝達装置26を流れ
る油の温度も油ポンプ10による圧縮熱により上昇する
ため上記同様に冷却を行う必要がある。本発明では上記
の冷却を行うと同時に、そのときに得られる熱エネルギ
ーをも有効利用するものとして、循環ポンプ23により
冷却器19および油冷却装置14に矢印のように冷却水
を流してそれぞれシリンダー22および油の冷却を行う
。さらにこのときに得られた水の熱エネルギーを放熱器
19bによって放熱し、加温室26の暖房として利用す
るものである。
On the other hand, since the cylinder 22 of each air compressor is heated by the heat of compression of the air, it is necessary to cool it when operating continuously. Furthermore, since the temperature of the oil flowing through the power transmission device 26 also rises due to the heat of compression by the oil pump 10, it is necessary to cool it in the same manner as described above. In the present invention, at the same time as performing the above-mentioned cooling, the thermal energy obtained at that time is also effectively used, and the circulation pump 23 is used to flow cooling water into the cooler 19 and the oil cooling device 14 as shown by the arrows. 22 and cooling the oil. Furthermore, the heat energy of the water obtained at this time is radiated by the radiator 19b and used for heating the heating chamber 26.

以上のように本実施例によれば、空気圧縮機の吐出空気
の圧力を調整することにより、よシ高温度の空気熱エネ
ルギーを得ることができるとともに、空気圧縮機のシリ
ンダー冷却および動力伝達装置の油冷却時に得られる熱
エネルギーをも有効に利用することができより効率よく
熱エネルギーを得ることができる。
As described above, according to this embodiment, by adjusting the pressure of the air discharged from the air compressor, it is possible to obtain air thermal energy at a much higher temperature, and also to cool the cylinder of the air compressor and use the power transmission system. Thermal energy obtained during oil cooling can also be used effectively, making it possible to obtain thermal energy more efficiently.

発明の効果 以上のように本発明によれば風車と、油ポンプ。Effect of the invention As described above, the present invention provides a wind turbine and an oil pump.

油圧モータおよび油冷却装置から構成される動力伝達装
置と1.前記動力伝達装置によって駆動される空気圧縮
式の熱発生装置を備え、前記動力伝達装置の油冷却装置
と前記熱発生装置を加温室内に収納することにより、熱
交換によるエネルギー変換ロスや熱エネルギーの輸送損
失を最少限におさえることができ、トータル的な風力エ
ネルギーの変換効率を高めることができる。
A power transmission device consisting of a hydraulic motor and an oil cooling device; 1. By providing an air compression type heat generation device driven by the power transmission device, and storing the oil cooling device of the power transmission device and the heat generation device in a heating chamber, energy conversion loss due to heat exchange and thermal energy can be reduced. transport losses can be minimized, and the total wind energy conversion efficiency can be increased.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における風力暖房装置を示す
構成図、第2図は従来の風力暖房装置を示す構成図であ
る。 9・・・・・・風車、1o・・・・・・油ポンプ、13
・・川・油圧モータ、14・・・・・・油冷却装置、1
5・・・・・・空気圧縮機、26・・・・・・加温室、
26・・・・・・動力伝達装置。 第2図
FIG. 1 is a configuration diagram showing a wind heating device according to an embodiment of the present invention, and FIG. 2 is a configuration diagram showing a conventional wind heating device. 9...Windmill, 1o...Oil pump, 13
...River/hydraulic motor, 14...Oil cooling device, 1
5... Air compressor, 26... Warming room,
26...Power transmission device. Figure 2

Claims (1)

【特許請求の範囲】[Claims] 風車と、この風車により駆動される油ポンプ、油圧モー
タおよび油冷却装置から構成される動力伝達装置と、前
記動力伝達装置によって駆動される空気圧縮式の熱発生
装置を備え、前記動力伝達装置の油冷却装置と、前記熱
発生装置を加温室内に収納した風力暖房装置。
A power transmission device comprising a windmill, an oil pump, a hydraulic motor, and an oil cooling device driven by the windmill, and an air compression type heat generation device driven by the power transmission device, the power transmission device comprising: A wind heating device in which an oil cooling device and the heat generating device are housed in a heating chamber.
JP60160630A 1985-07-19 1985-07-19 Warming apparatus utilizing wind power Pending JPS6220678A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60160630A JPS6220678A (en) 1985-07-19 1985-07-19 Warming apparatus utilizing wind power

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60160630A JPS6220678A (en) 1985-07-19 1985-07-19 Warming apparatus utilizing wind power

Publications (1)

Publication Number Publication Date
JPS6220678A true JPS6220678A (en) 1987-01-29

Family

ID=15719081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60160630A Pending JPS6220678A (en) 1985-07-19 1985-07-19 Warming apparatus utilizing wind power

Country Status (1)

Country Link
JP (1) JPS6220678A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0337428U (en) * 1989-08-21 1991-04-11
JPH0498702A (en) * 1990-10-25 1992-03-31 Epotsukushiya:Kk Spot light
JP2005530074A (en) * 2001-10-05 2005-10-06 エニス、ベン Method for supplying electric power generated using a wind turbine to a place far away from a power generation laying network without interruption, and an apparatus related thereto
US7365446B2 (en) 2001-09-14 2008-04-29 Aloys Wobben Wind power plant having power module mounted on tower foundation and method for use in constructing same
US7436084B2 (en) 2003-02-01 2008-10-14 Aloys Wobben Wind energy plant and method for use in erection of a wind energy plant
WO2009025420A1 (en) * 2007-08-21 2009-02-26 Dong Yong Kim Wind turbine system using fluid torque converter
EP2530310A1 (en) * 2011-04-05 2012-12-05 Mitsubishi Heavy Industries, Ltd. Renewable energy generator
CN102822511A (en) * 2011-04-05 2012-12-12 三菱重工业株式会社 Regenerated energy electricity generation device
US8601804B2 (en) 2011-08-10 2013-12-10 Mitsubishi Heavy Industries, Ltd. Power generating apparatus of renewable energy type
CN108518831A (en) * 2018-03-08 2018-09-11 芜湖泰领信息科技有限公司 Wind energy fresh air system

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0337428U (en) * 1989-08-21 1991-04-11
JPH0498702A (en) * 1990-10-25 1992-03-31 Epotsukushiya:Kk Spot light
US7663263B2 (en) 2001-09-14 2010-02-16 Aloys Wobben Wind turbine power module mounted on the tower foundation
US7365446B2 (en) 2001-09-14 2008-04-29 Aloys Wobben Wind power plant having power module mounted on tower foundation and method for use in constructing same
JP2005530074A (en) * 2001-10-05 2005-10-06 エニス、ベン Method for supplying electric power generated using a wind turbine to a place far away from a power generation laying network without interruption, and an apparatus related thereto
JP4731812B2 (en) * 2001-10-05 2011-07-27 エム. エニス,ベン Method for supplying electric power generated using a wind turbine to a place far away from a power generation laying network without interruption, and an apparatus related thereto
US7436084B2 (en) 2003-02-01 2008-10-14 Aloys Wobben Wind energy plant and method for use in erection of a wind energy plant
US7504742B2 (en) * 2003-02-01 2009-03-17 Aloys Wobben Method for the erection of a wind energy plant, and wind energy plant
US7482707B2 (en) 2003-02-01 2009-01-27 Aloys Wobben Method for the erection of a wind energy plant, and wind energy plant
WO2009025420A1 (en) * 2007-08-21 2009-02-26 Dong Yong Kim Wind turbine system using fluid torque converter
EP2530310A1 (en) * 2011-04-05 2012-12-05 Mitsubishi Heavy Industries, Ltd. Renewable energy generator
CN102822511A (en) * 2011-04-05 2012-12-12 三菱重工业株式会社 Regenerated energy electricity generation device
EP2532890A1 (en) * 2011-04-05 2012-12-12 Mitsubishi Heavy Industries, Ltd. Regenerated energy electricity generation device
EP2532890A4 (en) * 2011-04-05 2013-06-19 Mitsubishi Heavy Ind Ltd Regenerated energy electricity generation device
EP2530310A4 (en) * 2011-04-05 2013-10-30 Mitsubishi Heavy Ind Ltd Renewable energy generator
US8601805B2 (en) 2011-04-05 2013-12-10 Mitsubishi Heavy Industries, Ltd. Power generating apparatus of renewable energy type
US8684682B2 (en) 2011-04-05 2014-04-01 Mitsubishi Heavy Industries, Ltd. Power generating apparatus of renewable energy type
US8601804B2 (en) 2011-08-10 2013-12-10 Mitsubishi Heavy Industries, Ltd. Power generating apparatus of renewable energy type
CN108518831A (en) * 2018-03-08 2018-09-11 芜湖泰领信息科技有限公司 Wind energy fresh air system

Similar Documents

Publication Publication Date Title
JP4520527B2 (en) External combustion type closed cycle heat engine
JPS6220678A (en) Warming apparatus utilizing wind power
CN109989833A (en) A kind of integrated thermal management system for hypersonic aircraft or engine
GB2581043A (en) Power conversion system for nuclear power generators and related methods
WO2011151888A1 (en) External-combustion, closed-cycle thermal engine
CN102691591A (en) Heat exchanger and associated method employing stirling engine
CN102606339A (en) Efficient hot-air engine
JPS58220945A (en) Heat energy recovery device in engine
JPH03264712A (en) Composite power generating equipment
JP2017050418A (en) Heat recovery device
CN210460892U (en) Heat management and heat recovery coupling system for cylinder sleeve of internal combustion engine
CN205477784U (en) Cogeneration of heat and power device
CN212028018U (en) Cooling device of air compressor
CN210289855U (en) Steam turbine lubricating oil quick auxiliary cooling device of steam power plant
CN109209536B (en) Variable heat energy recovery system and method for cogeneration unit
US4435959A (en) Hot-gas piston-type engine and use thereof in heating, cooling and power plants
JP3176755B2 (en) Gas turbine equipment
CN108223095B (en) Marine vessel engine air cooling system
JP2942852B2 (en) Evaporative cooling engine of cogeneration
JPS6345404A (en) Complex generating set
CN115133712B (en) Motor with from heat dissipation function
RU2364796C1 (en) Heat supply method and heat supply device
JPH04148161A (en) Room cooling/heating method with generation or supplying method for cold/hot water
CN210422749U (en) Forced circulation water cooling system of single-cylinder water-cooling mute generator set
CN210089185U (en) Geothermal and natural coupling high-efficiency energy supply device