JPS62203660A - Production of casting having fine crystal structure - Google Patents

Production of casting having fine crystal structure

Info

Publication number
JPS62203660A
JPS62203660A JP4611086A JP4611086A JPS62203660A JP S62203660 A JPS62203660 A JP S62203660A JP 4611086 A JP4611086 A JP 4611086A JP 4611086 A JP4611086 A JP 4611086A JP S62203660 A JPS62203660 A JP S62203660A
Authority
JP
Japan
Prior art keywords
mold
auxiliary
molten metal
casting mold
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4611086A
Other languages
Japanese (ja)
Inventor
Hiroaki Hirasawa
平沢 宏章
Yukio Kuramasu
幸雄 倉増
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP4611086A priority Critical patent/JPS62203660A/en
Publication of JPS62203660A publication Critical patent/JPS62203660A/en
Pending legal-status Critical Current

Links

Landscapes

  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To directionally solidify the molten metal in a main casting mold and to obtain a good-quality casting having fine secondary dendrite spacings by pouring the molten metal into the heated main casting mold and auxiliary casting mold having prescribed shapes and solidifying the molten metal in the auxiliary casting mold by force cooling then removing the same. CONSTITUTION:The molten metal 4 is poured into the main casting mold 1 heated by heating means 2 and the auxiliary casting mold 3 provided to the bottom thereof. The auxiliary casting mold 3 is quickly cooled by cooling water 8 so that the molten metal 4 in the auxiliary casting mold 3 is solidified by the force cooling. The molten metal 4 in the main casting mold 1 solidifies by having directivity from below and forms the fine-grained structure having the fine secondary dendrite spacings. The quality of the casting is thus improved. The auxiliary molding casting mold part 5 may be taken out and cut off after the solidification of the entire part.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、微細な結晶組織を有する鋳物の製造方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing a casting having a fine crystal structure.

従来の技術 金属の鋳造品は、急冷凝固させることにより二次デンド
ライト間隔が微細となり、このような微細な二次デンド
ライト間隔により機械的性質が向上することが知られて
いる。そのために、金型に溶湯を圧入後、該金型に冷却
剤を散布して、金型壁を介して浴湯を急冷凝固させる方
法が特開昭53−57128号公報に提案されている。
It is known that the secondary dendrite spacing of conventional metal castings is reduced by rapid cooling and solidification, and that such fine secondary dendrite spacing improves mechanical properties. To this end, JP-A-53-57128 proposes a method in which the molten metal is press-fitted into a mold and then a coolant is sprayed into the mold to rapidly solidify the bath water through the mold wall.

発明が解決しようとする間s!q点 しかしながら、このような従来方法によるときは#湯の
冷却が金型壁の層を介して行われるものであり、しかも
溶湯の峡固収紬によって金型内面と溶湯の凝固部の間に
空隙が発生し、この空隙が断熱層となって浴湯の熱が金
型壁を介して除去されるのを妨げ、空隙の生じた後の浴
湯の凝固速度が低下し、二次デフドライド間隔が少くと
も50μm以上でろって、好ましく微細化された組織を
有する鋳物を得難い。
While invention tries to solve s! Point q However, when such a conventional method is used, the cooling of the molten metal is carried out through the layer of the mold wall, and moreover, the molten metal is trapped between the inner surface of the mold and the solidified part of the molten metal. A void is created, and this void acts as a heat insulating layer that prevents the heat of the bath water from being removed through the mold wall, which reduces the solidification rate of the bath water after the void occurs, and reduces the secondary def-dry interval. is at least 50 μm or more, making it difficult to obtain a casting having a preferably refined structure.

問題点を解決するための平膜 本発明は微細な二次デンドライト間隔の組織を有する鋳
物を得るために、鋳型装置内に圧入された溶湯を急冷凝
固し得る新規な鋳造方法を提供するものであす、所望の
鋳物の形状に対応するキャビティー會有する主鋳型を7
JI]熱し、該主鋳型と補助的型をよむ詞型摸1a内に
溶湯を圧入し、前記補助鋳型内の溶湯が凝固したのち、
該凝固部分を直接に強制冷却して、前記主鋳型内の市街
を指向性凝固させることを特徴とする二次デンドライト
間隔の微細な結晶組f我を有する鋳造の製造方法である
The present invention provides a novel casting method in which molten metal press-fitted into a molding device can be rapidly solidified in order to obtain a casting having a structure with fine secondary dendrite spacing. Tomorrow, we will create a main mold with a cavity that corresponds to the desired shape of the casting.
JI] Heat and press the molten metal into the mold 1a containing the main mold and the auxiliary mold, and after the molten metal in the auxiliary mold solidifies,
This method of manufacturing a casting having a fine crystal group with secondary dendrite spacing is characterized in that the solidified portion is directly forcedly cooled to cause directional solidification of the inner part of the main mold.

1乍用 加熱された主間型および補助鋳型内に溶湯を圧入し、そ
の補助4@型内浴湯を後先的に凝固してから該補助鋳型
を除去しその凝固部分を強制的に冷却することにより主
鋳型内溶湯の熱量が補助It) zlで成形された凝固
部の方向に伝導して指向性凝固させる。
The molten metal is press-fitted into the heated main mold and auxiliary mold, and the auxiliary bath water in the mold is solidified first, and then the auxiliary mold is removed and the solidified portion is forcibly cooled. By doing so, the amount of heat of the molten metal in the main mold is conducted in the direction of the solidified part formed by auxiliary It) zl, resulting in directional solidification.

この工うな指向性凝固に工って凝固した金属イ11城に
おける二次デンドライト間隙が微細化し、即ちこの二次
デンドライト間隙を一般的に50燗以下、特に35μm
以下となる。
By using this technique, the secondary dendrite gap in the solidified metal is made finer by directional solidification, that is, the secondary dendrite gap is generally less than 50 μm, particularly 35 μm.
The following is true.

主間型を加熱して圧入溶(寺を溶融状態に保ち、それに
1って#1湯の湯:刺り不良を防ぎ鋳造性を良好にし、
又前記した指向性凝固を適切に行わしめることにより収
縮巣が発生し難くなる。
Heat the main mold to press-fit (keep the temple in a molten state, and the #1 hot water: prevents puncture defects and improves casting properties.
Furthermore, by properly performing the above-mentioned directional coagulation, shrinkage cavities are less likely to occur.

実施例 上記したような不発明について更に説明すると、不発明
においては、鋳物の二次デンドライト間隔の微細な組織
を必要とする部分を製品形状にほぼ等しく形成し、この
ような形状に対応するキャビティーを有する主鋳型と、
前記微細な組織を必要とする主鋳型部分と連通し℃熱移
動を図り、該主#型部分を指向性凝固させる冷却部分を
形成するだめの補助g型とを含む金型装置を用いる。
Embodiment To further explain the above-mentioned invention, in the invention, the part of the casting that requires a fine structure of secondary dendrite spacing is formed approximately equal to the shape of the product, and a cavity corresponding to such shape is formed. a main mold having a tee;
A mold apparatus is used that includes an auxiliary mold that communicates with the main mold part that requires the fine structure and forms a cooling part for directional solidification of the main mold part to achieve heat transfer by degrees Celsius.

前記主鋳型は、主鋳型内の溶湯が補助鋳型に工って形成
された冷却部分によってのみ冷却され凝固するように予
め加熱される。この主#型の加熱温度は溶湯の組成お二
び溶湯の圧入時温度によって異なるが、400℃以上好
ましくは600℃以上に加熱しておくことが望ましい。
The main mold is preheated so that the molten metal in the main mold is cooled and solidified only by the cooling portion formed in the auxiliary mold. The heating temperature of this main mold varies depending on the composition of the molten metal and the temperature of the molten metal at the time of injection, but it is desirable to heat it to 400° C. or higher, preferably 600° C. or higher.

殊に主鋳型の熱容量を少なくするために主間型の壁は薄
いことが適切であって、このように主M型の温[を高温
に保持しておけば、溶湯の温度は液相線温度あるいは共
晶点@度は上であれはよく、液相IvjIあるいは共晶
点温度工すも50〜100℃高めとすることで十分であ
る。加熱された主鋳型を使用するので、流動性が悪く鋳
造性の悪い合金も容易に鋳造することができ、又この主
鋳型内の浴場の凝固が指向的に進行していくので、@果
が製品内に発生することなく健全な鋳物を得ることがで
きる。
In particular, in order to reduce the heat capacity of the main mold, it is appropriate for the walls of the main mold to be thin.If the temperature of the main M mold is maintained at a high temperature in this way, the temperature of the molten metal will drop below the liquidus line. It is sufficient that the temperature or eutectic point is higher, and it is sufficient to set the liquid phase IvjI or eutectic point temperature higher by 50 to 100°C. Since a heated main mold is used, it is possible to easily cast alloys with poor flowability and poor castability, and solidification of the bath in this main mold progresses in a directional manner. It is possible to obtain a sound casting without any occurrence in the product.

前記補助鋳型は圧入された/8陽を素早く凝固させるた
めのもので、常温の金型あるいは鋳型内に冷却液の循張
路を有する等の冷却手段を設けた鋳型を使用することが
できる。
The auxiliary mold is for quickly solidifying the press-fitted /8 oxide, and can be a room-temperature mold or a mold equipped with a cooling means such as a cooling fluid circulation path in the mold.

このような主鋳型および補助鋳型を倉む′IuI型装置
内に溶湯を圧入すると、補助g型内に圧入した溶湯は凝
固するが、主鋳型内に圧入した溶湯は溶融状態が保たれ
る。即ち上記のように補助鋳型内が凝固した後、該補助
鋳型を取り外し、tj’J i′il’a凝固部分に冷
却液をスプレー散布、望ましくは高圧スプレー等で砲し
、該は面部分を1な接に冷却する。この直接の冷却によ
って主鋳型内の溶湯は、前記凝固部分によって熱を尊わ
れ、該溶湯の凝固は冷却部分より製品部分に急速に進行
し指向性凝固が達成され、しかも鋳物“の一部を直接に
冷却するものであるから、鋳型と鋳物との間に断熱空間
が発生することはなく、更に鋳型の壁を介して冷却する
ものでないから冷却速度も速く、二次デンドライト間隔
の倣、別な組織を有する鋳物を製造することができる。
When molten metal is press-fitted into the 'IuI type device that houses such a main mold and auxiliary molds, the molten metal press-fitted into the auxiliary g-type solidifies, but the molten metal press-fitted into the main mold remains molten. That is, after the inside of the auxiliary mold has solidified as described above, the auxiliary mold is removed, and the solidified part is sprayed with cooling liquid, preferably by high-pressure spray, etc., and the surface part is Cool to 1. Due to this direct cooling, the molten metal in the main mold is heated by the solidified part, and the solidification of the molten metal progresses rapidly from the cooling part to the product part, achieving directional solidification, and moreover, Because it cools directly, there is no insulation space between the mold and the casting, and because it does not cool through the walls of the mold, the cooling rate is fast, and it is possible to imitate the secondary dendrite spacing and separate the mold. It is possible to produce a casting having a fine structure.

上述した主鋳型としては、金型に1浪ることなく砂型、
シェル型、ロストフオーム等の鋳型を単独で、あるいは
組会わせて使用することができる。また主鋳型の加熱手
段としては、抵抗、加熱、ガス加熱の他、誘導加熱等の
公知の手段が使用できる。更に補助か1型におけるさ湯
の凝固促進のため補助観、!型に冷却液をスプレーする
ことでもできる。
The main mold mentioned above is a sand mold, without any damage to the mold.
Molds such as shell molds and lost foam molds can be used alone or in combination. Further, as a heating means for the main mold, known means such as resistance, heating, gas heating, induction heating, etc. can be used. In addition, the auxiliary view is to promote coagulation of hot water in type 1,! You can also spray the mold with coolant.

次に不発明方法における好ましい一実施例について述べ
るが、これに限ることなく、特に補助m型の位置のとり
方、形状などについてはいろいろに変更して実施してよ
いことは明かである。
Next, a preferred embodiment of the non-inventive method will be described, but it is clear that the present invention is not limited to this, and that the method may be modified in various ways, particularly with respect to the positioning, shape, etc. of the auxiliary m-shape.

具体的な実施態様を添付する図16iについて説明する
と、本発明による方法を実施するための手順を示すのが
第1〜第3図であって、主鋳型1には加熱手段2を設け
、又補助′!A型3を連設した間型装置7を形成し、こ
れらの鋳型1.3内に溶融金属4を圧入せしめ補助鋳型
造型部5を補助#型3内で優先的に形成し、このために
補助調型3には第2図のように冷却液8を圧加する。こ
の第2図の工うに補助g型3内お工びそれに連続した主
鋳小1内の一部が凝固した状態で補助Mff3を取外し
、こうして露出した補助鋳型造型部5部分に@3図で示
すように引続いて直接水冷を行うことにより主鋳型1お
工びその中の熱量は上記造型部5方向に伝専し、従って
この主鋳型1内においては指向凝固金属による製品造型
部6が得られる。
Referring to FIG. 16i to which a specific embodiment is attached, FIGS. 1 to 3 show the procedure for carrying out the method according to the present invention, in which the main mold 1 is provided with heating means 2, and auxiliary'! An inter-mold device 7 in which molds A 3 are arranged in series is formed, molten metal 4 is press-fitted into these molds 1.3, and an auxiliary mold forming part 5 is preferentially formed within the auxiliary mold 3, and for this purpose. A cooling liquid 8 is pressurized to the auxiliary mold 3 as shown in FIG. In the process shown in Fig. 2, remove the auxiliary Mff 3 with the inside of the auxiliary mold 3 solidified and a part of the main casting small 1 that is continuous with it, and place the auxiliary mold molding part 5 exposed in this way as shown in Figure 3. As shown, by subsequently performing direct water cooling, the heat in the main mold 1 is transferred in the direction of the molding section 5, and therefore, within the main mold 1, a product molding section 6 made of oriented solidified metal is obtained. It will be done.

上記したようなM型装置7は金型で構成され、主#型1
の壁厚は一般的にQ、 5 rm以上であって本発明者
が具体的に採用したものは1.ONであった。補助鋳型
3の壁厚は一般的に111II11以上でおって、具体
的には10mであった。
The M-type device 7 as described above is composed of a mold, and the main mold #1
The wall thickness of Q is generally 5 rm or more, and the one specifically adopted by the inventor is 1. It was ON. The wall thickness of the auxiliary mold 3 was generally 111II11 or more, and specifically 10 m.

然してこのような鋳型Tを用い工具体向に実施した、A
t−12%合金合金の鋳造条件は次の如くである。− 主lj型1の加熱温度   600℃ 溶湯の組成および温度  ACaA、650℃製品部の
肉厚および重量 10■11.5Kg補助鋳型内部分の
重!   0.51<j1即ち前記した第1〜第3図の
ような各過程を経しめ、第3図の過程で凝固金属9部分
にスプレーされた冷却水量は1秒間に0.5tであって
、このようにして主鋳型1内の溶湯を指向凝固させた。
However, using such a mold T, A
The casting conditions for the t-12% alloy are as follows. - Heating temperature of main lj mold 1 600℃ Composition and temperature of molten metal ACaA, 650℃ Thickness and weight of product part 10 ■ 11.5Kg Weight of inside of auxiliary mold! 0.51<j1 That is, the amount of cooling water sprayed on the solidified metal 9 portion in the process shown in FIG. 3 after going through the steps shown in FIGS. 1 to 3 described above is 0.5 t per second, In this way, the molten metal in the main mold 1 was directionally solidified.

得られた製品(主’1Jfjl!1で造型された部分)
についてそのmE&を***したところ、二次デンドライ
ト間隔は10〜25μmであって非常に微細な結晶組織
を得ることができ、収縮巣の発生も認められなかった。
Obtained product (part molded with main '1Jfjl!1)
When the mE& was counted, the secondary dendrite spacing was 10 to 25 μm, a very fine crystal structure could be obtained, and no shrinkage nests were observed.

これに対し比較のため、上記と同じ主鋳型に対し溶湯性
人後、該開型外面に冷却水をスプレーして冷却する従来
方法に工す得られたものの組織は二次デンドライト間隔
が50〜100μmであす、収都果も発生していた。
On the other hand, for comparison, we used the same main mold as above and used the conventional method of spraying cooling water on the outer surface of the open mold after cooling the molten metal. At 100 μm, harvested fruits were also appearing.

即ち本発明方法によるときは非常に微細な結晶組織を有
する鋳物を得ることができ、収縮巣も発生し難いことか
らその機械的性質を適切に向上し得ることが確認された
In other words, it has been confirmed that the method of the present invention makes it possible to obtain a casting having a very fine crystal structure, and since shrinkage cavities are less likely to occur, its mechanical properties can be appropriately improved.

「発明の効果」 以上説明したような不発明によるときは補助鋳型造型部
分を主鋳型による製品造型部分に連続成型し、この補助
鋳型造型部分を優先的に凝固せしめてから該部分を直接
に強制冷却して主鋳型内の製品造型部分に相当した溶湯
を指向性、凝固させるものであるから二次デンドライト
間隔が微細な結晶組織とされた製品を確実に得ることが
でき、父上記のように指向性凝固させるものでろるから
該製品造型部分の凝固組織に収縮巣などを発生し難くシ
、この点においても優質の製品を得しめるものであって
、工業的にその効果の大きい発明である。
"Effects of the Invention" In the case of non-invention as explained above, the auxiliary mold molding part is continuously molded into the product molding part by the main mold, the auxiliary mold molding part is preferentially solidified, and then the said part is directly forced. Since the molten metal corresponding to the product molding part in the main mold is cooled and solidified in a directional manner, it is possible to reliably obtain a product with a crystal structure with fine secondary dendrite spacing, and as mentioned above. Since it is directional solidification, it is difficult to generate shrinkage nests in the solidified structure of the product molding part, and in this respect as well, it is possible to obtain a product of excellent quality, and it is an invention that has great industrial effects. .

【図面の簡単な説明】[Brief explanation of drawings]

図面は不発明の実施態様を示すものであって、第1図は
本発明方法における注湯状態の断面的説明図、第2図は
その補助鋳型部分に対する冷却凝固過程の第1図と四様
な断面的説明図、第3図はその主@型内製品造型部分に
対する冷却凝固過程の断面的説明図である。 然してこれらの図面において、1は王@型、2はその加
熱手段、3は補助鋳型、4は浴融金属、5は補助鋳型造
型部、6は指向性凝固による製品造型部分、7は鋳型装
置、8は冷却液を示すものである。
The drawings show an embodiment of the invention, in which Fig. 1 is a cross-sectional explanatory diagram of the pouring state in the method of the present invention, and Fig. 2 shows the cooling and solidification process of the auxiliary mold part in the cooling solidification process shown in Fig. 1 and four aspects. FIG. 3 is a cross-sectional explanatory view of the cooling solidification process for the main part of the product forming part in the mold. In these drawings, 1 is the king@mold, 2 is its heating means, 3 is an auxiliary mold, 4 is a bath metal, 5 is an auxiliary mold making section, 6 is a product making section by directional solidification, and 7 is a mold device. , 8 indicates a cooling liquid.

Claims (1)

【特許請求の範囲】[Claims] 所望の鋳物の形状に対応するキャビティーを有する主鋳
型を加熱し、この主鋳型と補助鋳型とを含む鋳型装置内
に浴湯を圧入し、前記補助鋳型内の溶湯が凝固してから
該補助鋳型を除去し、該補助鋳型造型部分を直接に強制
冷却し、前記主鋳型内の溶湯を指向性凝固させることを
特徴とする、二次デンドライト間隔の微細な結晶組織を
有する鋳物の製造方法。
A main mold having a cavity corresponding to the shape of the desired casting is heated, and bath water is press-fitted into a molding device including the main mold and an auxiliary mold, and after the molten metal in the auxiliary mold has solidified, the auxiliary mold is heated. A method for producing a casting having a fine crystal structure with secondary dendrite spacing, the method comprising: removing the mold, directly forcing cooling of the auxiliary mold molding portion, and directional solidifying the molten metal in the main mold.
JP4611086A 1986-03-05 1986-03-05 Production of casting having fine crystal structure Pending JPS62203660A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4611086A JPS62203660A (en) 1986-03-05 1986-03-05 Production of casting having fine crystal structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4611086A JPS62203660A (en) 1986-03-05 1986-03-05 Production of casting having fine crystal structure

Publications (1)

Publication Number Publication Date
JPS62203660A true JPS62203660A (en) 1987-09-08

Family

ID=12737852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4611086A Pending JPS62203660A (en) 1986-03-05 1986-03-05 Production of casting having fine crystal structure

Country Status (1)

Country Link
JP (1) JPS62203660A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105033180A (en) * 2015-06-26 2015-11-11 北京北冶功能材料有限公司 Fired mold precision casting method for improving solidification heat dissipation conditions of directional solidification casting

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105033180A (en) * 2015-06-26 2015-11-11 北京北冶功能材料有限公司 Fired mold precision casting method for improving solidification heat dissipation conditions of directional solidification casting

Similar Documents

Publication Publication Date Title
AU633154B2 (en) Method of controlling the rate of heat extraction in mould casting
JPH07155897A (en) Mold structure and casting method
JPH0138590B2 (en)
JP3937460B2 (en) Precast casting method
CN104923735A (en) Rapid investment casting technology
JPS62203660A (en) Production of casting having fine crystal structure
US3485291A (en) Method of casting by directional solidification
JPH1099953A (en) Centrifugal casting method
CN1067928C (en) Thin wall alloy product immersion crystalline forming method
JPS5850167A (en) Prevention for clogging of sprue
US2758347A (en) Method for producing solid castings
JPS6142471A (en) Forcedly cooling type casting method
SU1052322A1 (en) Method of producing nonchilled iron castings
JP4076155B2 (en) Manufacturing method of iron alloy-based thixocasting material
JPH05305409A (en) Method for forming metal
US3808671A (en) Method of making hollow cast articles from metal alloys having long freezing ranges
JPH1177240A (en) Casting metallic mold
JPS5952013B2 (en) Continuous casting method for seawater resistant steel
RU1806045C (en) Method of making castings with oriented structure
RU2081719C1 (en) Method of ingots production
JPH02187236A (en) Gypsum investment casting method
US1711052A (en) Method of producing steel ingots
JPH0459166A (en) Manufacture of casting
JP2000288691A (en) Production of cast alkali metal ingot
JPS6152978A (en) Casting method