JPS62196134A - Composite material - Google Patents

Composite material

Info

Publication number
JPS62196134A
JPS62196134A JP3801486A JP3801486A JPS62196134A JP S62196134 A JPS62196134 A JP S62196134A JP 3801486 A JP3801486 A JP 3801486A JP 3801486 A JP3801486 A JP 3801486A JP S62196134 A JPS62196134 A JP S62196134A
Authority
JP
Japan
Prior art keywords
fibers
fiber
composite material
present
synthetic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3801486A
Other languages
Japanese (ja)
Inventor
清久 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP3801486A priority Critical patent/JPS62196134A/en
Publication of JPS62196134A publication Critical patent/JPS62196134A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は合成樹脂と繊維とを主体とする複合材料tこ関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a composite material mainly composed of synthetic resin and fiber.

〔従来の技術〕[Conventional technology]

従来からガラス繊維、炭素繊維等の繊維と不飽和ボリエ
ヌテル、ヌチロール、ジアリルフタレート等の合成樹脂
原料とを混合し、該合成樹脂原料を硬化せしめた複合材
料、即ち繊維強化プラスチック(FTLP、FRTP)
あるいは繊維強化ゴム(FR几)が提供されている。
Conventionally, composite materials such as fiber-reinforced plastics (FTLP, FRTP) are produced by mixing fibers such as glass fibers and carbon fibers with synthetic resin raw materials such as unsaturated Borienether, Nutylol, and diallyl phthalate, and curing the synthetic resin raw materials.
Alternatively, fiber reinforced rubber (FR) is provided.

該複合材料において繊維は、直線形状2編織布形状、フ
ィラメントワインディング法によるヘリカル形状、また
は渦巻状マ、)の形態で用いられており、該繊維はその
強度によって合成樹脂を強化している。
In this composite material, the fibers are used in the form of a linear two-knit woven fabric, a helical shape by a filament winding method, or a spiral shape, and the fibers reinforce the synthetic resin with their strength.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら一般に高剛性・高強度繊維は伸び率が低い
ため、従来の複合材料は引張りに対する靭性および#撃
強度が充分でないと言う欠点を有するものである。これ
は、繊維を直線形状で用いた場合、繊維自体の伸び率に
よって複合材料の伸びが規定され、また繊維を璃織布形
状、ヘリカル形状または渦巻状形態で用いた場合でも、
異なる方向に配列した隣接繊維によって該繊維の伸びが
抑制されるためである。
However, since high-rigidity/high-strength fibers generally have a low elongation rate, conventional composite materials have the drawback of insufficient tensile toughness and impact strength. This means that when fibers are used in a straight shape, the elongation of the composite material is determined by the elongation rate of the fibers themselves, and even when fibers are used in a woven, helical, or spiral shape,
This is because the elongation of the fibers is suppressed by adjacent fibers arranged in different directions.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記従来の問題点を解決する手段として、合成
樹脂内の繊維を波形状とし、かつ各繊維の波形状の波長
の方向を整合せしめるものである。
The present invention solves the above-mentioned conventional problems by making the fibers in the synthetic resin wavy and matching the wavelength directions of the wavy shapes of each fiber.

本発明を以下に詳細に説明すれば、本発明に用いられる
合成樹脂原料としては従来の繊維複合材料に通常用いら
れている不飽和ポリエステル、スチロール、ジアリルフ
タレート、フェノ−/’ml 脂。
The present invention will be described in detail below. The synthetic resin raw materials used in the present invention include unsaturated polyester, styrene, diallyl phthalate, and phenol resin, which are commonly used in conventional fiber composite materials.

エポキシ樹脂等の他メラミン樹脂、尿素樹脂、ウレタン
樹脂、ポリイミド等の熱軟化性合成樹脂やポリ塩化ビニ
ル、ポリエチレン、ポリプロピレン。
In addition to epoxy resins, heat-softening synthetic resins such as melamine resins, urea resins, urethane resins, and polyimides, as well as polyvinyl chloride, polyethylene, and polypropylene.

ポリ弗化エチレン、ポリ弗化ビニリデン、ポリアミド、
ポリカーボネート、ポリブチレンテレフタレート、ポリ
フ、ニセンサルファイド、ポリエーテルスルホン、ポリ
エーテルエーテルケトン、ポリアミドイミド等の熱可塑
性合成樹脂全般を対象とするものである。
Polyfluoroethylene, polyvinylidene fluoride, polyamide,
It targets thermoplastic synthetic resins in general, such as polycarbonate, polybutylene terephthalate, polyph, Nicene sulfide, polyether sulfone, polyether ether ketone, and polyamideimide.

上記例示は本発明を限定するものではない。The above examples are not intended to limit the invention.

本発明に用いられる繊維としては従来の繊維複合材料に
通常用いられる繊維を対象とし、これを例示すればガラ
ス繊維、炭素繊維、ポロン繊維。
The fibers used in the present invention include fibers commonly used in conventional fiber composite materials, such as glass fibers, carbon fibers, and poron fibers.

アルミナ繊維、チタン酸、カリウム繊維、ンリカ繊維、
タングステン繊維、ステンレス繊維、セラミック繊維、
金属繊維、アラミド繊維、ポリアミド繊維、ポリエステ
ル繊維、木綿等の無機金属あるいは有機質繊維である。
Alumina fiber, titanic acid, potassium fiber, linica fiber,
tungsten fiber, stainless steel fiber, ceramic fiber,
These are inorganic metal or organic fibers such as metal fibers, aramid fibers, polyamide fibers, polyester fibers, and cotton.

上記例示は本発明を限定するものではない。The above examples are not intended to limit the invention.

本発明においては上記合成樹脂内において上記繊維は波
形状をなしかつ各繊維について該波形状の波長の方向が
整合せしめられる。即ち第1図に示すように各繊維(1
)は合成樹脂相(2)内において同一形状、即ち同一の
波長と波高を有するサインカーブを画き、かつ各繊維(
1)のサインカーブ間の位相差は0である。
In the present invention, the fibers in the synthetic resin have a wave shape, and the wavelength directions of the wave shapes are matched for each fiber. That is, as shown in Figure 1, each fiber (1
) has the same shape in the synthetic resin phase (2), that is, a sine curve with the same wavelength and wave height, and each fiber (
The phase difference between the sine curves in 1) is 0.

第3図では各1&維は合成樹脂内において同一形状を有
するサインカーブを画き、かつ各繊維のサインカーブ間
の位相差はランダムである。さらに第1図、第3図は本
発明を限定するものではなく本発明の複合材料では各繊
維の波長と波高および各繊維間の位相差は任意であり、
波長、波高9位相差の異った繊維の組合せた複合材料も
本発明に含まれる。又、本発明においては波形状連続繊
維の波長の方向が整合していれば波形状連続繊維の波高
方向が異っていても同様の作用効果が得られる。
In FIG. 3, each fiber draws a sine curve having the same shape in the synthetic resin, and the phase difference between the sine curves of each fiber is random. Furthermore, FIGS. 1 and 3 do not limit the present invention, and in the composite material of the present invention, the wavelength and wave height of each fiber and the phase difference between each fiber are arbitrary.
The present invention also includes a composite material in which fibers having different wavelengths, wave heights, and phase differences are combined. Further, in the present invention, as long as the wavelength directions of the wavy continuous fibers are matched, the same effect can be obtained even if the wave height directions of the wavy continuous fibers are different.

本発明に言う繊維(1)とは単繊維は勿論のこと該単繊
維を数本から数百本懲り合せたストランド、更に該スト
ランドを数本〜数十本集束したロービング等を包含する
ものである。
The fiber (1) referred to in the present invention includes not only single fibers but also strands made of several to several hundred such single fibers, and rovings made of several to several tens of such strands. be.

〔作 用〕[For production]

本発明の複合材料を繊維の波形の波長の方向(第1図工
方向)に沿った方向において引張ると合成樹脂相自体は
伸び変形を生ずるか繊維は波形が伸び形態的に変形する
だけで繊維自体の変形は極めて少ない。繊維の波形が直
線に近づくに従って繊維自体の伸びと応力が著しく増大
する。
When the composite material of the present invention is pulled in the direction along the wavelength direction of the waveform of the fibers (first drawing direction), either the synthetic resin phase itself elongates and deforms, or the fibers only undergo morphological deformation due to the elongation of the waveform. deformation is extremely small. As the waveform of the fiber approaches a straight line, the elongation and stress of the fiber itself increase significantly.

〔発明の効果〕〔Effect of the invention〕

したがって本発明においては繊維の波形が伸びる分だけ
従来の繊維複合材料に比して伸び方向の靭性が向上し衝
撃強度も大巾に向上する。
Therefore, in the present invention, the toughness in the elongation direction is improved and the impact strength is also greatly improved compared to conventional fiber composite materials by the extent that the waveform of the fibers is elongated.

実施例1 第2図はアクリロニトリル・ブタジェン命スチレン樹脂
−ガラス繊維複合体の応力−歪曲線である。図中a/λ
のλは波長、aは振幅を示す。即ちa/λが大穴いこと
は繊維の屈曲度が大きいことを示すものである。図中実
線は第1図に示すように波形繊維(1)の位相を同じに
した場合(同位相モデ/l/)で、破線は第3図に示す
ように位相をランダムにずらせた場合(ランダム位相モ
デ)v)である。同位相モデルはランダム位相モデルよ
りも初期の剛性は低いが高い伸び率を示し、いずれも従
来の直線形状の繊維を用いた場合、即ち第2図でa/λ
=Oの場合よりもはるかに高い伸び率を示す。繊維の屈
曲度a/λが大きくなると複合体の縦弾性係数は低下す
るが伸びは向上する。a/λ=0.1の場合において本
発明の複合材料はグラフの傾斜が漸増する。これは繊維
が形態的に次第に伸びて縦弾性係数が増大17ていくこ
とを示すものである。また第2図で、応力−歪曲線の下
側面積(図中の斜線部分)は靭性を測る尺度となるもの
であるが、同位相モデルはa/λ=Oの場合よりもはる
かに高い靭性を示すことが明らかである。
Example 1 FIG. 2 is a stress-strain curve of an acrylonitrile-butadiene styrene resin-glass fiber composite. a/λ in the figure
λ is the wavelength, and a is the amplitude. That is, the fact that a/λ is large indicates that the degree of bending of the fiber is large. The solid line in the figure shows the case when the phase of the wave-shaped fiber (1) is the same as shown in Fig. 1 (same phase model /l/), and the broken line shows the case when the phase is randomly shifted as shown in Fig. 3 ( random phase model) v). The same-phase model has a lower initial stiffness than the random-phase model, but shows a higher elongation rate.
It exhibits a much higher elongation rate than the case of =O. As the bending degree a/λ of the fiber increases, the longitudinal elastic modulus of the composite decreases, but the elongation increases. In the case of a/λ=0.1, the slope of the graph of the composite material of the present invention gradually increases. This indicates that the fibers gradually elongate in shape and the longitudinal elastic modulus increases17. In addition, in Figure 2, the area under the stress-strain curve (the shaded area in the figure) is a measure of toughness, and the in-phase model shows much higher toughness than the case where a/λ=O. It is clear that

実施例2 第4図はアクリロニトリル・ブタジェン・スチレン樹脂
−アラミド繊維複合体の応力−歪曲線である。図中実線
は第1図の同位相モデル、破線は第3図のランダム位相
モデルを示す。図において、実施例1の場合と同様にa
/λ〉0の本発明の複合材料はa/λ=00複合材料に
比して高い伸び率と靭性を示す。またa/λ=0.1の
グラフにおける傾斜の漸増は実施例1と同様に繊維が形
態的に次第に伸びて行くことを示している。ランダム位
相モデpでは、位相の異なる隣接繊維によって繊維波形
の形態的伸びが抑制されるため、縦弾性係数は高いが伸
び率が小さい。
Example 2 FIG. 4 is a stress-strain curve of an acrylonitrile-butadiene-styrene resin-aramid fiber composite. In the figure, solid lines indicate the same phase model in FIG. 1, and broken lines indicate the random phase model in FIG. 3. In the figure, as in Example 1, a
The composite material of the present invention with /λ>0 exhibits higher elongation and toughness than the composite material with a/λ=0. Further, the gradual increase in the slope in the graph of a/λ=0.1 indicates that the fibers gradually elongate in shape, as in Example 1. In the random phase model p, the morphological elongation of the fiber waveform is suppressed by adjacent fibers with different phases, so the longitudinal elastic modulus is high but the elongation rate is small.

以上の実施例は波形状繊維の波形の波長と波高がほぼ同
じで、波形状繊維の位相差をOにした場合と位相をラン
ダムにずらせた場合の例であるが、波形状繊維の波長と
波高を適宜選択することをこより、複合材料の伸び率は
調節可能であり、使用目的により、波長、波高は適宜選
択可能である。
The above examples are examples in which the wavelength and wave height of the waveform of the waveform fiber are almost the same, and the phase difference of the waveform fiber is O, and the phase is randomly shifted. By appropriately selecting the wave height, the elongation rate of the composite material can be adjusted, and the wavelength and wave height can be appropriately selected depending on the purpose of use.

又、単一の平面内においては波長と波高がほぼ同じ波形
状繊維を用いた複合材料を積層した積層複合材料も本願
発明と同様効果を得ることができ。
Further, a laminated composite material in which composite materials using wave-shaped fibers having substantially the same wavelength and wave height in a single plane are laminated can also obtain the same effect as the present invention.

さらに波長と波高の異なる数種の複合材料を組せて積層
することにより積層複合材料の伸び率を調節することも
可能である。
Furthermore, it is also possible to adjust the elongation rate of the laminated composite material by combining and laminating several types of composite materials having different wavelengths and wave heights.

さらに波形状連続繊維の波長の方向が整合していれば繊
維の波高の方向が異っていても本願発明と同様の効果を
得ることができる。又、波形状繊維を同一平面内に配列
することにより、複合材料の厚さを小さくすることが可
能になる。
Furthermore, as long as the wavelength directions of the wave-shaped continuous fibers are matched, the same effect as the present invention can be obtained even if the wave height directions of the fibers are different. Also, by arranging the corrugated fibers in the same plane, it is possible to reduce the thickness of the composite material.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は同位相モデル、第2図は実施例1の応力−歪曲
線、第3図はランダム位相モデルの内部構造の模式図、
第4図は実施例2の応力−歪曲線である。
Figure 1 is the same phase model, Figure 2 is the stress-strain curve of Example 1, Figure 3 is a schematic diagram of the internal structure of the random phase model,
FIG. 4 is a stress-strain curve of Example 2.

Claims (1)

【特許請求の範囲】[Claims] 合成樹脂と繊維とを主体とする複合材料であって、該繊
維は合成樹脂内において波形状をなし、各繊維の波形状
の波長の方向を整合せしめたことを特徴とする複合材料
A composite material mainly consisting of a synthetic resin and fibers, wherein the fibers have a wave shape within the synthetic resin, and the directions of the wavelengths of the wave shapes of each fiber are matched.
JP3801486A 1986-02-21 1986-02-21 Composite material Pending JPS62196134A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3801486A JPS62196134A (en) 1986-02-21 1986-02-21 Composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3801486A JPS62196134A (en) 1986-02-21 1986-02-21 Composite material

Publications (1)

Publication Number Publication Date
JPS62196134A true JPS62196134A (en) 1987-08-29

Family

ID=12513718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3801486A Pending JPS62196134A (en) 1986-02-21 1986-02-21 Composite material

Country Status (1)

Country Link
JP (1) JPS62196134A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10227464B2 (en) 2014-03-20 2019-03-12 Teijin Limited Fiber-reinforced plastic shaped product

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10227464B2 (en) 2014-03-20 2019-03-12 Teijin Limited Fiber-reinforced plastic shaped product

Similar Documents

Publication Publication Date Title
Bilisik Multiaxis three-dimensional weaving for composites: a review
US4177306A (en) Laminated sectional girder of fiber-reinforced materials
US5100713A (en) Reinforcing woven fabric and preformed material, fiber reinforced composite material and beam using it
US4092453A (en) Lightweight structural part formed of carbon fiber-reinforced plastic
US5324563A (en) Unidirectional carbon fiber reinforced pultruded composite material having improved compressive strength
KR960040642A (en) Laminate material and room harness frame made therefrom
RU2007144506A (en) RIGID BEAM, METHOD AND MULTILAYERED PRODUCT FROM FIBROUS MATERIAL FOR THE PRODUCTION OF THIS BEAM
US5508085A (en) Structural elements made with cores of fiber-reinforced plastic
Tripathi et al. Geometrical modeling of 3D woven honeycomb fabric for manufacturing of lightweight sandwich composite material
DE60221469D1 (en) Through longitudinal and transverse fibers reinforced, pultruded part
KR930017948A (en) Unidirectional Prepreg and Carbon Fiber Reinforced Composites
JP2000014843A (en) Golf club shaft
JPS62196134A (en) Composite material
US4400425A (en) High impact chemically activated polyester fiber reinforced plastic composite
Schindler et al. Engineering of three-dimensional near-net-shape weave structures for high technical performance in carbon fibre–reinforced plastics
CA2116551C (en) Unidirectional graphite pultrusion rod and manufacturing method
JP5028797B2 (en) Fiber reinforced plastic structure
RU77842U1 (en) BEAM FLOOR BEAM FROM POLYMERIC COMPOSITE MATERIALS
Lu et al. Design and manufacture of 3D rectangular box-shaped fabrics
EP0439469B2 (en) High performance continuous fiber reinforced composite grid
Vorhof et al. Lightweight panels with high delamination resistance made of integrally woven truss-like fabric structures
Honda et al. Optimization for the maximum buckling loads of laminated composite plates–Comparison of various design methods
JP7198701B2 (en) Fiber-reinforced plastic composites, fiber-reinforced plastic preforms, and fiber-reinforced plastic intermediate substrates
JP4121911B2 (en) Lattice member and block for earthquake-resistant wall using the same
JPS59150848A (en) Reinforced concrete structure