JPS6219942B2 - - Google Patents

Info

Publication number
JPS6219942B2
JPS6219942B2 JP54035267A JP3526779A JPS6219942B2 JP S6219942 B2 JPS6219942 B2 JP S6219942B2 JP 54035267 A JP54035267 A JP 54035267A JP 3526779 A JP3526779 A JP 3526779A JP S6219942 B2 JPS6219942 B2 JP S6219942B2
Authority
JP
Japan
Prior art keywords
nickel
plated
solder
hydrogen
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54035267A
Other languages
Japanese (ja)
Other versions
JPS55128571A (en
Inventor
Masami Ishii
Tsuneo Nakanishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP3526779A priority Critical patent/JPS55128571A/en
Publication of JPS55128571A publication Critical patent/JPS55128571A/en
Publication of JPS6219942B2 publication Critical patent/JPS6219942B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Chemically Coating (AREA)

Description

【発明の詳細な説明】 本発明ははんだ付の予備面として例えば半導体
装置の部品に施された無電解ニツケルめつき面の
はんだのぬれ性を改善するための処理方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a treatment method for improving the solder wettability of an electroless nickel plated surface applied to, for example, a component of a semiconductor device as a preliminary surface for soldering.

無電解ニツケルめつきは被着物に電気的接続を
必要としないため、半導体工業における量産にお
いて、たとえば鉄−ニツケル合金などからなるパ
ワートランジスタのステム上へシリコンの半導体
片をろう付けする際にはんだ付の予備面をつくる
目的で多用されている。鉛(Pb)とスズ(Sn)
を主成分とする軟ろうのはんだ付は酸化防止のた
め水素中あるいは水素と窒素との混合ふん囲気中
で行われるが、ニツケルめつきのロツトによつて
ははんだ付性が均一でなく、生産管理上困難を来
すので、均一で良好なはんだ付性をもつニツケル
めつき面を得ることが要望される。
Since electroless nickel plating does not require electrical connection to the deposited material, it is used in mass production in the semiconductor industry, such as when brazing a silicon semiconductor piece onto the stem of a power transistor made of an iron-nickel alloy. It is often used for the purpose of creating a preliminary surface. Lead (Pb) and tin (Sn)
Soldering with soft solder, which is mainly composed of nickel, is carried out in hydrogen or a mixed atmosphere of hydrogen and nitrogen to prevent oxidation, but solderability is not uniform depending on the nickel plating lot, and production control is difficult. Therefore, it is desired to obtain a nickel-plated surface with uniform and good solderability.

本発明はこの要望を満たすことを目的とするも
ので、この目的は被めつき体表面の無電解ニツケ
ルめつき層に空気中で300〜600℃の熱処理を施し
てニツケル中のリン含有量が7%以下の酸化膜を
形成した後、この酸化膜を水素または水素を含む
窒素雰囲気中で還元処理することにより達せられ
る。
The purpose of the present invention is to satisfy this need by heat-treating the electroless nickel plating layer on the surface of the plated body at 300 to 600°C in air to reduce the phosphorus content in the nickel. This can be achieved by forming an oxide film of 7% or less and then reducing the oxide film in hydrogen or a nitrogen atmosphere containing hydrogen.

本発明は第1図に示す実験結果に基づく。これ
は被めつき体となるCu板上にPの含有量の異な
る各種のNiめつきを施した試料を作成し、2%
Sn含有のPb−Snはんだの1.5mm径球をのせ、H2
N2ふん囲気中で410℃の温度まで加熱してはんだ
の広がり面積を測定したものである。この図から
明らかなように、電気めつきによるP含有量0%
の試料は55mm2程度の広がりを有し、5%のPを含
む試料でもほゞ同じ広がり面積を示すが、7%以
上のPを含むNiめつきはP含有量に反比例して
ぬれ性が減少し、11%以上のPを含むめつきでは
広がりは全く見られない。このことから、はんだ
付のためのNiめつき層としては電気めつきある
いはPの含有量の少ないアルカリ性浴又は中性浴
中での無電解めつきによるのが望ましいことが判
るが、これらのめつき法はPの含有量が9%以上
になる酸性浴中での無電解Niめつきにくらべて
費用の面ならびに量産性の点で劣り、また半導体
素子でしばしば行われるAl線のボンデイング性
が良くない欠点がある。そこで酸性浴による無電
解NiめつきのようにPの含有量の高いNiめつき
層からPを除去して7%以下のP含有量にするた
めの脱リン処理を施こすことが考慮される。
The present invention is based on the experimental results shown in FIG. This was done by creating samples with various Ni platings with different P contents on a Cu plate to be plated.
Place a 1.5 mm diameter ball of Pb-Sn solder containing Sn, and
The spread area of the solder was measured by heating it to a temperature of 410°C in an N2 atmosphere. As is clear from this figure, the P content by electroplating is 0%.
The sample has a spread of about 55 mm2 , and the sample containing 5% P shows almost the same spread area, but Ni plating containing 7% or more P has wettability that is inversely proportional to the P content. In plating containing 11% or more of P, no spread is observed. From this, it can be seen that it is desirable to use electroplating or electroless plating in an alkaline or neutral bath with a low P content for the Ni plating layer for soldering. The plating method is inferior to electroless Ni plating in an acidic bath with a P content of 9% or more in terms of cost and mass production, and also has poor bonding properties for Al wire, which is often used in semiconductor devices. There are some bad drawbacks. Therefore, it is considered to perform a dephosphorization treatment such as electroless Ni plating using an acid bath to remove P from a Ni plating layer with a high P content to reduce the P content to 7% or less.

このような脱リン処理としては、めつき層を空
気中で300〜600℃において熱処理することが有効
である。例えば第2図aで示す銅板1に酸性浴中
の無電解めつきによつてNi層2を被着し、その
上にはんだ球3をのせてH2又はH2+N2気中では
んだ付温度まで加熱すると、第2図bに示すよう
にはんだ3はとけるが、Niめつき層2の表面に
広がらない。これに対してこのNiめつきした銅
板を300〜600℃の温度範囲で10〜60分間加熱する
と、Niは酸化して薄い酸化膜を形成するが、そ
のまゝはんだ球をのせて同様に加熱すると第2図
cに示すようにはんだ3はNiめつき層2の表面
に広がり、この後のはんだ付が容易になる。
As such a dephosphorization treatment, it is effective to heat-treat the plated layer in air at 300 to 600°C. For example , a Ni layer 2 is deposited on the copper plate 1 shown in FIG. When heated to this temperature, the solder 3 melts as shown in FIG. 2b, but does not spread over the surface of the Ni plating layer 2. On the other hand, when this Ni-plated copper plate is heated at a temperature range of 300 to 600 degrees Celsius for 10 to 60 minutes, the Ni oxidizes and forms a thin oxide film, but a solder ball is placed on it and heated in the same way. Then, as shown in FIG. 2c, the solder 3 spreads over the surface of the Ni plating layer 2, making subsequent soldering easier.

なお上記のはんだ付け工程において、Pb−Sn
系はんだのはんだ付け温度はニツケルの酸化膜の
還元温度(380℃)にほぼ等しいため、酸化膜上
にはんだをのせてはんだ付け温度まで加熱する
と、はんだの溶着と同時に酸化膜の還元が起こ
り、酸化膜は水素で還元されてもとの金属光沢に
もどる。このような効果の生ずる理由は、空気中
で加熱することによりNi層表面のPが空気中の
酸素と反応して消耗して表面近傍のPの含有量が
7%以下となつて、第1図に示すようにNi面に
はんだがよくぬれるようになるためである。すな
わち、被めつき体表面に形成されたりん(P)を
含むニツケル(Ni)めつきを300〜600℃の温度
で空気中で加熱すると、めつき表面で次式に基づ
く酸化反応が起きる。
In addition, in the above soldering process, Pb-Sn
The soldering temperature of the solder system is almost equal to the reduction temperature of the nickel oxide film (380°C), so when solder is placed on the oxide film and heated to the soldering temperature, the oxide film is reduced at the same time as the solder is welded. The oxide film is reduced with hydrogen and returns to its original metallic luster. The reason for this effect is that when heated in air, P on the surface of the Ni layer reacts with oxygen in the air and is consumed, reducing the P content near the surface to 7% or less. This is because the solder will be able to wet the Ni surface well, as shown in the figure. That is, when a nickel (Ni) plating containing phosphorus (P) formed on the surface of a plated body is heated in air at a temperature of 300 to 600°C, an oxidation reaction occurs on the plating surface based on the following equation.

2Ni+O2=2NiO 2P+3O2=PO3 ここで、反応により生じたPO3はガスとなつて
めつき表面から飛散するため、めつき表面でのP
濃度は低下するが、NiOはニツケルめつきの表面
に極く薄い膜となつて残る。この状態で水素雰囲
気中で再び加熱すると、次式に基づく還元反応が
速やかに進行し、 NiO+H2=Ni+H2O 純度の高いニツケルめつき面が形成され、はんだ
の濡れ性が著しく向上する。
2Ni + O 2 = 2NiO 2P + 3O 2 = PO 3 Here, PO 3 generated by the reaction becomes a gas and scatters from the plated surface, so P on the plated surface
Although the concentration decreases, NiO remains as an extremely thin film on the nickel-plated surface. When heated again in a hydrogen atmosphere in this state, a reduction reaction based on the following equation proceeds rapidly, forming a highly pure nickel - plated surface and significantly improving solder wettability.

このことは第3図に示す分析結果から確認され
た。この結果はNiめつき試料を500℃で30分間熱
処理した時のNi層表面から内部に至るPの濃度
変化をイオンマイクロアナライザで測定して得た
ものであり、大気中で熱処理したもので他の非酸
化性ふん囲気で熱処理したものに比して表面近傍
の脱リン効果が著しいことが判る。第4図は熱処
理温度とぬれ性の関係を示すもので、200℃以下
の加熱ではほとんどはんだが広がらず、300℃以
上になつてはんだ付が可能な程度に広がる。これ
は300℃未満ではPがNiめつき層の内部から表面
に拡散し難く、めつき表面のPが十分に減少しな
いことによる。一方500℃をこえるとNi面の酸化
が激しくなつて、はんだ付時に酸化膜が還元でき
ず表面に残留する。
This was confirmed from the analysis results shown in FIG. This result was obtained by using an ion microanalyzer to measure the change in P concentration from the surface of the Ni layer to the inside when a Ni-plated sample was heat-treated at 500℃ for 30 minutes. It can be seen that the dephosphorization effect in the vicinity of the surface is remarkable compared to those heat-treated in a non-oxidizing atmosphere. Figure 4 shows the relationship between heat treatment temperature and wettability; when heated below 200°C, the solder hardly spreads, and when heated above 300°C, it spreads to the extent that soldering is possible. This is because at temperatures below 300°C, P is difficult to diffuse from the inside of the Ni plating layer to the surface, and P on the plating surface is not sufficiently reduced. On the other hand, when the temperature exceeds 500°C, oxidation of the Ni surface becomes intense, and the oxide film cannot be reduced during soldering and remains on the surface.

しかしはんだ付は可能である。600℃をこえれ
ば濡れ性の減退は著しく、酸化はますます激しく
なつてもはや実用的でない、一度酸化したものを
水素中で再加熱しめつき面を還元することもでき
るが、この際Niめつき面にPが再拡散してくる
おそれがあるので好ましくない。
However, soldering is possible. If the temperature exceeds 600℃, the wettability decreases significantly and the oxidation becomes more severe, making it no longer practical.It is also possible to reheat the oxidized surface in hydrogen to reduce the bonded surface, but in this case, This is not preferable because there is a risk that P will be re-diffused on the surface.

上述のように本発明によれば量産性に富むP含
有量の高い無電解Niめつき層の表面に対し簡単
な脱りん処理を施こすことによつてはんだ付性が
改善され、めつき法を変更しないではんだ付部の
信頼性が向上し、気泡の少ないはんだ付、はんだ
厚さの制御も容易になり、例えばパワートランジ
スタのステム上への半導体片のろう付の際に適用
することによつて熱抵抗の低下や熱サイクル特性
の向上をもたらすもので、半導体装置に限らず
銅、鉄およびそれらの合金からなる種々の電子部
品の製造に広く応用できる。
As described above, according to the present invention, the solderability is improved by performing a simple dephosphorization treatment on the surface of the electroless Ni plating layer with high P content, which is easy to mass produce. The reliability of the soldered part is improved without changing the soldering area, and it becomes easier to solder with fewer bubbles and control the solder thickness, making it suitable for example when brazing a semiconductor piece onto the stem of a power transistor. Therefore, it lowers thermal resistance and improves thermal cycle characteristics, and can be widely applied not only to semiconductor devices but also to the manufacture of various electronic components made of copper, iron, and alloys thereof.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はNiめつき層中のP含有量とはんだの
ぬれ性との関係を示す線図、第2図は本発明の実
施例の脱リン処理の効果を示すNiめつき面上の
はんだの広がり状態の断面図、第3図は各種ふん
囲気中の熱処理による脱リン効果の差異を示す線
図、第4図は本発明の実施例の熱処理の加熱温度
とぬれ性の関係を示す線図である。 1……銅板、2……Niめつき層、3……はん
だ。
Figure 1 is a diagram showing the relationship between the P content in the Ni-plated layer and solder wettability, and Figure 2 is a diagram showing the effect of the dephosphorization treatment of the example of the present invention on the solder on the Ni-plated surface. 3 is a line diagram showing the difference in dephosphorization effect due to heat treatment in various ambient air, and Figure 4 is a line diagram showing the relationship between heating temperature and wettability of heat treatment in the example of the present invention. It is a diagram. 1...Copper plate, 2...Ni plating layer, 3...Solder.

Claims (1)

【特許請求の範囲】 1 酸性浴中での無電解めつきにより被めつき体
表面に形成されたニツケルめつき層に空気中で
300〜600℃の熱処理を施して表面近傍のニツケル
中のリン含有量が7%以下の酸化膜を形成した
後、この酸化膜を水素または水素を含む窒素雰囲
気中で還元処理することを特徴とするはんだ付さ
れる無電解ニツケルめつき面の処理方法。 2 特許請求の範囲第1項記載の処理方法におい
て、還元処理を水素または水素を含む窒素雰囲気
中におけるニツケルめつき面へのはんだ付けと同
時に行うことを特徴とするはんだ付される無電解
ニツケルめつき面の処理方法。
[Claims] 1. A nickel plating layer formed on the surface of a body to be plated by electroless plating in an acidic bath in air.
The method is characterized in that after heat treatment is performed at 300 to 600°C to form an oxide film in which the phosphorus content in the nickel near the surface is 7% or less, this oxide film is subjected to reduction treatment in hydrogen or a nitrogen atmosphere containing hydrogen. A method for treating electroless nickel plated surfaces to be soldered. 2. An electroless nickel metal plate to be soldered, wherein the treatment method according to claim 1 is characterized in that the reduction treatment is carried out simultaneously with the soldering to the nickel plated surface in a hydrogen or nitrogen atmosphere containing hydrogen. How to treat the facing surface.
JP3526779A 1979-03-26 1979-03-26 Treatment for nonelectrolytically nickel-plated surface to be soldered Granted JPS55128571A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3526779A JPS55128571A (en) 1979-03-26 1979-03-26 Treatment for nonelectrolytically nickel-plated surface to be soldered

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3526779A JPS55128571A (en) 1979-03-26 1979-03-26 Treatment for nonelectrolytically nickel-plated surface to be soldered

Publications (2)

Publication Number Publication Date
JPS55128571A JPS55128571A (en) 1980-10-04
JPS6219942B2 true JPS6219942B2 (en) 1987-05-01

Family

ID=12437017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3526779A Granted JPS55128571A (en) 1979-03-26 1979-03-26 Treatment for nonelectrolytically nickel-plated surface to be soldered

Country Status (1)

Country Link
JP (1) JPS55128571A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0438766U (en) * 1990-07-30 1992-04-02

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7537728B2 (en) * 2003-06-13 2009-05-26 Senju Metal Industry Co., Ltd. Method for increasing the effectiveness of a component of a material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49106946A (en) * 1973-02-19 1974-10-11
JPS52120941A (en) * 1976-04-06 1977-10-11 Nippon Electric Co Brazing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49106946A (en) * 1973-02-19 1974-10-11
JPS52120941A (en) * 1976-04-06 1977-10-11 Nippon Electric Co Brazing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0438766U (en) * 1990-07-30 1992-04-02

Also Published As

Publication number Publication date
JPS55128571A (en) 1980-10-04

Similar Documents

Publication Publication Date Title
JPS60245754A (en) High strength copper alloy having high electric conductivity
JPH09331007A (en) Electronic part lead member and its manufacture
US4756467A (en) Solderable elements and method for forming same
US3982908A (en) Nickel-gold-cobalt contact for silicon devices
JP2006127939A (en) Electric conductor and its manufacturing method
JPS6219942B2 (en)
US4065588A (en) Method of making gold-cobalt contact for silicon devices
JPH0148657B2 (en)
JP2004154864A (en) Lead-free soldering alloy
JPH01257356A (en) Lead frame for semiconductor
KR20050100966A (en) Lead frame and the method for manufacturing the same
US3119171A (en) Method of making low resistance electrical contacts on graphite
JPS5837923B2 (en) Heat-resistant electrical conductor for wiring
JPH10163404A (en) Input/output terminal for ball grid array(bga)
JP3232529B2 (en) Fe-Ni alloy for lead frame and method of manufacturing the same
JPS6026292B2 (en) Manufacturing method of semiconductor device
JP2000052027A (en) High temperature resistant metal jointing method
JPH01216594A (en) Manufacture of ceramic circuit board
JPS6353872A (en) Contactor material
JPS58191456A (en) Lead frame for semiconductor and manufacture thereof
JPS58100986A (en) Electrode chip
JPS5837921B2 (en) Heat-resistant electrical conductor for wiring
JPH05190725A (en) Lead frame and semiconductor device
JPS5919193B2 (en) Method for modifying impact plating film
JPH04357899A (en) Manufacture of circuit substrate with auxiliary solder layer