JPS6220154B2 - - Google Patents

Info

Publication number
JPS6220154B2
JPS6220154B2 JP55152128A JP15212880A JPS6220154B2 JP S6220154 B2 JPS6220154 B2 JP S6220154B2 JP 55152128 A JP55152128 A JP 55152128A JP 15212880 A JP15212880 A JP 15212880A JP S6220154 B2 JPS6220154 B2 JP S6220154B2
Authority
JP
Japan
Prior art keywords
fibers
synthetic resin
molded
weight
nonwoven fabric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55152128A
Other languages
Japanese (ja)
Other versions
JPS5777085A (en
Inventor
Yuzuru Takahashi
Ikuo Nagai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Tokushu Toryo Co Ltd
Original Assignee
Nihon Tokushu Toryo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Tokushu Toryo Co Ltd filed Critical Nihon Tokushu Toryo Co Ltd
Priority to JP55152128A priority Critical patent/JPS5777085A/en
Publication of JPS5777085A publication Critical patent/JPS5777085A/en
Publication of JPS6220154B2 publication Critical patent/JPS6220154B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Dry Formation Of Fiberboard And The Like (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Ceramic Products (AREA)
  • Nonwoven Fabrics (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は開繊状態の繊維成分と金属短繊維との
混合物に粉末樹脂成分を混合して得られる嵩高性
不織布を凹凸形状に成形してなる成形防音材に関
し、更に詳細には防音性、耐熱性、放熱性、剛性
(強度)、難燃性の秀れた成形防音材の製造方法に
関する。 従来、落綿や反毛等の動植物性繊維及び/又は
合成樹脂性繊維材料を開繊した不連続繊維材料成
分に、熱硬化性合成樹脂粉末及び熱可塑性合成樹
脂粉末の適宜割合の混合粉末を混合しフリース形
成機でフリースを形成した後適度の熱を加えて該
樹脂粉末を熱融着せしめ、あつかい得る状態とな
した嵩高性不織布を製造し、所望の形状に加熱加
圧成形した成形体が、建築物や自動車等に用いら
れている。 例えば、自動車のボンネツト裏面に反毛や落綿
を開繊した不連続繊維材料と熱硬化性樹脂を主体
としてなる嵩高性不織布の成形品が吸音材として
装着されている。これらの成形吸音材は本発明者
が先に提案したものであつて厚さが約2〜5m/
mの平坦な高密度部分と厚さが約3〜10m/mで
特定範囲の空気流れ抵抗値を持つ任意形状の張り
出し部から成つており、平坦な高密度部分は成形
吸音材に剛性、強度を与え且つボンネツト裏面に
装着する際の基部として働き、任意形状の張り出
し部はボンネツトとの間に中空層を形成し、いわ
ゆる背後空気層を有する吸音部として働くもので
ある。これらの成形吸音材は、ボンネツト裏面等
のエンジンルーム内に装着されるため、剛性、耐
熱性、難燃性等を必要とする。従つて、熱硬化性
合成樹脂の混合量を増加したり、部分的にアルミ
箔を貼着したり、難燃材を塗布する方策がとられ
ているが今だ十分でなく、これらの経費増や工数
削減に対する改善が強く望まれていた。 一方、防音材に金属短繊維を含有せしめること
は、特には遮音材や制振材において知られてい
る。例えば、特開昭54―3858の提案によれば、熱
硬化性樹脂たとえば不飽和ポリエステル樹脂中
に、無機質の繊維状非金属物質及び無機質の非繊
維状物質並びに有機質繊維たとえばガラス繊維及
びマイカ並びに芳香族ポリアミド系合成繊維から
選ばれる少くとも1種の物質と、金属繊維とが混
在されてなる制振材料が提案されている。該提案
においては、金属繊維等の原料より予め製造した
不織布と未硬化の熱硬化性シートを一体成形硬化
させる貼り合せ方法、上記不織布に流動体を含浸
させて成形硬化させる含浸法、金属繊維等の原料
と熱硬化性樹脂とを混練してシート状物に成形す
る混練法等により製造したシート状のものとして
推奨されている。 しかしながら、この提案では、上述のように制
振材料として金属繊維等の原料を含有するシート
状の熱硬化性樹脂組成物が推奨されているのみで
あつて、嵩高性不織布を任意の凹凸形状に加熱加
圧成形して成る成形防音材及び該成形防音材にお
ける金属短繊維の利用ならびに混入割合等につい
ては、全く言及していない。 本発明者らは、成形防音材における前記要望に
こたえ得る成形防音材を提供すべく研究を続けて
きた結果、開繊状の不連続繊維材料と合成樹脂粉
末から成る嵩高性不織布の製造時に特定割合の金
属短繊維を混入せしめ、得られた嵩高性不織布を
加熱加圧成形することにより上記諸改善の達成を
可能とする成形防音材が得られることを見い出し
たものであり、本発明の目的とするところは、前
記諸改善の達成を可能とする成形防音材の製造方
法を提供することにある。 しかして本発明の要旨とするところは、 落綿、反毛等の動植物性繊維及び/又は合成樹
脂性繊維の1種もしくは2種以上の開繊繊維約97
〜70重量%に金属の短繊維約3〜30重量%を混合
した不連続繊維材料成分に熱硬化性合成樹脂及び
熱可塑性合成樹脂の1種もしくは2種以上からな
る粉末状の結合剤成分を混合した後フリース状と
なし、要すれば該フリースを加熱し樹脂成分の融
着により取り扱い得る状態となした嵩高性不織布
となし、次いで該嵩高性不織布を加熱状態におい
て任意の凹凸形状に圧縮成形して成る成形防音材
の製造方法。 に存する。 本発明において開繊状の不連続繊維材料として
用い得る動植物性繊維及び/又は合成樹脂性繊維
として反毛、落綿、ぼろきれ、ラシヤボロ、裁
落、ポリエステル繊維、アクリル繊維、ポリアシ
ド繊維等を開繊したものであつて良く、これらの
1種もしくは2種以上の混合物を用い得る。 本発明においては、これらの動植物性及び/又
は合成樹脂性の繊維材料約97〜70重量%に対し、
金属短繊維を約3〜30重量%混合することを必須
とするものであるが、より好ましくは7〜15重量
%である。 混合量が3%以下では剛性、難燃性及び放熱性
の向上が望めず、30%以上では成形性が劣る不具
合や、面重量の著しい増加を来たし好ましくな
い。 本発明において用い得る金属短繊維とは、たと
えば次のような構成のものである。繊維の横断面
を円形とした場合、その平均直径は約400μ以
下、好ましくは200μ以下で、繊維の長さは約10
mm以下である。繊維横断面が円形でない場合、そ
の直径とは、その断面積と等しい断面積の円形の
直径と考えれば良い。 金属繊維の材料としては、鉛、亜鉛、すず、
鉄、ニツケル、銅、マグネシウム、銀、アンチモ
ン、ビスマス、アルミニウム、クロムなどであつ
て良く、これらは単独であつても、互いに合金で
あつても良い。 金属繊維を製造する方法は、従来公知の方法で
あつて良く、伸線法、シートを切断する方法、金
属塊から削り出す方法、ガラス管中に封入した金
属棒を溶融して引き伸ばす方法、溶融紡糸法、溶
融引き抜き法、化学的に金属結晶繊維を生長させ
る方法などを採用することが出来る。これらの方
法で得られた繊維が長繊維の場合、引つ張り法、
ギロチン法、回転カツター法などで所望の長さに
切断すれば良い。 本発明において粉末状の結合剤成分として用い
得る熱硬化性合成樹脂としては、フエノール樹
脂、熱硬化型アクリル樹脂、メラミン樹脂等であ
つて良い。又、必要に応じて混合して用い得る熱
可塑性合成樹脂としては、塩化ビニル樹脂、酢ビ
―アクリル共重合樹脂、ポリエチレン樹脂等を用
い得る。これらの粉末状の樹脂成分は製品重量に
基いて40〜5重量%混入せしめるのが好ましい。
より好ましくは25〜10重量%である。 又、必要に応じて熱硬化性合成樹脂に混入して
用いる熱可塑性合成樹脂の混入割合は、熱硬化性
合成樹脂量の50%以下にとどめるのが好ましい。 以下に本発明の製造方法を更に詳細に説明す
る。 落綿や反毛等の動植物性繊維及び/又は合成樹
脂性繊維材料をベールフイーダーに投入し、繊維
材料の第一次開繊を行い、ラツパーで相当厚みの
ウエブを形成し、形成したウエブ上にレジン散布
機により熱硬化性樹脂粉末又は該混合粉末を散布
し、そして更に金属の短繊維を散布したのちホー
ミングマシン中のビーターで再度開繊と混合樹脂
粉末及び金属繊維の混合を行い、再びラツパーで
所望厚みのフリースとし加熱炉のネツトコンベア
ー上に順次流して行く。得られたフリースは取り
扱いを容易にするため加熱炉により加熱し、混入
樹脂粉末の一部を硬化せしめたセミキユアー状態
で取り出し加熱加圧成形しても良く、あるいは混
入した樹脂粉末を十分に硬化せしめて弾力性、緩
衝性にすぐれたフエルト状物として取り出しても
良い。 次いで、セミキユア状態で取り出した該嵩高性
不織布に、加熱状態の金型を用い凹凸形状の圧縮
成形を加えて成形防音材を得るものである。 本発明においては動植物性繊維及び/又は合成
樹脂繊維と特定割合の金属の短繊維を併用するこ
とによりその相乗効果において防音性、成形性、
剛性、耐熱性、難燃性等に秀れた成形防音材を安
価に効率良く得ることが出来るものであり、得ら
れた成形防音材はその圧縮の程度により通気性の
ある吸音材、例えば前記したフードインシユレー
ターにも、実質的に通気性のない遮音材、例えば
エンジンカバー等にも成し得るものである。 本発明において得られる成形防音材に比重の重
いゴムや塩ビ等をバインダーとするシート状物や
水密性附与のためプラスチツクフイルム等を貼着
したり、一体成形したりすることは防げない。 以下に比較例を交えて実施例を挙げ本発明のよ
り詳細な理解に供する。当然のことながら本発明
は以下の実施例のみに限定されるものではない。 比較例 反毛30重量部、落綿50重量部を開繊混合し融点
150℃で反応温度180℃のフエノール樹脂粉末20重
量部を散布混合し、フリース形成機でフリースと
なした後160℃の加熱炉を通して厚さ25m/m、
面密度930g/m2の従来タイプの嵩高性不織布を
得た。 実施例 反毛25重量部、落綿45重量部を開繊混合し次い
で直径が80μで長さが5m/mのアルミニウム繊
維10重量部と融点150℃で反応温度180℃のフエノ
ール樹脂粉末20重量部を散布混合し、フリース形
成機でフリースとなした後160℃の加熱炉を通し
て厚さ25m/m、面密度940g/m2の本発明にな
る嵩高性不織布を得た。 次いで、ボンネツトの型より、交叉する補強部
材により四区分されるほぼ平面な部分に対応せし
めて成形体の厚さを除いた高さを20m/mとした
概ね角錐台状の四箇所の張り出し部を設け、又該
補強部材部及び成形体の周囲に対応せしめて平坦
部を厚さ約2m/mに設ける如く、230℃の加熱
条件下に4Kg/cm2の加圧力にて成形した。この成
形体をボンネツト裏面の四辺及び補強部材の交叉
部にビス止めして装着した。このものの吸音率を
残響室法により測定したところ、表―1に示した
如く秀れていた。 又、別に比較例及び実施例で得られた従来タイ
プの、あるいは本発明になる嵩高性不織布を用
い、230℃の加熱条件下に4Kg/cm2の加圧力にて
約3分間の圧縮成形を加え、厚み約7m/mの板
状成形体を得た。このものを用いて耐熱劣化性、
剛性及び難燃性を調べたところ、表―1の如く著
しく秀れたものであることが判明した。 尚、これらの性能試験は次の試験方法によつ
た。剛性(圧縮曲げ強度) 試料の板状物を50×150m/mのサイズに裁断
し試験片とした。試験片をスパン100m/mの支
点上に置き、P型ストログラフを用い50mm/min
の圧縮スピードにて径6m/mの棒にて中央部を
押圧し圧縮曲げ強度を測定した。 耐熱劣化性 あらかじめ前記した剛性(圧縮曲げ強度)を測
定した試験片を120±5℃に調整されたヒーター
中に200時間保持した後取り出し、放冷後再び剛
性(圧縮曲げ強度)を測定した。 難燃性 米国自動車安全基準(MVSS)No.302に準じて
測定した。
The present invention relates to a molded soundproofing material obtained by molding a bulky nonwoven fabric obtained by mixing a powdered resin component into a mixture of opened fiber components and short metal fibers into an uneven shape, and more particularly relates to a molded soundproofing material that has soundproofing properties and heat resistance. The present invention relates to a method for manufacturing a molded soundproofing material with excellent properties, heat dissipation, rigidity (strength), and flame retardancy. Conventionally, a mixed powder of thermosetting synthetic resin powder and thermoplastic synthetic resin powder in an appropriate ratio is added to a discontinuous fiber material component that is made by opening animal and vegetable fibers such as fallen cotton and waste wool and/or synthetic resin fiber materials. After mixing and forming a fleece using a fleece forming machine, a suitable amount of heat is applied to heat-fuse the resin powder to produce a bulky nonwoven fabric that can be handled, and the molded article is molded under heat and pressure into a desired shape. However, it is used in buildings, automobiles, etc. For example, a molded article of bulky nonwoven fabric made mainly of a discontinuous fiber material made of recycled wool or fallen cotton and a thermosetting resin is attached to the back of the hood of an automobile as a sound absorbing material. These molded sound absorbing materials were previously proposed by the present inventor, and have a thickness of approximately 2 to 5 m/m.
It consists of a flat high-density part of 300 m/m and an arbitrarily shaped overhang part with a thickness of about 3 to 10 m/m and an air flow resistance value in a specific range. The protruding portion, which has an arbitrary shape, forms a hollow layer between the bonnet and the bonnet, and functions as a sound absorbing portion having a so-called rear air layer. These molded sound absorbing materials are installed inside the engine compartment, such as on the back of the bonnet, and therefore require rigidity, heat resistance, flame retardancy, and the like. Therefore, measures have been taken to increase the amount of thermosetting synthetic resin mixed, partially attach aluminum foil, and apply flame retardant materials, but these are still not sufficient and the cost increase of these measures is still insufficient. There was a strong desire for improvements to reduce the number of processes and man-hours required. On the other hand, it is known that a sound insulating material contains short metal fibers, especially in sound insulating materials and vibration damping materials. For example, according to a proposal in JP-A-54-3858, inorganic fibrous non-metallic substances, inorganic non-fibrous substances, organic fibers such as glass fibers and mica, and aromatic fibers are added to thermosetting resins such as unsaturated polyester resins. A vibration damping material has been proposed in which at least one substance selected from group polyamide synthetic fibers and metal fibers are mixed. The proposal includes a bonding method in which a nonwoven fabric pre-produced from raw materials such as metal fibers and an uncured thermosetting sheet are integrally molded and cured, an impregnation method in which the nonwoven fabric is impregnated with a fluid and then molded and cured, and metal fibers, etc. It is recommended as a sheet-like product manufactured by a kneading method, etc., in which raw materials and thermosetting resin are kneaded and molded into a sheet-like product. However, as mentioned above, this proposal only recommends a sheet-like thermosetting resin composition containing raw materials such as metal fibers as a damping material, and the bulky nonwoven fabric can be formed into any irregular shape. There is no mention at all of the molded soundproofing material formed by heating and pressure molding, the use of short metal fibers in the molded soundproofing material, the mixing ratio, etc. The present inventors have continued their research to provide a molded soundproofing material that can meet the above-mentioned demands for molded soundproofing materials. It has been discovered that a molded soundproofing material capable of achieving the above-mentioned improvements can be obtained by mixing a proportion of short metal fibers and molding the resulting bulky nonwoven fabric under heat and pressure. The object of the present invention is to provide a method for manufacturing a molded soundproofing material that makes it possible to achieve the above-mentioned improvements. Therefore, the gist of the present invention is to provide approximately 97% of spread fibers of one or more types of animal and plant fibers such as fallen cotton and waste wool and/or synthetic resin fibers.
A powdery binder component consisting of one or more types of thermosetting synthetic resin and thermoplastic synthetic resin is added to the discontinuous fiber material component, which is a mixture of ~70% by weight and approximately 3% to 30% by weight of short metal fibers. After mixing, the fleece is formed into a fleece shape, and if necessary, the fleece is heated to form a bulky nonwoven fabric that can be handled by fusing the resin components, and then the bulky nonwoven fabric is compression molded under heating into an arbitrary uneven shape. A method for manufacturing a molded soundproofing material. exists in In the present invention, the animal and plant fibers and/or synthetic resin fibers that can be used as spread discontinuous fiber materials include recycled fibers, fallen cotton, rags, lacy rags, shredded fibers, polyester fibers, acrylic fibers, polyacid fibers, etc. It may be a fiber, and one or a mixture of two or more of these may be used. In the present invention, based on about 97 to 70% by weight of these animal/vegetable and/or synthetic resin fiber materials,
It is essential to mix about 3 to 30% by weight of short metal fibers, more preferably 7 to 15% by weight. If the mixing amount is less than 3%, no improvement in rigidity, flame retardance and heat dissipation can be expected, and if it is more than 30%, problems such as poor moldability and a significant increase in surface weight will occur, which is not preferable. The short metal fibers that can be used in the present invention have, for example, the following configuration. When the cross section of the fibers is circular, the average diameter is about 400μ or less, preferably 200μ or less, and the fiber length is about 10
mm or less. When the cross section of the fiber is not circular, its diameter may be considered to be the diameter of a circle having a cross-sectional area equal to the cross-sectional area of the fiber. Materials for metal fibers include lead, zinc, tin,
It may be iron, nickel, copper, magnesium, silver, antimony, bismuth, aluminum, chromium, etc., and these may be used alone or in an alloy with each other. The method for producing metal fibers may be any conventionally known method, such as wire drawing, cutting a sheet, cutting from a metal block, melting and stretching a metal rod sealed in a glass tube, or melting. A spinning method, a melt drawing method, a method of chemically growing metal crystal fibers, etc. can be employed. If the fibers obtained by these methods are long fibers, the tensile method,
It may be cut to a desired length using a guillotine method, a rotary cutter method, or the like. The thermosetting synthetic resin that can be used as the powdered binder component in the present invention may be a phenolic resin, a thermosetting acrylic resin, a melamine resin, or the like. Further, as the thermoplastic synthetic resin that can be mixed and used as necessary, vinyl chloride resin, vinyl acetate-acrylic copolymer resin, polyethylene resin, etc. can be used. These powdered resin components are preferably mixed in an amount of 40 to 5% by weight based on the weight of the product.
More preferably, it is 25 to 10% by weight. Further, it is preferable that the mixing ratio of the thermoplastic synthetic resin mixed into the thermosetting synthetic resin to be used as necessary is kept to 50% or less of the amount of the thermosetting synthetic resin. The manufacturing method of the present invention will be explained in more detail below. Animal and plant fibers such as fallen cotton and waste wool and/or synthetic resin fiber materials are fed into a bale feeder, the fiber materials are first opened, and a web of considerable thickness is formed using a wrapper. Thermosetting resin powder or the mixed powder is sprinkled on top using a resin scattering machine, and then short metal fibers are further spread, and then the beater in the homing machine is used to open the fibers again and mix the mixed resin powder and metal fibers. The fleece is again made into a desired thickness using a wrapper and is sequentially poured onto the net conveyor of the heating furnace. For ease of handling, the obtained fleece may be heated in a heating furnace and taken out in a semi-cured state in which a part of the mixed resin powder is cured, or it may be molded under heat and pressure, or the mixed resin powder may be sufficiently cured. It may also be taken out as a felt-like material with excellent elasticity and cushioning properties. Next, the bulky nonwoven fabric taken out in a semi-cured state is compressed into an uneven shape using a heated mold to obtain a molded soundproofing material. In the present invention, by using animal and vegetable fibers and/or synthetic resin fibers in combination with a specific proportion of short metal fibers, the synergistic effect is to improve sound insulation, moldability,
A molded soundproofing material with excellent rigidity, heat resistance, flame retardance, etc. can be obtained efficiently at a low cost, and depending on the degree of compression, the molded soundproofing material obtained can be used as a sound absorbing material with air permeability, such as the above-mentioned soundproofing material. It can also be used as a hood insulator, or as a substantially non-breathable sound insulation material, such as an engine cover. It is impossible to prevent the molded soundproofing material obtained in the present invention from being attached with a sheet-like material having a binder made of heavy specific gravity rubber, vinyl chloride, etc., a plastic film, etc. for imparting watertightness, or being integrally molded. Examples are given below along with comparative examples to provide a more detailed understanding of the present invention. Naturally, the present invention is not limited to the following examples. Comparative example: 30 parts by weight of recycled wool and 50 parts by weight of fallen cotton were opened and mixed and the melting point
20 parts by weight of phenolic resin powder with a reaction temperature of 180°C was sprinkled and mixed at 150°C, formed into a fleece using a fleece forming machine, and passed through a heating furnace at 160°C to a thickness of 25 m/m.
A conventional type bulky nonwoven fabric with an areal density of 930 g/m 2 was obtained. Example: 25 parts by weight of recycled wool and 45 parts by weight of fallen cotton were opened and mixed, and then 10 parts by weight of aluminum fibers with a diameter of 80μ and a length of 5 m/m and 20 weights of phenolic resin powder with a melting point of 150°C and a reaction temperature of 180°C were mixed. A nonwoven fabric of the present invention having a thickness of 25 m/m and an areal density of 940 g/m 2 was obtained. Next, from the bonnet mold, four roughly pyramid-shaped overhangs with a height of 20 m/m excluding the thickness of the molded body were formed, corresponding to the almost flat parts divided into four sections by the intersecting reinforcing members. It was molded under heating conditions of 230° C. under a pressure of 4 kg/cm 2 so as to provide a flat part with a thickness of about 2 m/m around the reinforcing member part and the periphery of the molded body. This molded body was attached to the four sides of the back of the bonnet and to the intersection of the reinforcing member with screws. When the sound absorption coefficient of this product was measured using the reverberation chamber method, it was excellent as shown in Table 1. In addition, using the conventional type obtained in the comparative examples and examples or the bulky nonwoven fabric of the present invention, compression molding was carried out for about 3 minutes at a pressure of 4 kg/cm 2 under heating conditions of 230°C. In addition, a plate-shaped molded product with a thickness of about 7 m/m was obtained. Using this material, heat deterioration resistance,
When the rigidity and flame retardance were examined, it was found to be extremely excellent as shown in Table 1. These performance tests were conducted using the following test method. Rigidity (compressive bending strength) A sample plate was cut into a size of 50 x 150 m/m to prepare a test piece. Place the test piece on a fulcrum with a span of 100m/m, and use a P-type strograph to move the specimen at 50mm/min.
The compression bending strength was measured by pressing the center part with a rod having a diameter of 6 m/m at a compression speed of . Heat Deterioration Resistance The test piece whose rigidity (compressive bending strength) was previously measured was kept in a heater adjusted to 120±5°C for 200 hours and then taken out, and after cooling, the stiffness (compressive bending strength) was measured again. Flame retardancy Measured in accordance with US Motor Vehicle Safety Standards (MVSS) No. 302.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 落綿、反毛等の動植物性繊維及び/又は合成
樹脂性繊維の1種もしくは2種以上の開繊繊維約
97〜70重量%に金属の短繊維約3〜30重量%を混
合した不連続繊維材料成分に熱硬化性合成樹脂及
び熱可塑性合成樹脂の1種もしくは2種以上から
なる粉末状の結合剤成分を混合した後フリース状
となし、要すれば該フリースを加熱し樹脂成分の
融着により取り扱い得る状態となした嵩高性不織
布となし、次いで該嵩高性不織布を加熱状態にお
いて任意の凹凸形状に圧縮成形して成ることを特
徴とする成形防音材の製造方法。
1. One or more types of spread fibers such as fallen cotton, waste wool, etc., animal and plant fibers and/or synthetic resin fibers.
A powdery binder component consisting of one or more types of thermosetting synthetic resin and thermoplastic synthetic resin in a discontinuous fiber material component in which 97 to 70% by weight is mixed with about 3 to 30% by weight of short metal fibers. After mixing, it is made into a fleece shape, and if necessary, the fleece is heated to make a bulky nonwoven fabric that can be handled by fusing the resin components, and then the bulky nonwoven fabric is compressed into an arbitrary uneven shape under heating. A method for producing a molded soundproofing material, characterized in that it is formed by molding.
JP55152128A 1980-10-31 1980-10-31 Manufacture of formed sound-proofing material Granted JPS5777085A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55152128A JPS5777085A (en) 1980-10-31 1980-10-31 Manufacture of formed sound-proofing material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55152128A JPS5777085A (en) 1980-10-31 1980-10-31 Manufacture of formed sound-proofing material

Publications (2)

Publication Number Publication Date
JPS5777085A JPS5777085A (en) 1982-05-14
JPS6220154B2 true JPS6220154B2 (en) 1987-05-06

Family

ID=15533665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55152128A Granted JPS5777085A (en) 1980-10-31 1980-10-31 Manufacture of formed sound-proofing material

Country Status (1)

Country Link
JP (1) JPS5777085A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01114953U (en) * 1988-01-28 1989-08-02

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61167071A (en) * 1985-01-18 1986-07-28 ミドリシー・エム・ビー株式会社 Production of nonwoven molded product containing synthetic fiber
JPH03137256A (en) * 1989-10-19 1991-06-11 Arumu:Kk Metallic porous material and its production
JP5120409B2 (en) 2010-04-13 2013-01-16 トヨタ自動車株式会社 Center pillar for vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01114953U (en) * 1988-01-28 1989-08-02

Also Published As

Publication number Publication date
JPS5777085A (en) 1982-05-14

Similar Documents

Publication Publication Date Title
US5256476A (en) Fan blade comprising adsorbent particles, fine plastic particles and reinforcing fibers
US7311957B2 (en) Sound absorbing material and process for making
EP0483716B1 (en) Method of producing fiber-reinforced thermoplastic resin molding material
EP0432438B1 (en) Molded adsorbent
JPH0347740A (en) Fiber reinforced plastic sheet and manufacture thereof
US20060182947A1 (en) Fiber reinforced thermoplastic composite including mineral fillers
JPS621969B2 (en)
CA2231428A1 (en) Composite aerogel material that contains fibres
EP1675892A1 (en) Development of thermoplastic composites using wet use chopped strand (wucs)
CN109803858A (en) The soundproof plate of wall for cover motor vehicles
US5047288A (en) Nonwoven fabric comprising single filaments and filament bundles that yield improved impact resistant molded articles
US6099775A (en) Fiberglass insulation product and process for making
JPS6220154B2 (en)
JPS58118244A (en) Manufacture of flame-retarded molded sound insulating material
CN102510801A (en) Moulded product for automotive panels
JPS6345982B2 (en)
JPH0617363A (en) Method for manufacturing molded item by compression-molding of textile material by simultaneous adhesion and its molded item
JPH0137503B2 (en)
JPS6233258B2 (en)
EP2052828B1 (en) Porous heavy acoustic protection films, acoustic protection system and method for producing a porous heavy acoustic protection film
JP2934480B2 (en) Damping and soundproofing material
JP3198202B2 (en) High performance felt sound absorbing material
JPH0246056B2 (en)
EP0492516A2 (en) Mats suitable for the preparation of reinforced polyolefin sheets and process for their preparation
JPH08226059A (en) Molding of fiber-reinforced resin and its production