JPS62199119A - Phase locked loop circuit - Google Patents

Phase locked loop circuit

Info

Publication number
JPS62199119A
JPS62199119A JP61040413A JP4041386A JPS62199119A JP S62199119 A JPS62199119 A JP S62199119A JP 61040413 A JP61040413 A JP 61040413A JP 4041386 A JP4041386 A JP 4041386A JP S62199119 A JPS62199119 A JP S62199119A
Authority
JP
Japan
Prior art keywords
signal
phase
output
pull
phase difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61040413A
Other languages
Japanese (ja)
Other versions
JPH0558292B2 (en
Inventor
Hideo Sato
秀夫 佐藤
Kazuo Kato
和男 加藤
Takashi Sase
隆志 佐瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61040413A priority Critical patent/JPS62199119A/en
Priority to CA000530439A priority patent/CA1282465C/en
Priority to US07/019,113 priority patent/US4774480A/en
Publication of JPS62199119A publication Critical patent/JPS62199119A/en
Publication of JPH0558292B2 publication Critical patent/JPH0558292B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Abstract

PURPOSE:To decrease much a time required for pull in by decreasing a time constant of a loop filter until the frequency pull in process up to the synchronization of a PLL is finished and the phase difference reaches a prescribed value or below. CONSTITUTION:A phase comparator 100 receives an input signal fi and an output signal fo and outputs phase difference signals 101, 102. The signal 101 has conversion gains G1, G2 and is controlled by an operation mode signal 601. That is, the gain G1 is selected at the pull in and the gain G2 in selected at jitter suppression after the end of pull in. A resistor R2 of a loop filter 200 is short-circuited by a switch SW1 controlled by the signal 601. A VCO300 outputs a frequency signal fo in response to an output signal 101. A frequency lock detection circuit 102 being at a prescribed value or below continues for a prescribed period and brings the detection circuit 500 detects the phase difference.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は位相同期回路に係り、特にPCM通信のタイミ
ング抽出等に好適な位相同期回路に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a phase synchronized circuit, and particularly to a phase synchronized circuit suitable for timing extraction of PCM communications.

〔従来の技術〕[Conventional technology]

PCM通信のタイミング抽出等に適用する位相同期回路
(以下、PLLと記述する)は、信号入力時には応答を
速くして高速に入力信号を引込み。
A phase-locked circuit (hereinafter referred to as PLL), which is applied to timing extraction in PCM communication, responds quickly when a signal is input and pulls in the input signal at high speed.

引込後は雑音帯域を小さくして入カシツタを抑圧するこ
とが必要である。しかし、一般にPLLの引込み特性と
ジッタ抑圧特性は相反する性質をもっている。すなわち
、高速引込みのためにループフィルタの時定数を小さく
すると、雑音帯域は大きくなりジッタ抑圧特性が劣化す
る。
After pulling in, it is necessary to reduce the noise band to suppress input ivy. However, the pull-in characteristic and jitter suppression characteristic of a PLL generally have contradictory properties. That is, if the time constant of the loop filter is made small for high-speed pull-in, the noise band becomes large and the jitter suppression characteristics deteriorate.

この問題に対処するための従来のPLLとしては、特公
昭59−12049号に記載のように、2つの時定数回
路を設け、2つの入力信号と電圧制御発掘器(以下vC
Oと略す)の周波数の差が一定値以上の場合にフィルタ
の時定数を短縮するように切り換えるものがあった。ま
た、特開昭59−202736号に記載のものでは、P
LLが同期しているか否かを検出する検出器を位相比較
器の出力側に設け、非同期状態である時にはループフィ
ルタの時定数を小さくするようにしている。
As described in Japanese Patent Publication No. 59-12049, a conventional PLL to deal with this problem has two time constant circuits, two input signals and a voltage control excavator (hereinafter referred to as vC).
Some filters switch to shorten the time constant of the filter when the difference in frequency between the filters (abbreviated as O) is equal to or greater than a certain value. Moreover, in the one described in JP-A No. 59-202736, P
A detector for detecting whether LL is synchronized is provided on the output side of the phase comparator, and when it is in an asynchronous state, the time constant of the loop filter is made small.

〔発明が解決しようとしている問題点〕前述した特公昭
59−12049号に記載のものでは、入力信号の周波
数とvCOの自走周波数(入力制御電圧0のときの発振
周波数)とが大幅に異なっているときに始めてループフ
ィルタの時定数を切換えるものであり、一方、特開昭5
9−202736に記載のものでは、VCOが入力信号
に同期していないときにループフィルタの時定数を切換
えている。
[Problems to be solved by the invention] In the device described in the aforementioned Japanese Patent Publication No. 59-12049, the frequency of the input signal and the free-running frequency of the vCO (oscillation frequency when the input control voltage is 0) are significantly different. The time constant of the loop filter is switched only when the
In the method described in No. 9-202736, the time constant of the loop filter is switched when the VCO is not synchronized with the input signal.

これらのいずれによっても、同期はずれ状態に於る引込
み時間は短縮されるが、PLLの引込み過程は、PLL
が入力信号に同期した後の、入力信号とvCo出力信号
の位相差が所定値以下に減少する迄の過程も含んでいて
、このための所要時間も短いことが望まれる。しかし、
上記従来技術によると、前者では入力とvCOの周波数
差が所定値以下となったときより後の、後者ではPLL
が入力と同期状態となったときより後の引込み過程では
、ジッタ抑圧に適した狭いループ帯域幅に切換えられて
いてこのための引込み時間を十分小さくできないという
欠点があった。
Both of these methods shorten the pull-in time in the out-of-synchronization state, but the PLL pull-in process
It also includes a process in which the phase difference between the input signal and the vCo output signal is reduced to a predetermined value or less after it is synchronized with the input signal, and it is desirable that the time required for this process be short. but,
According to the above conventional technology, in the former case, after the frequency difference between the input and vCO becomes equal to or less than a predetermined value, in the latter case, the PLL
In the pull-in process after the input becomes synchronized with the input, the loop bandwidth is switched to a narrow loop bandwidth suitable for jitter suppression, and the pull-in time for this purpose cannot be made sufficiently small.

本発明の目的は、PLLが入力信号に同期しかつ位相差
がある一定値以下になるまで高速に引込みを行うように
することによって引込み時間を大幅に短縮でき、かつジ
ッタ抑圧特性のよい位相同期回路を提供するにある。
An object of the present invention is to provide phase synchronization with good jitter suppression characteristics, which can significantly shorten the pull-in time by synchronizing the PLL with the input signal and performing pull-in at high speed until the phase difference becomes less than a certain value. To provide the circuit.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、周波数引込みが終ったか否かを検出する周
波数引込み検出回路と、位相差が所定値以下か否かを検
出する位相差検出器と、これらによってPLLが入力信
号に同期していてかつ位相差が所定値以下になっている
ことが検出された時にループフィルタの時定数の切り換
え信号を出力するモード制御回路を設けることにより達
せられる。
The above purpose is to provide a frequency pull-in detection circuit that detects whether frequency pull-in is completed, a phase difference detector that detects whether the phase difference is less than or equal to a predetermined value, and a phase difference detector that detects whether the PLL is synchronized with the input signal. This can be achieved by providing a mode control circuit that outputs a switching signal for the time constant of the loop filter when it is detected that the phase difference is less than or equal to a predetermined value.

〔作用〕[Effect]

上記の手段によると、モード制御回路は、PLLが同期
する迄の周波数引込み過程を終り、更に位相差が所定値
以下となる位相同期過程のほぼ終了時点までは高速引込
み状態となるようにループフィルタの時定数を小さい値
とするので、ジッタ抑圧状態に切り換わる時点の位相差
は十分小さく1、引込みに要する時間を非常に短くでき
る。しかも引込後はループフィルタの時定数を大きくし
高ジッタ抑圧が可能なのは従来と同じである。
According to the above means, the mode control circuit controls the loop filter so that the frequency pull-in process is completed until the PLL is synchronized, and the loop filter is kept in a high-speed pull-in state until the phase difference becomes equal to or less than a predetermined value and almost the end of the phase lock process. Since the time constant of is set to a small value, the phase difference at the time of switching to the jitter suppression state is sufficiently small 1, and the time required for pull-in can be extremely shortened. Moreover, after the pull-in, the time constant of the loop filter is increased to suppress high jitter, as in the conventional case.

〔実施例〕〔Example〕

以下1本発明の一実施例を第1図により説明する。第1
図において、位相比較器100は入力信号fi と出力
信号foを入力とし、位相差信号101.102を出力
する6位相差信号101は変換利得Gxt Gx  (
Gx>Gz)を持ち動作モード信号601によって制御
できる。即ち、引き込み時はG1を選択し、引き込み完
了後のジッタ抑制時にはG2を選択する1位相差信号1
01は抵抗R8を介してループフィルタ200へ入力さ
れる。ループフィルタ200はコンデンサCと抵抗Rz
 、Rzで構成され、抵抗R2は動作モード信号601
で制御されるスイッチSW1でショートできる。VCO
300はループフィルタの出力信号201に応じた周波
数信号fOを出力する。
An embodiment of the present invention will be described below with reference to FIG. 1st
In the figure, a phase comparator 100 receives an input signal fi and an output signal fo, and six phase difference signals 101 outputting phase difference signals 101 and 102 have a conversion gain Gxt Gx (
Gx>Gz) and can be controlled by the operation mode signal 601. That is, 1 phase difference signal 1 selects G1 when pulling in, and selects G2 when suppressing jitter after completing pulling.
01 is input to the loop filter 200 via the resistor R8. The loop filter 200 includes a capacitor C and a resistor Rz
, Rz, and the resistor R2 receives the operation mode signal 601.
It can be short-circuited with switch SW1 controlled by . VCO
300 outputs a frequency signal fO according to the output signal 201 of the loop filter.

周波数引込み検出回路400は位相差信号102がある
一定値以下となる状態がある一定期間経続したときに周
波数を引込んだと判定し、周波数引込み信号401を1
にする。フィルタ電流検出回路500は抵抗R8の両端
電圧を入力として位相差を検出するもので、この両端電
圧の絶対値がある一定値以下になったときにフィルタ電
流検出信号501を1にする。モード制御回路600は
周波数引込み信号401とフィルタ電流検出信号501
の論理積をアンドゲート610でとり、モード切換信号
601を出力する。
The frequency pull-in detection circuit 400 determines that the frequency has been pulled in when the phase difference signal 102 remains below a certain value for a certain period of time, and sets the frequency pull-in signal 401 to 1.
Make it. The filter current detection circuit 500 detects a phase difference by inputting the voltage across the resistor R8, and sets the filter current detection signal 501 to 1 when the absolute value of the voltage across the resistor R8 becomes equal to or less than a certain value. The mode control circuit 600 includes a frequency pull-in signal 401 and a filter current detection signal 501.
An AND gate 610 performs a logical AND operation, and outputs a mode switching signal 601.

以上の各構成要素の詳細を次に説明する。第2図は位相
比較器100の実施例を示すもので、第3図はその動作
のタイミングチャートである。これらの図に於て、VC
Oの出力信号foは連続したクロック信号であり(デユ
ーティ50%)、入力信号f1の基本周波数の2倍の周
波数である。
Details of each of the above components will be explained next. FIG. 2 shows an embodiment of the phase comparator 100, and FIG. 3 is a timing chart of its operation. In these figures, VC
The output signal fo of O is a continuous clock signal (duty: 50%) and has a frequency twice the fundamental frequency of the input signal f1.

まずフリップフロップFFIのQ出力は入力信号!、の
立上りのタイミングでFFIのD入力データをセットす
るが、D入力は常に1なのでこのとき必ず1となる。フ
リップフロップFF2のQ出力は出力信号foの立下り
のタイミングでD入力、即ちフリップフロップFFIの
Q出力1をセットするのでこのとき1となる。フリップ
フロップFF2のQ出力が1にセットされるとフリップ
フロップFF2のQ出力はOとなり、これによってフリ
ップフロップFFIはリセットされる。したがってフリ
ップフロップFFIのQ出力、つまり。
First, the Q output of flip-flop FFI is an input signal! The D input data of the FFI is set at the rising edge of , but since the D input is always 1, it is always 1 at this time. The Q output of the flip-flop FF2 becomes 1 at this time because the D input, ie, the Q output 1 of the flip-flop FFI, is set at the falling timing of the output signal fo. When the Q output of the flip-flop FF2 is set to 1, the Q output of the flip-flop FF2 becomes O, thereby resetting the flip-flop FFI. Therefore, the Q output of flip-flop FFI, ie.

パルス信号T1のパルス幅は信号f1と信号f。The pulse width of the pulse signal T1 is the signal f1 and the signal f.

の立上りタイミング差ΔTに信号foの周期の172に
相当するτを加えた値t1となる。また。
The value t1 is obtained by adding τ corresponding to 172 of the period of the signal fo to the rise timing difference ΔT of the signal fo. Also.

パルス信号TxはブリップフロップFF2のQ出力と信
号foを反転した信号との論理積(アンドゲートAND
1出力)であるので、このパルス幅は信号foの1/2
周期τとなる。したがって、入力信号f、と出力信号f
oの立上りタイミングの差Δrは、パルス信号Tt 、
Tzのパルス幅の差(ΔT+で)−τ=ΔTで与えられ
る。サンプルパルスTgは、フリップフロップFF2の
Q出力と信号foとの論理積(アンドゲートAND2出
力)で与えられ、パルス信号Tr 、Tzにオーバーラ
ツプしない波形が得られる。
The pulse signal Tx is a logical product (AND gate AND) of the Q output of the flip-flop FF2 and a signal obtained by inverting the signal fo.
1 output), this pulse width is 1/2 of the signal fo.
The period is τ. Therefore, the input signal f, and the output signal f
The difference Δr in the rising timing of o is the pulse signal Tt,
The difference in pulse width of Tz (in ΔT+) is given by −τ=ΔT. The sample pulse Tg is given by the AND (AND gate AND2 output) of the Q output of the flip-flop FF2 and the signal fo, and a waveform that does not overlap with the pulse signals Tr and Tz is obtained.

次に、上記のパルス信号Tz 、Ttのパルス幅の差を
電流に変換する部分について述べる。カレントミラーを
構成するトランジスタQ101〜Q105のゲート面積
は、トランジスタQ1’03が他のに倍で、他は全て等
しくし、一方カレントミラーを構成するトランジスタQ
111〜Q115のゲート面積は、トランジスタQ11
4が他のに倍で、他は全て等しいとする。ここで、パル
スT1が1のときはアナログスイッチ5101が閉じら
れ、積分器を構成している反転アンプAMPの出力v1
は上昇し、パルスT1が1のときはスイッチ3102が
閉じるので出力v1は下がる。この結果、反転アンプA
MPの出力v1の変化分ΔVlは次式となる。
Next, a section for converting the difference in pulse width between the pulse signals Tz and Tt into a current will be described. The gate area of the transistors Q101 to Q105 forming the current mirror is that transistor Q1'03 is twice as large as the other transistors, all other things being equal, and transistor Q1'03 forming the current mirror is
The gate area of 111 to Q115 is the same as that of transistor Q11.
Assume that 4 is twice as much as the other, and all else is equal. Here, when the pulse T1 is 1, the analog switch 5101 is closed, and the output v1 of the inverting amplifier AMP constituting the integrator
increases, and when pulse T1 is 1, switch 3102 closes, so output v1 decreases. As a result, the inverting amplifier A
The variation ΔVl in the MP output v1 is expressed by the following equation.

lot ここで、τ+ΔT、τは前述したパルス信号Tz 、T
zのパルス幅であり、It、tIzは各カレントミラー
回路の電流、C101はコンデンサC101の容量であ
る。このΔv1はスイッチ8103とコンデンサClO
2で構成されるサンプルホールド回路に於て、サンプル
パルスTsでサンプリングされホールドされる。この結
果、第3図Vzに示すようにリップルが除去される。サ
ンプルホールド回路の出力v2は、トランジスタQ10
6と抵抗R101で構成されるV/I変換回路で電流工
2に変換される。この結果、Δv1が増加するとVz、
従ってI2が増加し、Izが増加すると(1)式からΔ
VZは減少する。この結果、パルス信号T1e Tzに
よる積分動作が繰り返されると(1)式のΔv1が零に
なるよう動作し、平衡条件は次式となる。
lot Here, τ+ΔT, τ are the aforementioned pulse signals Tz, T
It is the pulse width of z, It and tIz are the currents of each current mirror circuit, and C101 is the capacitance of the capacitor C101. This Δv1 is the difference between the switch 8103 and the capacitor ClO.
2, the sample pulse Ts is used to sample and hold the sample pulse Ts. As a result, ripples are removed as shown in FIG. 3 Vz. The output v2 of the sample and hold circuit is the transistor Q10.
6 and a resistor R101, it is converted into a current generator 2. As a result, when Δv1 increases, Vz,
Therefore, when I2 increases and Iz increases, Δ
VZ decreases. As a result, when the integral operation by the pulse signals T1e Tz is repeated, the operation is performed so that Δv1 in equation (1) becomes zero, and the equilibrium condition becomes the following equation.

Tl e、Ix =Tz w Iz       −(
2)これより、スイッチ5104が開いているときの位
相差信号101の電流及び位相差信号102の電流l5
(OFF)は次式で示される。
Tl e, Ix = Tz w Iz −(
2) From this, the current of the phase difference signal 101 and the current l5 of the phase difference signal 102 when the switch 5104 is open
(OFF) is expressed by the following equation.

T z          T x ・・・・・・ (3) 又、スイッチ5104が閉じた時の位相差信号101の
電流Iz  (ON)は次式となる。
T z T x (3) Further, the current Iz (ON) of the phase difference signal 101 when the switch 5104 is closed is expressed by the following equation.

(3)、(4)式より明らかなように9位相差信号10
1,102はパルス信号T1 、’rzのパルス幅の差
Δψに比例した電流となって信号f。
As is clear from equations (3) and (4), 9 phase difference signals 10
1, 102 is a current proportional to the difference Δψ between the pulse widths of the pulse signals T1 and 'rz, resulting in a signal f.

とfoの位相を検出できる。更に、動作モード信号60
1によるスイッチ5104のオンオフによって信号10
1のレベル、すなわちこの信号の変換利得が変化する。
The phase of and fo can be detected. Furthermore, the operation mode signal 60
The signal 10 is turned on and off by turning on and off the switch 5104 by
1 level, that is, the conversion gain of this signal changes.

第4図は周波数引込み検出回路400の実施例を示すも
ので、第5図はその動作タイミングチャートである。こ
れらの図に於て、位相信号102(電流)は信号fi 
とfoの位相差ΔTに比例するので、抵抗421と42
2の接続点の電圧Vφもこの位相差に比例する。コンパ
レータ430の出力CMP1はVφが基準電圧V r 
xよりも大きい時に1となり、コンパレータ440の出
力CMP2はVφが基準電圧VrLよりも小さい時に1
となる。
FIG. 4 shows an embodiment of the frequency pull-in detection circuit 400, and FIG. 5 is an operation timing chart thereof. In these figures, the phase signal 102 (current) is the signal fi
Since it is proportional to the phase difference ΔT between and fo, the resistors 421 and 42
The voltage Vφ at the connection point between the two is also proportional to this phase difference. The output CMP1 of the comparator 430 has Vφ as the reference voltage V r
It becomes 1 when it is larger than x, and the output CMP2 of the comparator 440 becomes 1 when Vφ is smaller than the reference voltage VrL.
becomes.

ノアゲート450の出力ττはCMPI又はCMP 2
が1のときOとなり、カウンタ470をリセットする。
The output ττ of the NOR gate 450 is CMPI or CMP 2
When is 1, it becomes O, and the counter 470 is reset.

カウンタ470はCLが1でnビットの出力Q、がOの
とき、出力信号foのパルスをカウントし、Q、が1に
なるとカウントを停止する。
The counter 470 counts the pulses of the output signal fo when CL is 1 and the n-bit output Q is O, and stops counting when Q becomes 1.

したがって、カウンタ470の計数値Nは3でか1のと
き時間とともに増加し、CLが0になると0となる。C
Lが1となる期間がカウンタの計数値が2nになるまで
継続するとQ、は1となり。
Therefore, the count value N of the counter 470 increases with time when it is 3 or 1, and becomes 0 when CL becomes 0. C
If the period in which L is 1 continues until the count value of the counter reaches 2n, Q becomes 1.

カウンタの計数を停止する。ところで1周波数引込み過
程ではCLが1となる期間が短く、引込み後は1を継続
する。したがって、カウンタ470の計数値が2″にな
るまでの期間を、周波数引込み過程でCLが1となる期
間以上に選べば、カウンタ470の出力Q、で周波数引
込みを検出できる。
Stops counter counting. By the way, in the 1-frequency pull-in process, the period during which CL is 1 is short, and it continues to be 1 after the pull-in. Therefore, if the period until the count value of the counter 470 reaches 2'' is selected to be longer than the period during which CL becomes 1 in the frequency pulling process, frequency pulling can be detected by the output Q of the counter 470.

以上の様に構成した第1図の実施例の動作を第6図に示
す動作波形により説明する。同図は引き込み同期過程に
おける信号f、と信号foの位相差Δでの変化及びこの
時の各信号を示したものである。PLLは位相差が一π
〜+πの間を繰り返し変化する周波数駆込み過程と、位
相差が−πからぼぼ0に整定する位相同期過程を経過し
て入力信号を引込む、この同期過程における周波数引込
み信号401は、位相差・ΔTか周波数引込検出位置以
下になった状態が時間μの間経続した時刻t2に1にな
る。ここで、時間μは入出力信号のビート周波数の周期
以上の値で第4図で説明したものである。
The operation of the embodiment of FIG. 1 constructed as above will be explained with reference to the operation waveforms shown in FIG. 6. This figure shows changes in the phase difference Δ between the signal f and the signal fo during the pull-in synchronization process, and each signal at this time. PLL has a phase difference of 1π
The frequency pull-in signal 401 in this synchronization process, in which the input signal is pulled through a frequency pull-in process that repeatedly changes between ~+π and a phase lock process in which the phase difference settles from -π to approximately 0, is generated by the phase difference ΔT. It becomes 1 at time t2 when the state in which the frequency is lower than the frequency pull-in detection position continues for a time μ. Here, the time μ is a value greater than or equal to the period of the beat frequency of the input/output signal, and is the value explained in FIG. 4.

フィルタ電流検出信号501は、第6図の位相差ΔT(
相当の電流)が同図のフィルタ電流検出等価位相以下と
なったとき1となる。ここで検出するフィルタ電流の値
は安定に検出できる範囲で小さいほどよい。
The filter current detection signal 501 has a phase difference ΔT (
It becomes 1 when the corresponding current) becomes equal to or less than the filter current detection equivalent phase in the same figure. The value of the filter current detected here is preferably as small as possible within a stable detection range.

モード制御信号601は、周波数引込信号401とフィ
ルタ電流検出信号501の論理積であり周波数を引込み
、かつフィルタ電流が十分小さい値になった時点で1と
なる。このモード制御信号601が1になると1位相比
較器100の位相信号出力101の変換利得を下げると
ともに、ループフィルタ200のスイッチSWIを閉じ
、高速引込状態から高ジッタ抑圧状態に切り換える。
The mode control signal 601 is the AND of the frequency pull-in signal 401 and the filter current detection signal 501, and becomes 1 when the frequency is pulled in and the filter current reaches a sufficiently small value. When this mode control signal 601 becomes 1, the conversion gain of the phase signal output 101 of the 1-phase comparator 100 is lowered, the switch SWI of the loop filter 200 is closed, and the high-speed pull-in state is switched to the high-jitter suppression state.

以上のように、動作モードはフィルタ電流が微小値の点
で切り換えられるので、位相比較器100の変換利得や
ループフィルタの抵抗値を切り換えてもVCO300の
入力信号の変化がなく、これに大きな外乱を与えること
がないから、引込状態を継続できる。
As described above, since the operation mode is switched at a point where the filter current is a minute value, there is no change in the input signal of the VCO 300 even if the conversion gain of the phase comparator 100 or the resistance value of the loop filter is switched. Since it does not give any negative feedback, it is possible to maintain a withdrawn state.

以上の一実施例によれば、周波数を引込みかつフィルタ
の電流値が十分小さくなったときに、PLLの動作を高
速引込み状態から高ジッタ抑圧状態に切り換えるので、
引込み時間が高速引込み状態の特性のみで決定でき、高
速引込み特性を確保したまま、ジッダ抑圧特性を更に向
上できる。
According to the above embodiment, when the frequency is pulled in and the filter current value becomes sufficiently small, the operation of the PLL is switched from the high-speed pulling state to the high jitter suppression state.
The pull-in time can be determined only by the characteristics of the high-speed pull-in state, and the jitter suppression characteristics can be further improved while maintaining the high-speed pull-in characteristics.

なお、第1図の実施例ではモード制御信号601で位相
比較器100の変換利得とループフィルタ200の抵抗
値の双方を制御しているが、これは。
In the embodiment shown in FIG. 1, the mode control signal 601 controls both the conversion gain of the phase comparator 100 and the resistance value of the loop filter 200;

いずれか一方の制御であっても本発明の効果を発揮でき
る。また、第1図の実施例では、モード制御回路600
はアンドゲート1個のみとしたが、第7図はこの回路の
別の実施例を示すものである。
The effects of the present invention can be exerted even if only one of them is controlled. Further, in the embodiment of FIG. 1, the mode control circuit 600
Although only one AND gate was used in FIG. 7, another embodiment of this circuit is shown.

本実施例はRSフリップフロップを構成するナントゲー
ト631,632に周波数引込み信号401と、フィル
タ電流検出信号501をインバータ621で反転した信
号を入力し、インバータ622でフリップフロップの出
力を反転してモード制御信号601を出力するように構
成している。第8図はこのモード制御回路600の動作
を示す真理値表であって、この真理値表から分かるよう
に、周波数引込み信号401がOのときはフィルタ電流
検出信号501に関係なく高速引込み状態となり、周波
数引込み信号401.フィルタ電流検出信号501が共
に1のときは高ジッタ抑圧状態となる。
In this embodiment, a frequency pull-in signal 401 and a signal obtained by inverting the filter current detection signal 501 by an inverter 621 are input to the Nant gates 631 and 632 constituting the RS flip-flop, and the output of the flip-flop is inverted by the inverter 622 to set the mode. It is configured to output a control signal 601. FIG. 8 is a truth table showing the operation of this mode control circuit 600. As can be seen from this truth table, when the frequency pull-in signal 401 is O, the high-speed pull-in state occurs regardless of the filter current detection signal 501. , frequency pull-in signal 401. When both filter current detection signals 501 are 1, a high jitter suppression state is entered.

更に、周波数引込み信号401が1でフィルタ電流検出
信号501がOのときは前の状態を保持するので、−た
ん高ジッタ抑圧状態になるとフィルタ電流検出信号50
1に関係なく高ジッタ抑圧状態を保持できる。従って、
このモード制御回路によれば−たん高ジッタ抑圧状態に
なるとフィルタ電流検出信号501にかかわらず高ジッ
タ抑圧状態を保持できるので、入力信号f、のジッタ等
によるフィルタ電流の変動に対しても安定な位相同期回
路を提供できる効果がある。
Furthermore, when the frequency pull-in signal 401 is 1 and the filter current detection signal 501 is O, the previous state is maintained, so when the high jitter suppression state is reached, the filter current detection signal 50
1, a high jitter suppression state can be maintained. Therefore,
According to this mode control circuit, once the high jitter suppression state is reached, the high jitter suppression state can be maintained regardless of the filter current detection signal 501, so that the high jitter suppression state can be maintained even when the filter current fluctuates due to jitter of the input signal f, etc. This has the effect of providing a phase-locked circuit.

また以上では電流検出は抵抗R3の両端電圧で行うとし
たが、フィルタ200に流れる電流の検出が目的である
故に、抵抗R1等に流れる電流を検出してもよい。
Further, in the above description, current detection is performed using the voltage across the resistor R3, but since the purpose is to detect the current flowing through the filter 200, the current flowing through the resistor R1 or the like may also be detected.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、引込み時間を高速引込み状態のみの特
性で決定できるので、高速引込み特性を確保し、更に引
込んだ後に十分なジッタ抑圧特性を実現できるという効
果がある。
According to the present invention, since the pull-in time can be determined based on the characteristics of only the high-speed pull-in state, it is possible to ensure the high-speed pull-in characteristic and further achieve sufficient jitter suppression characteristics after the pull-in.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す図、第2図及び第3図
は第1図中の位相比較器の実施例を示す図及びその動作
タイムチャート、第4図及び第5図は第1図中の周波数
引込み検出回路の実施例を示す図及びその動作タイムチ
ャート、第6図は第1図の実施例の動作タイムチャート
、第7図及び第8図はモード制御回路の別の実施例を示
す図及びその動作説明図である。 100・・・位相比較器、200・・・ループフィルタ
、300・・・電圧制御発掘器、400・・・周波数引
込み検出回路、500・・・フィルタ電流検出回路、6
00・・・モード制御回路。
FIG. 1 is a diagram showing an embodiment of the present invention, FIGS. 2 and 3 are diagrams showing an embodiment of the phase comparator in FIG. 1 and its operation time chart, and FIGS. A diagram showing an embodiment of the frequency pull-in detection circuit in FIG. 1 and its operation time chart, FIG. 6 is an operation time chart of the embodiment of FIG. 1, and FIGS. 7 and 8 show another example of the mode control circuit. FIG. 2 is a diagram showing an embodiment and an explanatory diagram of its operation. 100... Phase comparator, 200... Loop filter, 300... Voltage control excavator, 400... Frequency pull-in detection circuit, 500... Filter current detection circuit, 6
00...Mode control circuit.

Claims (1)

【特許請求の範囲】 1、電圧制御発振器と、該発振器の出力信号と外部より
の入力信号との位相差を検出する位相比較器と、該位相
比較器出力の低周波成分のみを通過させて上記電圧制御
発掘器の制御電圧を出力するループフィルタとから成る
位相同期回路に於て、上記位相比較器出力が所定の第1
位相差対応値よりも小さい値を所定の時間をこえて出力
した時に周波数引込信号を出力する引込み検出回路と、
上記位相比較器出力が上記第1位相差対応値よりも小さ
い第2位相差対応値より小さくなつた時に位相同期信号
を出力する位相差検出回路と、上記周波数引込信号及び
位相同期信号がともに出力された時に上記ループフィル
タの時定数を増大させる制御及び上記位相比較器の利得
を低下させる制御の一方又は双方を行うための制御信号
を出力するモード制御回路とを設けたことを特徴とする
位相同期回路。 2、前記位相差検出回路は、前記ループフィルタへの流
入電流を検出することにより前記位相比較器出力の大き
さを検出する構成としたことを特徴とする特許請求の範
囲第1項記載の位相同期回路。 3、前記モード制御回路は、前記周波数引込信号と前記
位相同期信号とのアンドをとるアンド回路としたことを
特徴とする特許請求の範囲第1項記載の位相同期回路。 4、前記モード制御回路は、前記周波数引込信号が出力
されていない状態の時は常に前記制御信号を出力せず、
上記周波数引込信号が出力されておりかつ前記位相同期
信号が出力されていない状態の時は該状態になる直前の
状態での上記制御信号の有無をそのまま保持するような
論理回路で構成したことを特徴とする特許請求の範囲第
1項記載の位相同期回路。
[Claims] 1. A voltage controlled oscillator, a phase comparator that detects a phase difference between an output signal of the oscillator and an external input signal, and a phase comparator that allows only low frequency components of the output of the phase comparator to pass through. In a phase synchronized circuit consisting of a loop filter that outputs the control voltage of the voltage control excavator, the output of the phase comparator is connected to a predetermined first
a pull-in detection circuit that outputs a frequency pull-in signal when a value smaller than a corresponding phase difference value is output for a predetermined time;
A phase difference detection circuit that outputs a phase synchronization signal when the output of the phase comparator becomes smaller than a second phase difference corresponding value that is smaller than the first phase difference corresponding value, and outputs both the frequency pull-in signal and the phase synchronization signal. a mode control circuit that outputs a control signal for performing one or both of control for increasing the time constant of the loop filter and control for decreasing the gain of the phase comparator when synchronous circuit. 2. The phase difference detection circuit according to claim 1, wherein the phase difference detection circuit is configured to detect the magnitude of the output of the phase comparator by detecting the current flowing into the loop filter. synchronous circuit. 3. The phase synchronization circuit according to claim 1, wherein the mode control circuit is an AND circuit that performs an AND between the frequency pull-in signal and the phase synchronization signal. 4. The mode control circuit does not always output the control signal when the frequency pull-in signal is not output;
When the frequency pull-in signal is output and the phase synchronization signal is not output, the logic circuit maintains the presence or absence of the control signal as it was in the state immediately before the state. A phase-locked circuit according to claim 1, characterized in that:
JP61040413A 1986-02-27 1986-02-27 Phase locked loop circuit Granted JPS62199119A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP61040413A JPS62199119A (en) 1986-02-27 1986-02-27 Phase locked loop circuit
CA000530439A CA1282465C (en) 1986-02-27 1987-02-24 Phase-locked loop
US07/019,113 US4774480A (en) 1986-02-27 1987-02-26 Phase-locked loop having separate smoothing and loop filters

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61040413A JPS62199119A (en) 1986-02-27 1986-02-27 Phase locked loop circuit

Publications (2)

Publication Number Publication Date
JPS62199119A true JPS62199119A (en) 1987-09-02
JPH0558292B2 JPH0558292B2 (en) 1993-08-26

Family

ID=12579976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61040413A Granted JPS62199119A (en) 1986-02-27 1986-02-27 Phase locked loop circuit

Country Status (1)

Country Link
JP (1) JPS62199119A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63217719A (en) * 1987-03-06 1988-09-09 Hitachi Ltd Phase locked loop circuit
JPH01119128A (en) * 1987-10-31 1989-05-11 Nec Corp Destack system jitter suppressing circuit
JPH02211736A (en) * 1989-02-10 1990-08-23 Nec Corp Clock synchronizing circuit
JPH02290331A (en) * 1989-04-27 1990-11-30 Nec Ic Microcomput Syst Ltd Pll oscillator
JPH03143116A (en) * 1989-10-30 1991-06-18 Hitachi Ltd Phase locked loop circuit and digital signal processor
JPH04271636A (en) * 1991-02-27 1992-09-28 Sanyo Electric Co Ltd Interface circuit and phase locked loop used therefor
US5347233A (en) * 1992-04-02 1994-09-13 Mitsubishi Denki Kabushiki Kaisha PLL circuit apparatus and phase difference detecting circuit apparatus
JPH098653A (en) * 1995-06-16 1997-01-10 Sony Corp Device and method for detecting phase
JP2008219799A (en) * 2007-03-07 2008-09-18 Thine Electronics Inc Pll frequency synthesizer
CN108075773A (en) * 2016-11-14 2018-05-25 中芯国际集成电路制造(上海)有限公司 For the start-up circuit and phaselocked loop of phaselocked loop

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101507853B1 (en) * 2013-04-04 2015-04-07 엘지전자 주식회사 vacuum cleaner and a manufacturion method of the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5472454U (en) * 1977-10-31 1979-05-23
JPS5917727A (en) * 1982-06-28 1984-01-30 エリクソン ジーイー モービル コミュニケーションズ インコーポレーテッド Bandwidth control circuit of phase locked loop

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5472454U (en) * 1977-10-31 1979-05-23
JPS5917727A (en) * 1982-06-28 1984-01-30 エリクソン ジーイー モービル コミュニケーションズ インコーポレーテッド Bandwidth control circuit of phase locked loop

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63217719A (en) * 1987-03-06 1988-09-09 Hitachi Ltd Phase locked loop circuit
JPH01119128A (en) * 1987-10-31 1989-05-11 Nec Corp Destack system jitter suppressing circuit
JPH02211736A (en) * 1989-02-10 1990-08-23 Nec Corp Clock synchronizing circuit
JPH02290331A (en) * 1989-04-27 1990-11-30 Nec Ic Microcomput Syst Ltd Pll oscillator
JPH03143116A (en) * 1989-10-30 1991-06-18 Hitachi Ltd Phase locked loop circuit and digital signal processor
JPH04271636A (en) * 1991-02-27 1992-09-28 Sanyo Electric Co Ltd Interface circuit and phase locked loop used therefor
US5347233A (en) * 1992-04-02 1994-09-13 Mitsubishi Denki Kabushiki Kaisha PLL circuit apparatus and phase difference detecting circuit apparatus
JPH098653A (en) * 1995-06-16 1997-01-10 Sony Corp Device and method for detecting phase
JP2008219799A (en) * 2007-03-07 2008-09-18 Thine Electronics Inc Pll frequency synthesizer
CN108075773A (en) * 2016-11-14 2018-05-25 中芯国际集成电路制造(上海)有限公司 For the start-up circuit and phaselocked loop of phaselocked loop
CN108075773B (en) * 2016-11-14 2021-04-02 中芯国际集成电路制造(上海)有限公司 Starting circuit for phase-locked loop and phase-locked loop

Also Published As

Publication number Publication date
JPH0558292B2 (en) 1993-08-26

Similar Documents

Publication Publication Date Title
JP3375584B2 (en) Frequency comparator and phase-locked loop with it
US6781425B2 (en) Current-steering charge pump circuit and method of switching
US4987373A (en) Monolithic phase-locked loop
CA1282465C (en) Phase-locked loop
US4227251A (en) Clock pulse regenerator
JPS62199119A (en) Phase locked loop circuit
JP2898957B1 (en) Phase comparison circuit
JP2002198808A (en) Pll circuit and optical communication receiving device
JP2003224471A (en) Pll circuit and optical communication receiver
EP0287776B1 (en) Phase-locked data detector
JPH07264055A (en) Frequency locked loop
JPH08330950A (en) Clock reproducing circuit
JP2859082B2 (en) Bit clock regeneration device
JP2002198807A (en) Pll circuit and optical communication receiver
US7310401B2 (en) Programmable frequency detector for use with a phase-locked loop
JP2811994B2 (en) Phase locked loop
JPH1093406A (en) Timing generator
JPH08274635A (en) Phase-locked circuit
JPS63217719A (en) Phase locked loop circuit
JPH0653821A (en) Digital pll circuit
JP2510130Y2 (en) PLL circuit
JPH09130240A (en) Pll circuit
JPS5918894B2 (en) digital phase synchronization circuit
JPH07302072A (en) Noise resistance and high speed pull-in type display phase locked loop circuit
JPH0451718A (en) Jitter suppression circuit for pll circuit