JPS62196572A - Air-cooled heat pump type air conditioner - Google Patents

Air-cooled heat pump type air conditioner

Info

Publication number
JPS62196572A
JPS62196572A JP61037404A JP3740486A JPS62196572A JP S62196572 A JPS62196572 A JP S62196572A JP 61037404 A JP61037404 A JP 61037404A JP 3740486 A JP3740486 A JP 3740486A JP S62196572 A JPS62196572 A JP S62196572A
Authority
JP
Japan
Prior art keywords
heat exchanger
exchange medium
heat exchange
way valve
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61037404A
Other languages
Japanese (ja)
Inventor
下出 哲雄
武本 豪雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61037404A priority Critical patent/JPS62196572A/en
Publication of JPS62196572A publication Critical patent/JPS62196572A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、空冷ヒートポンプ式空気調和機の改良に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an improvement in an air-cooled heat pump type air conditioner.

〔発明の背景〕[Background of the invention]

熱交換器の形式としては、一般的に受熱媒体と放熱媒体
の流れ方から区別される平行流と対向流とがある。
There are generally two types of heat exchangers: parallel flow and counterflow, which are distinguished based on the flow of the heat receiving medium and the heat dissipating medium.

この二つの形式のうち、ヒートバランス上、平行流よシ
も対向流の方が、熱交換効率が優れている。
Of these two types, in terms of heat balance, both parallel flow and counterflow have better heat exchange efficiency.

又、熱交換効率を左右する要因として、熱交換器内を流
れる熱交換媒体の流速があり、この流速が速い程熱交換
効率が向上する。
Further, a factor that affects heat exchange efficiency is the flow rate of the heat exchange medium flowing inside the heat exchanger, and the faster the flow rate, the better the heat exchange efficiency.

従って、空気調和機に使用される熱交換器も、冷房暖房
時の両方において、対向流形式がよく、かつ、熱交換器
内を流れる熱交換媒体の流速を速くする方がよい。
Therefore, it is preferable for the heat exchanger used in an air conditioner to be of a counter-flow type, and to increase the flow rate of the heat exchange medium flowing through the heat exchanger, both during cooling and heating.

従来より、冷房及び暖房時において、共に対向流となる
ように、一方向冷凍サイクルが採用されている    
          。
Traditionally, a one-way refrigeration cycle has been used to provide countercurrent flow during both cooling and heating.
.

然しなから、この一方向冷凍サイクルは、冷房及び暖房
時に共に対向流とするために、圧縮機の吐出側と吸込み
側とにそれぞれ四方弁を設け、かつ、各熱交換器の熱交
換媒体の入口側と出口側のそれぞれに、逆止弁を設けて
いた。
However, in this one-way refrigeration cycle, four-way valves are provided on the discharge side and suction side of the compressor to create counterflows during both cooling and heating, and the heat exchange medium of each heat exchanger is A check valve was installed on each of the inlet and outlet sides.

そ−の結果、配管途中における圧力損失が大きくなり、
その分だけ、熱交換器内を流れる熱交換媒体の流速が低
下し、圧縮機の出力に対する空気調和機の性能が低下す
るという欠点があった。
As a result, the pressure loss in the middle of the piping increases,
The flow rate of the heat exchange medium flowing through the heat exchanger decreases accordingly, resulting in a disadvantage that the performance of the air conditioner relative to the output of the compressor decreases.

〔発明の目的〕[Purpose of the invention]

本発明は、上記従来の欠点を解決するためになされたも
のであシ、冷房時、暖房時及び除霜時においても、対向
流となるようにし、更に、配管途中に設けられる弁類を
最小限にして圧力損失を少なくシ、性能を更に向上した
空冷ヒートポンプ式空気調和機を提供せんとするもので
ある。
The present invention has been made in order to solve the above-mentioned conventional drawbacks.It also enables counterflow during cooling, heating, and defrosting, and furthermore, minimizes the number of valves installed in the middle of piping. The object of the present invention is to provide an air-cooled heat pump type air conditioner that reduces pressure loss and further improves performance.

〔発明の概要〕[Summary of the invention]

即ち、本発明は、室外側熱交換器の熱交換媒体の入口側
と室内側熱交換器の熱交換媒体の出口側とを減圧装置及
び逆止弁を有する配管で接続し、一方室外側熱交換器の
熱交換媒体出口側と室外側熱交換器の熱交換媒体入口側
とを減圧装置及び逆止弁を有する配管で接続する。そし
て、圧縮機を出た熱交換媒体を、六方弁、室外側熱交換
器、逆止弁及び減圧装置、室内側熱交換器、六方弁を順
次通して再び圧縮機に導くようにした冷房サイクル系と
、圧縮機を出た熱交換媒体を六方弁、室内側熱交換器、
逆止弁及び減圧装置、室外側熱交換器、六方弁を順次通
して再び圧縮機に導くようにした暖房サイクル系とを形
成し、この二つのサイクル系を前に六方弁を介して切換
えるようにしたものである。
That is, the present invention connects the inlet side of the heat exchange medium of the outdoor heat exchanger and the outlet side of the heat exchange medium of the indoor heat exchanger with a pipe having a pressure reducing device and a check valve, and The heat exchange medium outlet side of the exchanger and the heat exchange medium inlet side of the outdoor heat exchanger are connected by piping having a pressure reducing device and a check valve. A cooling cycle in which the heat exchange medium exiting the compressor is guided back to the compressor through a six-way valve, an outdoor heat exchanger, a check valve, a pressure reducing device, an indoor heat exchanger, and a six-way valve. system, and the heat exchange medium leaving the compressor is connected to a six-way valve, an indoor heat exchanger,
A heating cycle system is formed in which the air is led back to the compressor through a check valve, a pressure reducing device, an outdoor heat exchanger, and a six-way valve in sequence, and these two cycle systems are switched through the six-way valve beforehand. This is what I did.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の一実施例を詳細に説明する。 An embodiment of the present invention will be described in detail below.

第1図において、2は室外側熱交換器、3は室内側熱交
換器である。5及び7け逆止弁、4及び6は減圧装置で
あり、上記室外側熱交換器2の熱交換媒体の入口側と室
内側熱交換器3の熱交換媒体の出口側及び、室外側熱交
換器2の熱交換媒体の出口側と、室内側熱交換器3の熱
交換媒体の入口側とをそれぞれ配管で接続する。
In FIG. 1, 2 is an outdoor heat exchanger, and 3 is an indoor heat exchanger. 5 and 7 check valves, 4 and 6 are pressure reducing devices, and the inlet side of the heat exchange medium of the outdoor heat exchanger 2, the outlet side of the heat exchange medium of the indoor heat exchanger 3, and the outdoor heat The outlet side of the heat exchange medium of the exchanger 2 and the inlet side of the heat exchange medium of the indoor heat exchanger 3 are connected by piping, respectively.

1V′i圧縮機、8け六方弁であり、この六方弁8の出
口ボー)a−bと室外側熱交換器2の熱交換媒体入口側
及び、室外側熱交換器2の熱交換媒体出口側と六方弁8
の入口ボー) e −fとを配管で接続する。
1V'i compressor, an 8-piece hexagonal valve, and the outlet a-b of the hexagonal valve 8, the heat exchange medium inlet side of the outdoor heat exchanger 2, and the heat exchange medium outlet of the outdoor heat exchanger 2. Side and hexagonal valve 8
Connect the inlet bow) e and f with piping.

一方室内側熱交換器3の熱媒体入口側は、六方弁8の出
口ボー) a −Cに、又室内側熱交換器3の熱交換媒
体の出口側は、六方弁8の入口ボートd−fに配管で接
続されている。
On the other hand, the heat medium inlet side of the indoor heat exchanger 3 is connected to the outlet port a-C of the six-way valve 8, and the heat exchange medium outlet side of the indoor heat exchanger 3 is connected to the inlet port d- of the six-way valve 8. It is connected to f by piping.

六方弁8の各ボートの関係を第2図に示す。図において
、入口ボー)e−f及び出口ボー)a−Cが開のとき(
暖房時)は、冷房用の入口ボートd−f及び出口ボート
a −bは閉の状態にある。
The relationship between the boats of the six-way valve 8 is shown in FIG. In the figure, when inlet bow) e-f and outlet bow) a-C are open (
During heating), the cooling inlet boats df and outlet boats a and b are closed.

即ち、暖房用ボートと冷房用ボートは、六方弁8により
切換えられるようになっており、従って、各ボートに接
続されている冷暖房サイクル系も切換えられる。第3図
及び第4図は、六方弁8の具体例であり、各ボートの符
号は、第2図に示すボートの符号と一致する。
That is, the heating boat and the cooling boat can be switched by the six-way valve 8, and therefore the heating and cooling cycle system connected to each boat can also be switched. 3 and 4 show specific examples of the six-way valve 8, and the reference numerals of each boat correspond to the reference numerals of the boats shown in FIG.

テ峠キ 以上のように構成した本実施例の作用を説明する。Te Pass Ki The operation of this embodiment configured as above will be explained.

本冷凍サイクルにおいて、冷房時、圧縮機1より吐出さ
れた高温高圧のガス冷媒は六方弁8のポー ) a −
bを通り分岐点gから室外側熱交換器(空気側熱交換器
)2で凝縮して高温高圧の液冷媒となり、分岐点りに至
る。分岐点りと六方弁8のe間は六方弁8のシリンダ1
0とピストン11が閉状態になっているので、冷媒は流
れることなく、分岐点りより逆止弁7を通り減圧装置6
に至る。ここで減圧され低温低圧の不飽和液冷媒は分岐
点IVc至る。分岐点iと六方弁8のC間は六方弁3 
(IF’) シIJ 7ダ10.とピストン11が閉状
態になっているので、冷媒は流れることなく、分岐点i
より室内側熱交換器(水側熱交換器)3で熱交換し2て
低温低圧のガス冷媒となり分岐点jを通り、六方弁8の
ポー)、d−fを通り圧縮機1に戻る。暖房時は六方弁
8は第2図の暖房時の状態になっている。圧縮機1より
吐出された高温高圧のガス冷媒は六方弁8のポー) a
 −Cを通り分岐点iから室内側熱交換器(水側熱交換
器)3で凝縮して高温高圧の液冷媒となり分岐点jrc
至る。分岐点jと六方弁8の6間は六方弁8のシリンダ
10とピストン11が閉状態になっているので、冷媒は
分岐点jより逆止弁5を通り減圧装置4に至る。ここで
減圧され低温低圧の不飽和液冷媒は分岐点gに至る。分
岐点gと六方弁8の5間は六方弁8のシリンダ10とピ
ストン11が閉状態になっているので、冷媒は流れるこ
となく、分岐点gより室外側熱交換器(空気側熱交換器
)2で熱交換して低温低圧のガス冷媒となり分岐点りを
通り、六方弁8のボー) e −fを通り圧縮機1に戻
る。除霜時は冷房時と全く同じサイクルとなる。本実施
によれば冷房時暖房時共に熱交換器への冷媒流路は一方
向であり空気流および水流と対向流となるように配置さ
れている。
In this refrigeration cycle, during cooling, the high-temperature, high-pressure gas refrigerant discharged from the compressor 1 is passed through the port of the six-way valve 8.
It passes through b and condenses at the outdoor heat exchanger (air side heat exchanger) 2 from the branch point g to become a high-temperature, high-pressure liquid refrigerant, and reaches the branch point g. Between the branch point and e of the six-way valve 8 is the cylinder 1 of the six-way valve 8.
0 and the piston 11 are in the closed state, the refrigerant does not flow and passes through the check valve 7 from the branch point to the pressure reducing device 6.
leading to. Here, the pressure is reduced and the low-temperature, low-pressure unsaturated liquid refrigerant reaches a branch point IVc. Between branch point i and C of six-way valve 8 is six-way valve 3
(IF') Shi IJ 7 da 10. Since the piston 11 is in the closed state, the refrigerant does not flow and reaches the branch point i.
The refrigerant then exchanges heat with the indoor heat exchanger (water-side heat exchanger) 3, becomes a low-temperature, low-pressure gas refrigerant, passes through the branch point j, passes through the port of the six-way valve 8), df, and returns to the compressor 1. During heating, the six-way valve 8 is in the state shown in FIG. 2 during heating. The high-temperature, high-pressure gas refrigerant discharged from the compressor 1 is passed through the port of the six-way valve 8) a)
-C, from the branch point i, condenses in the indoor heat exchanger (water side heat exchanger) 3 to become a high temperature and high pressure liquid refrigerant, and turns to the branch point jrc.
reach. Since the cylinder 10 and piston 11 of the six-way valve 8 are in a closed state between the branch point j and the six-way valve 8, the refrigerant passes through the check valve 5 from the branch point j and reaches the pressure reducing device 4. Here, the pressure is reduced and the low-temperature, low-pressure unsaturated liquid refrigerant reaches a branch point g. Since the cylinder 10 and piston 11 of the six-way valve 8 are closed between the branch point g and the six-way valve 8, the refrigerant does not flow, and the refrigerant flows from the branch point g to the outdoor heat exchanger (air side heat exchanger). ) 2, the refrigerant becomes a low-temperature, low-pressure gas refrigerant, passes through the branch point, passes through the hexagonal valve 8 (bow) e - f, and returns to the compressor 1. During defrosting, the cycle is exactly the same as during cooling. According to this embodiment, the refrigerant flow path to the heat exchanger is unidirectional during both cooling and heating, and is arranged so as to flow in a direction opposite to the air flow and the water flow.

又、冷房及び暖房のサイクル系には、1個の逆止弁があ
るのみである。これにより、配管系における圧力損失は
、減少され、圧縮機1の吐出圧力は、室内及び室外の熱
交換器2及び3の熱交換媒体の入口出口の差圧(熱交換
器の入口と出口の差圧により熱媒体は流れるので、この
差圧を大きくする程、流速が速くなり、熱交換効率が向
上する。)として有効に利用される。
Furthermore, there is only one check valve in the cooling and heating cycle system. As a result, the pressure loss in the piping system is reduced, and the discharge pressure of the compressor 1 is reduced by the pressure difference between the inlet and outlet of the heat exchange medium of the indoor and outdoor heat exchangers 2 and 3 (the pressure difference between the inlet and outlet of the heat exchanger). Since the heat medium flows due to the pressure difference, the larger the pressure difference, the faster the flow rate and the better the heat exchange efficiency.

〔発明の効果〕〔Effect of the invention〕

以上詳述した通り本発明に係る空冷ヒートポンプ式空気
調和機によれば、六方弁を用いて、室外熱交換器及び室
内熱交換器を、冷房及び暖房時においても対向流となる
ようにすると共に、冷房サイクル系及び暖房゛サイクル
系の逆止弁の数を最少限の一個にして配管系の圧力損失
を小さくしたので、圧縮機の吐出圧力は、配管系の圧力
損失として消費されずに、室内又は室外の熱交換器の入
口と出口の差圧力として有効に利用でき、熱交換器内を
流れる熱交換媒体の流速を速くシ、かつ対向流との相乗
効果により、冷房、暖房の性能を著しく向上することが
できた。
As detailed above, according to the air-cooled heat pump type air conditioner according to the present invention, the outdoor heat exchanger and the indoor heat exchanger are configured to have opposite flows even during cooling and heating by using a hexagonal valve. , the number of check valves in the cooling cycle system and the heating cycle system is minimized to one to reduce the pressure loss in the piping system, so the discharge pressure of the compressor is not consumed as pressure loss in the piping system. It can be effectively used as a differential pressure between the inlet and outlet of an indoor or outdoor heat exchanger, increasing the flow rate of the heat exchange medium flowing inside the heat exchanger, and the synergistic effect with the counterflow improves cooling and heating performance. I was able to improve significantly.

また従来の4個逆止弁と1個の四方弁に比較して六方弁
1個ですむので部品点数が大幅に少なくなって故障も少
なくなシ、冷凍サイクルの信頼性〒 t + が向上すると共に冷凍サイクルが簡略化されるので組立
工数が減少して安価になり製品価値を向上することがで
きた。
In addition, since only one six-way valve is required compared to the conventional four check valves and one four-way valve, the number of parts is significantly reduced, resulting in fewer failures and improving the reliability of the refrigeration cycle. At the same time, the refrigeration cycle is simplified, which reduces assembly man-hours, lowers the cost, and improves product value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明による一方向冷凍サイクルのサイ−ク
ル系統図、第2図は、本冷凍サイクルに使用する六方弁
の動作を示す縦断面図、第3図、第4図は、それぞれ異
る二種類の六方弁の斜視図である。 1・・・圧縮機  2・・・室外側熱交換器(空気側熱
交換器  3・・・室内側熱交換器(水側熱交換器)4
・・・減圧装置(暖房用)  5・・・逆止弁  6・
・・減圧装置(冷房用)  7・・・逆止弁  8・・
・六方弁  10・・・シリンダ  11・・・ピスト
ンa−f・・・通謀出入ロボート。 =8= 一晩に時−灼進退1 稟桐l
Fig. 1 is a cycle system diagram of a one-way refrigeration cycle according to the present invention, Fig. 2 is a vertical sectional view showing the operation of a six-way valve used in the refrigeration cycle, and Figs. 3 and 4 are respectively FIG. 3 is a perspective view of two different types of hexagonal valves. 1...Compressor 2...Outdoor heat exchanger (air side heat exchanger) 3...Indoor heat exchanger (water side heat exchanger) 4
... Pressure reducing device (for heating) 5... Check valve 6.
...Pressure reducing device (for cooling) 7...Check valve 8...
・Six-way valve 10...Cylinder 11...Piston a-f...Conspiracy entry/exit robot. =8= One night time-scorching advance and retreat 1 Ningiri l

Claims (1)

【特許請求の範囲】[Claims] 室外側熱交換器の熱交換媒体入口側と室内側熱交換器の
熱交換媒体出口側とを減圧装置及び逆止弁を有する配管
で接続し、一方室外側熱交換器の熱交換媒体出口側と室
内側熱交換器の熱交換媒体入口側とを減圧装置及び逆止
弁を有する配管で接続し、圧縮機を出た熱交換媒体を六
方弁、室外側熱交換器、逆止弁及び減圧装置、室内側熱
交換器、六方弁を順次通して再び圧縮機に導くようにし
た冷房用サイクル系と、圧縮機を出た熱交換媒体を六方
弁、室内側熱交換器、逆止弁及び減圧装置、室外側熱交
換器、六方弁を順次通して再び圧縮機に導くようにした
暖房用サイクル系とを形成し、該暖房用サイクル系と前
記冷房サイクル系とを六方弁を介して切換えるようにし
た空冷ヒートポンプ式空気調和機。
The heat exchange medium inlet side of the outdoor heat exchanger and the heat exchange medium outlet side of the indoor heat exchanger are connected by piping having a pressure reducing device and a check valve, while the heat exchange medium outlet side of the outdoor heat exchanger is connected to the heat exchange medium outlet side of the outdoor heat exchanger. and the heat exchange medium inlet side of the indoor heat exchanger are connected by piping equipped with a pressure reducing device and a check valve, and the heat exchange medium exiting the compressor is connected to the hexagonal valve, the outdoor heat exchanger, the check valve, and the pressure reducing device. A cooling cycle system in which the heat exchange medium that exits the compressor is guided back to the compressor through the device, an indoor heat exchanger, a six-way valve, and a six-way valve, an indoor heat exchanger, a check valve, and a A heating cycle system is formed in which the heating cycle system is led back to the compressor through a pressure reducing device, an outdoor heat exchanger, and a six-way valve in sequence, and the heating cycle system and the cooling cycle system are switched via the six-way valve. An air-cooled heat pump type air conditioner.
JP61037404A 1986-02-24 1986-02-24 Air-cooled heat pump type air conditioner Pending JPS62196572A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61037404A JPS62196572A (en) 1986-02-24 1986-02-24 Air-cooled heat pump type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61037404A JPS62196572A (en) 1986-02-24 1986-02-24 Air-cooled heat pump type air conditioner

Publications (1)

Publication Number Publication Date
JPS62196572A true JPS62196572A (en) 1987-08-29

Family

ID=12496589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61037404A Pending JPS62196572A (en) 1986-02-24 1986-02-24 Air-cooled heat pump type air conditioner

Country Status (1)

Country Link
JP (1) JPS62196572A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011048724A1 (en) * 2009-10-22 2011-04-28 ダイキン工業株式会社 Flow path switching valve, and air conditioner provided therewith
JP2015515600A (en) * 2012-04-17 2015-05-28 ウォン,リー,ワ Energy efficient air heating, air conditioning and water heating systems

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011048724A1 (en) * 2009-10-22 2011-04-28 ダイキン工業株式会社 Flow path switching valve, and air conditioner provided therewith
CN102667276A (en) * 2009-10-22 2012-09-12 大金工业株式会社 Flow path switching valve, and air conditioner provided therewith
JP2015515600A (en) * 2012-04-17 2015-05-28 ウォン,リー,ワ Energy efficient air heating, air conditioning and water heating systems

Similar Documents

Publication Publication Date Title
JP5927415B2 (en) Refrigeration cycle equipment
JPS6269066A (en) Refrigeration cycle device
CN106642792B (en) Enhanced vapor injection air conditioning unit
CN106556083B (en) A kind of multi-online air-conditioning system having injector and its control method
US11578898B2 (en) Air conditioning apparatus
US11499727B2 (en) Air conditioning apparatus
JP2002139295A (en) Heat exchanger for air conditioning
JPS62196572A (en) Air-cooled heat pump type air conditioner
CN208382934U (en) A kind of four comb micro-channel heat exchangers
CN110285603B (en) Heat exchanger and refrigeration system using same
CN210070112U (en) Combined type large-temperature-difference cooling system
JPH0480575A (en) Refrigerant distributor
JPS625050A (en) Water heater
JP2000180076A (en) Water/refrigerant heat exchanger
CN204880471U (en) Heat pump air conditioning unit
CN103134239B (en) Heat pump assembly
US20230049970A1 (en) Air conditioning apparatus
CN213687348U (en) Air-cooled heat pump heat exchange system
US11397015B2 (en) Air conditioning apparatus
US20220252349A1 (en) Heat exchanger
CN212320082U (en) High-efficiency heat pump water heater
JPS61235644A (en) Heat pump device
JP2000314573A (en) Heat exchanger for air conditioner
JP2022098086A (en) Air conditioning device
JPS63213757A (en) Air heat-source heat pump device