JPS62196081A - Ultrasonic motor - Google Patents

Ultrasonic motor

Info

Publication number
JPS62196081A
JPS62196081A JP61035963A JP3596386A JPS62196081A JP S62196081 A JPS62196081 A JP S62196081A JP 61035963 A JP61035963 A JP 61035963A JP 3596386 A JP3596386 A JP 3596386A JP S62196081 A JPS62196081 A JP S62196081A
Authority
JP
Japan
Prior art keywords
driving body
driving unit
ultrasonic motor
driving
excited
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61035963A
Other languages
Japanese (ja)
Inventor
Osamu Kawasaki
修 川崎
Akira Tokushima
晃 徳島
Ritsuo Inaba
律夫 稲葉
Katsu Takeda
克 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61035963A priority Critical patent/JPS62196081A/en
Priority to DE8787901637T priority patent/DE3782301T2/en
Priority to PCT/JP1987/000102 priority patent/WO1987005166A1/en
Priority to US07/126,105 priority patent/US4829209A/en
Priority to EP87901637A priority patent/EP0258449B1/en
Publication of JPS62196081A publication Critical patent/JPS62196081A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/16Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors using travelling waves, i.e. Rayleigh surface waves
    • H02N2/166Motors with disc stator

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PURPOSE:To transmit the mechanical energy of a driving unit efficiently to a mover, by a method wherein the disc-formed driving unit is adopted, and wherein the progressive wave of a tertiary or more bending oscillation mode in the peripheral direction and a secondary or more bending oscillation mode in the diameter direction is excited, and wherein a projection is set at the nodal position of oscillation. CONSTITUTION:A piezo-electric unit 7 is put on an elastic unit 8 to compose a driving unit 9. At the nodal circle section of oscillation when the progressive wave of a higher bending oscillation mode tertiary or more in the peripheral direction and secondary or more in the diameter direction is excited on the driving unit 9, a concentric-circle-formed projection 10 is set. The driving unit 9 is positioned and fixed on a base 14 via the projection 10. A slider 11 is put on an elastic unit 12 to compose a mover 13. When the progressive wave of bending oscillation is excited on the driving unit 9 by the piezo-electric unit 7, then the mover 13 is rotated with a rotary shaft 16 for the center.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は圧電体を用いて駆動力を発生する超音波モータ
に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an ultrasonic motor that generates driving force using a piezoelectric material.

従来の技術 近年、圧電セラミック等の圧電体を用いた駆動体に弾性
振動を励起し、これを駆動力とした超音波モータが注目
されている。
BACKGROUND OF THE INVENTION In recent years, ultrasonic motors have attracted attention, in which elastic vibrations are excited in a drive body using a piezoelectric body such as a piezoelectric ceramic, and this vibration is used as a driving force.

以下、図面を参照しながら超音波モータの原理について
説明を行う。
The principle of the ultrasonic motor will be explained below with reference to the drawings.

第3図は超音波モータの1例であり、円環形の弾性体1
の円環面の一方に円環形圧電セラミック2を貼合せて、
圧電駆動体3を構成している。4は耐磨耗性材料のスラ
イダ、6は弾性体であり、互いに貼合せられて動体6を
構成している。動体6はスライダ4を介して駆動体3と
接触している。
Figure 3 shows an example of an ultrasonic motor, with an annular elastic body 1
An annular piezoelectric ceramic 2 is pasted on one of the annular surfaces of the
It constitutes a piezoelectric drive body 3. 4 is a slider made of a wear-resistant material, and 6 is an elastic body, which are pasted together to form the moving body 6. The moving body 6 is in contact with the driving body 3 via the slider 4.

圧電セラミック2に電界を印加すると、駆動体3の周方
向に曲げ振動の進行波が励起されて、動体6を駆動する
。尚、同図中の矢印は動体6の回転方向を示す。
When an electric field is applied to the piezoelectric ceramic 2, a traveling wave of bending vibration is excited in the circumferential direction of the driving body 3, thereby driving the moving body 6. Note that the arrow in the figure indicates the direction of rotation of the moving body 6.

第4図は第3図の超音波モータに使用した圧電セラミッ
ク2の電極構造の1例を示している。同図では円周方向
に曲げ振動が9波のるようにしである。同図において、
人、Bはそれぞれ2分の1波長相当の小領域から成る電
極群で、C,Dはそれぞれ4分の3波長、4分の1波長
の長さの電極である。従って、人の電極群とBの電極群
とけ周方向に4分の1波長(=90度)の位相ずれがあ
る。電極群ム、B内の隣合う小電極部は互いに反対方向
に厚み方向に分極されている。圧電セラミック2の弾性
体1との接着面は第4図に示された面と反対の面であり
、電極はペタ電極である。使用時には電極群ム、Bは第
4図に斜線で示−されたように、それぞれ短絡して用い
られ、ペタ電極が共通電極として用いられる。
FIG. 4 shows an example of the electrode structure of the piezoelectric ceramic 2 used in the ultrasonic motor of FIG. In the figure, nine waves of bending vibration are applied in the circumferential direction. In the same figure,
Person and B are electrode groups each consisting of a small region corresponding to a half wavelength, and C and D are electrodes having a length of three-quarter wavelength and one-quarter wavelength, respectively. Therefore, there is a phase shift of a quarter wavelength (=90 degrees) in the circumferential direction between the electrode group of the person and the electrode group of B. Adjacent small electrode portions in electrode group B are polarized in mutually opposite directions in the thickness direction. The adhesive surface of the piezoelectric ceramic 2 with the elastic body 1 is the surface opposite to the surface shown in FIG. 4, and the electrode is a peta electrode. When in use, the electrode groups M and B are short-circuited, as indicated by diagonal lines in FIG. 4, and the peta electrode is used as a common electrode.

以上のように構成された超音波モータについて、その動
作を以下に説明する。前記圧電体2の電極群ムに電圧 V=Vo−sin(wt)        −−−−−
・(1)を印加すると、駆動体3は円周方向に曲げ振動
をする。第6図は第3図の超音波モータの駆動体を直線
で近似した時の斜視図であり、同図aは圧電体2に電圧
を印加していない時、同図すは圧電体2に電圧を印加し
た時の様子を示す。
The operation of the ultrasonic motor configured as above will be described below. Voltage V=Vo-sin(wt) on the electrode group of the piezoelectric body 2 ------
- When (1) is applied, the driver 3 bends and vibrates in the circumferential direction. FIG. 6 is a perspective view of the driving body of the ultrasonic motor in FIG. 3 when approximated by a straight line. This shows what happens when voltage is applied.

第6図は動体6と駆動体3の接触状況を拡大して描いた
ものである。前記圧電体2の電極郡部にVo−sin(
wt) 、電極群B KVo−cos(wt)の互いに
位相がπ/2だけずれた電圧を印加すれば、駆動体3の
円周方向に曲げ振動の進行波を作ることができる。一般
に進行波は振幅をξとすればξ−ξ。−cog(wt−
kx)       −−−−−−(21で表せる。(
2)式は ξ=ξ。・(008(wt) T008 (k)C)+
tsLn (Wt) ・Sin CkX) )−(3と
書き直せ、(3式は進行波が時間的にπ/2だけ位相の
ずれた波cos(wt)とsin(wt) 、および位
置的にπ/2だけ位相のずれたcow(kx)と5in
(kx)との、それぞれの積の和で得られることを示し
ている。前述の説明より、圧電体2は互いに位置的にπ
/2(=λ/4 )だけ位相のずれた電極群ム。
FIG. 6 is an enlarged depiction of the contact situation between the moving body 6 and the driving body 3. Vo-sin (
wt) and electrode group B KVo-cos(wt), a traveling wave of bending vibration can be created in the circumferential direction of the driving body 3 by applying voltages whose phases are shifted by π/2 from each other. Generally speaking, if the amplitude of a traveling wave is ξ, then ξ−ξ. -cog(wt-
kx) --------(Can be expressed as 21.(
2) The formula is ξ=ξ.・(008(wt) T008 (k)C)+
tsLn (Wt) ・Sin CkX) ) - (Rewrite as 3, (Equation 3 shows the traveling wave as waves cos(wt) and sin(wt) whose phase is shifted by π/2 in time, and π/2 in position. cow(kx) out of phase by 2 and 5in
(kx) and the sum of the respective products. From the above explanation, the piezoelectric bodies 2 are positioned at π
The electrode group has a phase shift of /2 (=λ/4).

Bを持っているので、前記電極群のそれぞれにπ/2だ
け位相のずれた電圧を印加すれば、駆動体3に曲げ振動
の進行波を作れる。
B, a traveling wave of bending vibration can be created in the driving body 3 by applying voltages with a phase difference of π/2 to each of the electrode groups.

第6図は駆動体3の表面入点が進行波の励起により、長
袖2W、短軸2uの楕円運動をしている様子を示し、駆
動体3上に置かれた動体6が楕円の頂点で接触すること
により、波の進行方向とは逆方向に7=lj・Uの速度
で運動する様子を示している。即ち、動体6は任意の静
圧で駆動体3に押し付けられて、駆動体3の表面に接触
し、動体6と駆動体3との摩擦力で波の進行方向と逆方
向に速度Vで駆動される。両者の間に滑りがある時には
、速度は上記のマよりも小さくなる。
Figure 6 shows that the surface entry point of the driving body 3 is moving in an ellipse with a long axis 2W and a short axis 2u due to the excitation of the traveling wave, and the moving body 6 placed on the driving body 3 is at the vertex of the ellipse. The figure shows how, due to contact, the waves move at a speed of 7=lj·U in the opposite direction to the direction in which the waves travel. That is, the moving body 6 is pressed against the driving body 3 with an arbitrary static pressure, comes into contact with the surface of the driving body 3, and is driven at a speed V in the direction opposite to the direction of wave propagation due to the frictional force between the moving body 6 and the driving body 3. be done. When there is slippage between the two, the velocity will be smaller than the above Ma.

発明が解決しようとする問題点 第7図は円環形の駆動体の周方向9次、径方向1次の曲
げ振動の変位分布を示している。同図より、変位は外径
に向うにつれて大きくなる。超音波モータの速度マは、 マ= y−11oc y・ξo−h・・・・・・(41
で表せる。従って、第7図に示したような円環形の周方
向に3次以上、径方向に1次の曲げ振動モードを使う時
には、動体が外周部に接触するように設置すれば、速度
Vを最大にできる。
Problems to be Solved by the Invention FIG. 7 shows the displacement distribution of the ninth-order bending vibration in the circumferential direction and the first-order bending vibration in the radial direction of an annular driving body. From the figure, the displacement increases toward the outer diameter. The speed Ma of the ultrasonic motor is Ma = y-11oc y・ξo-h (41
It can be expressed as Therefore, when using a bending vibration mode of third or higher order in the circumferential direction and first order in the radial direction of an annular shape as shown in Fig. 7, if the moving object is installed so that it is in contact with the outer circumference, the velocity V can be maximized. Can be done.

駆動体の固定はおもに機械振動を阻害しないように、フ
ェルトなどの物質を介して行なわれるが、それでも振動
エネルギの一部は失なわれ、その結果速度マが小さくな
ったり、駆動効率が落ちたりする。また位置固定の精度
が出しにくいという欠点も有する。
The drive body is mainly fixed using a material such as felt so as not to interfere with mechanical vibration, but some of the vibration energy is still lost, resulting in a decrease in speed and drive efficiency. do. It also has the disadvantage that it is difficult to achieve accurate position fixation.

問題点を解決するための手段 駆動体として円板を用いて、該駆動体に周方向3次以上
、径方向2次の高次の曲げ振動を進行波として励振し、
該駆動体の曲げ振動の節円部に突起を設けて、該突起を
介して該駆動体の位置固定を行なう。
Means for solving the problem A disk is used as a driving body, and high-order bending vibrations of 3rd order or more in the circumferential direction and 2nd order in the radial direction are excited in the driving body as traveling waves,
A protrusion is provided on the bending vibration node of the drive body, and the position of the drive body is fixed via the protrusion.

作用 円板形部動体に高次の曲げ振動を励振し、その振動の節
円部を介して該駆動体の固定をすることによって、固定
による機械的エネルギの損失を小さくし、機械出力とし
て生かせるようにする。また位置固定の精度を出せるよ
うにする。
By exciting high-order bending vibration in the working disk-shaped moving body and fixing the driving body through the nodal part of the vibration, the loss of mechanical energy due to fixation can be reduced and can be utilized as mechanical output. Do it like this. It also allows for more accurate position fixation.

実施例 以下、図面に従って本発明の一実施例について説明する
EXAMPLE An example of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例の超音波モータの断面図であ
る。同図において、7は圧電体であり、弾性体8に貼付
けられて駆動体9を構成する。駆動体9に周方向3次以
上、径方向2次以上の高次の曲げ振動モードの進行波を
励起した時の、振動の筒内部に同心円状の突起1oを設
ける。駆動体9は突起10を介して土台14に位置固定
されるので、位置固定は確実に行なえ、しかも曲げ振動
の節円を利用しているので振動を位置固定によって阻害
することはない。11は耐磨耗性のスライダで、駆動体
の曲げ振動の腹から出力を取出すために、振動の腹の位
置に対応して配される。スライダ11は弾性体12と貼
付けられて動体13を構成する。動体13はベアリング
15t−介して、土台14に取付けられた回転軸16に
位置固定される。圧電体7により駆動体9に曲げ振動の
進行波が励起されると、動体13はこの回転軸16を中
心にして回転する。
FIG. 1 is a sectional view of an ultrasonic motor according to an embodiment of the present invention. In the figure, 7 is a piezoelectric body, which is attached to an elastic body 8 to constitute a driving body 9. A concentric protrusion 1o is provided inside the vibration cylinder when a traveling wave of a high-order bending vibration mode of 3rd order or higher in the circumferential direction and 2nd or higher order in the radial direction is excited in the driving body 9. Since the drive body 9 is fixed in position to the base 14 via the protrusion 10, the position can be fixed reliably, and since the nodal circle of bending vibration is utilized, the vibration is not hindered by the position fixation. Reference numeral 11 denotes a wear-resistant slider, which is disposed corresponding to the position of the vibration antinode in order to extract output from the vibration antinode of the driving body. The slider 11 is attached to an elastic body 12 to form a moving body 13. The moving body 13 is fixed in position to a rotating shaft 16 attached to a base 14 via a bearing 15t. When a traveling wave of bending vibration is excited in the driving body 9 by the piezoelectric body 7, the moving body 13 rotates around this rotating shaft 16.

第2図は第1図の実施例の超音波モータの駆動体の断面
図とその曲げ振動の径方向の変位分布図である。同図の
ように径方向2次以上では必ず振幅が0になる節円をも
つ。変位分布曲線ξrは径方向2次の振動モードである
。また、動体13の速度の最大点は(41式より、振幅
最大点で得られ、同図では振動の腹の位置から機械出力
を得ることで実現できる。なお、曲げ振動のモードは、
電極構成との関係において外部駆動周波数を適当に設定
することにより選択可能である。
FIG. 2 is a sectional view of the driving body of the ultrasonic motor of the embodiment shown in FIG. 1 and a radial displacement distribution diagram of its bending vibration. As shown in the figure, there is a nodal circle where the amplitude is always 0 in the radial direction of secondary order or higher. The displacement distribution curve ξr is a second-order vibration mode in the radial direction. In addition, the maximum point of the velocity of the moving body 13 is obtained from the maximum amplitude point (from formula 41, and in the figure, it can be realized by obtaining the mechanical output from the antinode position of the vibration.The mode of bending vibration is
It can be selected by appropriately setting the external drive frequency in relation to the electrode configuration.

第8図は本実施例の駆動体を構成する圧電体の電極構造
を示す平面図である。同図の裏面は弾性体8との接着面
でベタ電極であり、電極人、Bはそれぞれ周方向に阿波
長相当の小電極から成り、図中の十−は分極の向きで厚
み方向に分極されている。C,Dは3/4  、 1/
4 波長領域であり、電極人、Bに互いにπ/2の位相
差をつけるために存在する。駆動時には、電極ム、Bは
それぞれ短絡されて、それぞれsin波、 COx波の
電圧がベタ電極に対して印加される。電圧印加により、
(模式よシ曲げ振動の進行波が励起できる。この例では
周方向3次が振動モードとして使用されているが、原理
上3次以上であればよい。
FIG. 8 is a plan view showing the electrode structure of the piezoelectric body constituting the driving body of this embodiment. The back side of the figure is the adhesive surface with the elastic body 8 and is a solid electrode, and the electrodes B and B are each made of small electrodes equivalent to a wavelength in the circumferential direction. has been done. C, D are 3/4, 1/
4 wavelength range, and exists to give the electrodes and B a phase difference of π/2 from each other. During driving, electrodes M and B are short-circuited, and sine wave and COx wave voltages are applied to the solid electrodes, respectively. By applying voltage,
(A traveling wave of a schematic bending vibration can be excited. In this example, the 3rd order in the circumferential direction is used as the vibration mode, but in principle, any vibration mode of 3rd order or higher is sufficient.

本実施例では駆動体として中心部に穴を有する円板を用
いているが、円板の中央部ではほとんど振動がないので
、穴をなくして回転軸を付けても同様の効果が得られる
In this embodiment, a disk having a hole in the center is used as the driving body, but since there is almost no vibration in the center of the disk, the same effect can be obtained even if the hole is omitted and a rotating shaft is provided.

発明の効果 以上述べたように、本発明によれば円板形部動体を採用
し、周方向3次以上、径方向2次以上の曲げ振動モード
の進行波を励起し、該振動の節円の位置に突起を設け、
該突起を介して駆動体の位置固定をしているので、位置
固定が確実にでき、しかも駆動体の機械振動を阻害する
ことがないので、駆動体の機械エネルギを効率よく動体
に伝達できる。
Effects of the Invention As described above, according to the present invention, a disk-shaped moving body is used to excite traveling waves in the bending vibration mode of the third order or more in the circumferential direction and the second or more order in the radial direction. A protrusion is provided at the position of
Since the position of the driving body is fixed through the protrusion, the position can be reliably fixed, and the mechanical vibration of the driving body is not inhibited, so that the mechanical energy of the driving body can be efficiently transmitted to the moving body.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の超音波モータの断面図、第
2図は第1図の実施例に用いた駆動体の梼側噛時〒径方
向2次のモードの径方向の変位分布曲淑で第3図は従来
の超音波モータの切欠き斜視図、第4図は第3図の従来
例に用いた圧電体の平面図、第6図は超音波モータの駆
動体の振動状態を示すモデル図、第6図は超音波モータ
の原理説明図、第7図は円環形超音波モータの駆動体の
変位分布図、第8図は第1図の実施例に用いた圧電体の
電極構造を示す平面図である。 了・・・・・・圧電体、8・・・・・・弾性体、9・・
・・・・駆動体、1o・・・・・・突起、11・・・・
・・スライダ、12・・・・・・弾性体、13・・・・
・・動体、14・・・・・・土台、16・・川・ベアリ
ング、16・・・・・・回転軸。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2rXJ 第3図 第4図 第5図 (α) ど 第6図 第7図 第8図
Fig. 1 is a sectional view of an ultrasonic motor according to an embodiment of the present invention, and Fig. 2 is a radial displacement of the second-order mode in the radial direction when the driving body used in the embodiment of Fig. 1 engages on the paddle side. Figure 3 shows a cutaway perspective view of a conventional ultrasonic motor, Figure 4 is a plan view of the piezoelectric body used in the conventional example shown in Figure 3, and Figure 6 shows vibrations of the driver of the ultrasonic motor. A model diagram showing the state, Fig. 6 is a diagram explaining the principle of the ultrasonic motor, Fig. 7 is a displacement distribution diagram of the driving body of the annular ultrasonic motor, and Fig. 8 is the piezoelectric body used in the example of Fig. 1. FIG. 3 is a plan view showing the electrode structure of FIG. End...Piezoelectric body, 8...Elastic body, 9...
...Driver, 1o...Protrusion, 11...
...Slider, 12...Elastic body, 13...
...moving body, 14...foundation, 16...river/bearing, 16...rotating axis. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2rXJ Figure 3 Figure 4 Figure 5 (α) Figure 6 Figure 7 Figure 8

Claims (1)

【特許請求の範囲】[Claims] 弾性体と圧電体とから成る駆動体に弾性進行波を励起す
ることにより、上記駆動体上に接触して設置された動体
を移動させる超音波モータにおいて、駆動体として円板
を使用し、該駆動体に励起する進行波として、円周方向
に3次以上、径方向に2次以上の曲げ振動を使用し、該
円板形駆動体の曲げ振動の節円部に突起を設け、該突起
を介して該駆動体の位置固定を行なうことを特徴とする
超音波モータ。
In an ultrasonic motor that moves a moving body placed in contact with the driving body by exciting an elastic traveling wave in the driving body made of an elastic body and a piezoelectric body, a disk is used as the driving body, and the As a traveling wave excited in the driving body, bending vibration of third or higher order in the circumferential direction and second or higher order in the radial direction is used, and a protrusion is provided at the nodal part of the bending vibration of the disc-shaped drive body, and the protrusion is An ultrasonic motor characterized in that the position of the driving body is fixed through a.
JP61035963A 1986-02-18 1986-02-20 Ultrasonic motor Pending JPS62196081A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP61035963A JPS62196081A (en) 1986-02-20 1986-02-20 Ultrasonic motor
DE8787901637T DE3782301T2 (en) 1986-02-18 1987-02-17 ULTRASONIC MOTOR.
PCT/JP1987/000102 WO1987005166A1 (en) 1986-02-18 1987-02-17 Ultrasonic motor
US07/126,105 US4829209A (en) 1986-02-18 1987-02-17 Ultrasonic motor with stator projections and at least two concentric rings of electrodes
EP87901637A EP0258449B1 (en) 1986-02-18 1987-02-17 Ultrasonic motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61035963A JPS62196081A (en) 1986-02-20 1986-02-20 Ultrasonic motor

Publications (1)

Publication Number Publication Date
JPS62196081A true JPS62196081A (en) 1987-08-29

Family

ID=12456610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61035963A Pending JPS62196081A (en) 1986-02-18 1986-02-20 Ultrasonic motor

Country Status (1)

Country Link
JP (1) JPS62196081A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01177874A (en) * 1987-12-29 1989-07-14 Seiko Instr & Electron Ltd Progressive wave motor
JPH02142368A (en) * 1988-11-22 1990-05-31 Matsushita Electric Ind Co Ltd Ultrasonic motor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01177874A (en) * 1987-12-29 1989-07-14 Seiko Instr & Electron Ltd Progressive wave motor
JPH02142368A (en) * 1988-11-22 1990-05-31 Matsushita Electric Ind Co Ltd Ultrasonic motor

Similar Documents

Publication Publication Date Title
JPS61224878A (en) Vibration wave motor
JPS62196081A (en) Ultrasonic motor
JPS62196085A (en) Ultrasonic motor
JP2769151B2 (en) Ultrasonic motor
JP2574284B2 (en) Ultrasonic motor
JPS62196080A (en) Ultrasonic motor
JPH0270277A (en) Ultrasonic motor
JPS62193569A (en) Ultrasonic motor
JPS6118370A (en) Piezoelectric motor
JPS62193573A (en) Ultrasonic motor
JPS60174078A (en) Piezoelectric motor
EP0539969B1 (en) Ultrasonic motor
JP2689425B2 (en) Ultrasonic motor
JPS62196077A (en) Ultrasonic motor
JPS62196078A (en) Ultrasonic motor
JP2537874B2 (en) Ultrasonic motor
JPS6135176A (en) Piezoelectric motor
JPS62193576A (en) Ultrasonic motor
JP2523634B2 (en) Ultrasonic motor
JP2558661B2 (en) Ultrasonic motor
JP2885802B2 (en) Ultrasonic motor
JPS60207468A (en) Supersonic motor
JP2537848B2 (en) Ultrasonic motor
JPS62193574A (en) Ultrasonic motor
JPS63181677A (en) Centroid rotary type ultrasonic motor