JPS62195610A - Photodetecting device - Google Patents

Photodetecting device

Info

Publication number
JPS62195610A
JPS62195610A JP3681886A JP3681886A JPS62195610A JP S62195610 A JPS62195610 A JP S62195610A JP 3681886 A JP3681886 A JP 3681886A JP 3681886 A JP3681886 A JP 3681886A JP S62195610 A JPS62195610 A JP S62195610A
Authority
JP
Japan
Prior art keywords
optical fiber
light
receiving element
light receiving
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3681886A
Other languages
Japanese (ja)
Inventor
Kazuya Taki
和也 滝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brother Industries Ltd
Original Assignee
Brother Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brother Industries Ltd filed Critical Brother Industries Ltd
Priority to JP3681886A priority Critical patent/JPS62195610A/en
Publication of JPS62195610A publication Critical patent/JPS62195610A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Couplings Of Light Guides (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Abstract

PURPOSE:To obtain a photodetecting device capable of omitting optical axis adjustment by constituting the photodetecting device of an optical fiber and a light receiving element directly formed on one end surface of the optical fiber to detect the intensity of light transmitted through the optical fiber. CONSTITUTION:Light transmitted through a core 1a of the optical fiber 1 is directly made incident on an amorphous silicon layer 7 of the light receiving element 3 through a transparent electrode 5. At that time, the layer 7 generates electromotive force corresponding to the intensity of the incident light, so that an output signal I based upon current flowing into a load resistor R1 can be obtained. Since the transparent electrode 5 is directly contacted with the end surface of the optical fiber 1 of the detector to form the light receiving element 3, all the light transmitted through the optical fiber 1 except attenuation due to the electrode 5 is supplied to photoelectric conversion in the light-receiving element 3. Consequently, the photodetecting device can be almost prevented from light reflection or dispersion on the end surface of the optical fiber 1 or the surface of the light receiving element 3 and can obtain high detecting efficiency.

Description

【発明の詳細な説明】 11へ1江 [産業上の利用分野] 本発明は光検出装置に関し、詳しくは光フアイバ中を伝
送される光の強度を検出する光検出装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a photodetection device, and more particularly to a photodetection device that detects the intensity of light transmitted through an optical fiber.

[従来の技術] 従来、この種の光検出装置としては、光導波路として形
成された光フアイバ中を伝送される光を、光フアイバ端
面から外部の受光素子に轡いて、その強度を検出するも
のが知られている。従って、光ファイバからの射出光を
直接受光素子に入光するにせよレンズ等により集光して
から入光するにせよ、光軸調整を行なっていた。
[Prior Art] Conventionally, this type of photodetection device detects the intensity of light transmitted through an optical fiber formed as an optical waveguide by passing the light from the end face of the optical fiber to an external light receiving element. It has been known. Therefore, whether the light emitted from the optical fiber enters the light-receiving element directly or after being focused by a lens or the like, the optical axis must be adjusted.

[発明が解決しようとする問題点1 しかしながら、こうした光検出装置の光軸調整は煩瑣な
手間を必要とする上、調整が不充分であったり、外力や
経年変化等によって光軸にずれが生じたりすると、受光
素子の出力の低下や変動を招致しで、光強度の検出が充
分に行なえないことがあるといった問題があった。また
、光ファイバ端面と受光素子&面とが離間しているので
、これらの而での反lJ]に起因する検出誤差が生じる
ことも考えられた。
[Problem to be Solved by the Invention 1] However, adjusting the optical axis of such a photodetecting device requires a lot of time and effort, and the adjustment may be insufficient or the optical axis may shift due to external force or aging. If this happens, there is a problem that the output of the light-receiving element may decrease or fluctuate, and the light intensity may not be detected satisfactorily. Furthermore, since the end face of the optical fiber and the light-receiving element & surface are separated from each other, it was considered that a detection error due to the anti-lJ between them may occur.

そこで、本発明はこれらの問題を解決し、光軸調整を必
要どしない光検出装置を捉供することを目的としてなさ
れた。
Therefore, the present invention has been made with the object of solving these problems and providing a photodetecting device that does not require optical axis adjustment.

RJJL罹屑工 E問題点を解決するための手段] ゛かかる目的を達成すべく、本発明は問題点を解決する
ための手段として次の構成をとった。即ち、光導波路と
して形成された光ファイバと、該光ファイバの一端面に
直接形成され、該光ファイバを透過してきた光の強度を
検出する受光素子と、からなる光検出装置の構成がそれ
である。
Means for Solving the Problems of RJJL Scrap Work E] ゛In order to achieve the above object, the present invention has the following configuration as a means for solving the problems. That is, this is the configuration of a photodetecting device consisting of an optical fiber formed as an optical waveguide, and a light receiving element that is formed directly on one end surface of the optical fiber and detects the intensity of the light that has passed through the optical fiber. .

ここで、゛受光素子を、光ファイバー端面に直接形成さ
れた透明電極、と、入射する光の強度に応じて電気的特
性が変化する半導体と、該半導体の電気的特性の変化を
前記透明電極と共に取り出す電極と、を積層して形成し
、光フアイバ中を伝送される光の強度を電気イシ弓とし
て容易に取り出ず構成とすることができる。また、光フ
ァイバを複数の光導波路からなるマルチファイバとし、
受光素子の前記透明電極を複数の光導波路に対して其通
に形成し、前記半導体と前記電極とは前記複数の光導波
路毎に形成丈ることにより、多数の光検出装置を簡易に
構成することもできる。尚、こうした半導体としては、
例えばシランを材料ガスとするプラズマ気相化学反応法
により形成される水素化されたアモルファスシリコンの
太陽電池やボ1〜ダイオード等種々のものが考えられる
。また、材料ガスや気相化学反応法も多様に選択りるこ
とができ、光ファイバの態様等に応じてこれらを適宜用
いればよい。
Here, ``a light-receiving element includes a transparent electrode formed directly on the end face of an optical fiber, a semiconductor whose electrical characteristics change depending on the intensity of incident light, and a change in the electrical characteristics of the semiconductor that changes in accordance with the intensity of incident light. It is possible to form a structure in which the intensity of the light transmitted through the optical fiber is not easily extracted as an electric beam by stacking the electrodes and the electrodes to be extracted. In addition, the optical fiber is made into a multi-fiber consisting of multiple optical waveguides,
By forming the transparent electrode of the light-receiving element so as to communicate with the plurality of optical waveguides, and by forming the semiconductor and the electrode with different lengths for each of the plurality of optical waveguides, a large number of photodetecting devices can be easily constructed. You can also do that. Furthermore, as such semiconductors,
For example, various types of solar cells and diodes made of hydrogenated amorphous silicon formed by a plasma vapor phase chemical reaction method using silane as a material gas can be considered. Further, a variety of material gases and vapor phase chemical reaction methods can be selected, and these may be used as appropriate depending on the form of the optical fiber.

更に、受光素子を、光ファイバー端面に直接設けられた
光導電層と、該光導電層上に離間して設けられた2つの
電極とから構成することも何等差支えなく、伝送される
光の強度を、電気抵抗として検出する構成とすることも
できる。この場合には、光フアイバ中を伝送される光は
直接、光導電層に入射するので、微弱な光の検出も良好
に行なうことができる。
Furthermore, there is no problem in constructing the light receiving element from a photoconductive layer provided directly on the end face of the optical fiber and two electrodes provided apart from each other on the photoconductive layer, so that the intensity of the transmitted light can be adjusted. , it can also be configured to be detected as electrical resistance. In this case, since the light transmitted through the optical fiber is directly incident on the photoconductive layer, even weak light can be detected satisfactorily.

[作用] 上記構成を有する本発明の光検出装置は、光フアイバ中
を伝送される光を、外部に導出することなく受光素子に
導くので、光軸FjA整等を行なわなくとも、光の強度
を良好に検出する。
[Function] The photodetector of the present invention having the above configuration guides the light transmitted through the optical fiber to the light receiving element without leading it to the outside, so the intensity of the light can be adjusted without adjusting the optical axis FjA. is detected well.

[実施例1 以上説明した本発明の構成を一層明らかにする為に、次
に本発明の好適な実施例について説明する。第1図は、
本発明−実施例としての光検出装置の構造を示す軸方向
断面図である。
[Example 1] In order to further clarify the configuration of the present invention described above, a preferred example of the present invention will be described next. Figure 1 shows
FIG. 1 is an axial cross-sectional view showing the structure of a photodetection device as an example of the present invention.

図示づ゛るように、本実施例の光検出装置は、屈折率ス
テップインデックス形の光ファイバ1の端面に、プラズ
マCVD (気相化学反応法)法により受光素子3を形
成したものである。光ファイバ1は、シリカ(S i 
Oz )を主成分とし、屈折率の高い中心部分コア1a
と屈折率の低い周辺部分クラッド1bとの二重構造を有
する周知のものであり、外周に被11cを備える。
As shown in the figure, in the photodetection device of this embodiment, a light receiving element 3 is formed on the end face of an optical fiber 1 of a refractive index step index type by plasma CVD (vapor phase chemical reaction method). The optical fiber 1 is made of silica (Si
The central core 1a has a high refractive index and has a high refractive index.
This is a well-known structure having a double structure of a peripheral portion cladding 1b having a low refractive index and a covering 11c on the outer periphery.

この光ファイバ1の端面は光の散乱が生じない程度に鏡
面加工されており、この上に受光素子3が直接形成され
ている。受光素子3は、光ファイバ1の端面に接する半
導体薄膜(MESA膜、ITo膜等)の透明電極5と、
p−1−n接合されたアモルファスシリコン層7と、金
m電極9とから構成されている。アモルファスシリコン
層7は、シラン(Sinト12n+2)を材料ガスとし
て、プラズマCVD等の手法により、形成されるが、こ
の結!!!1!7られる水素化されたアモルファスシリ
コンJI17は、ジボラン(B 2 Hs ) 、ホス
フィン(]〕ト]3)等の添加によりp形化、n形化が
容易であり、優れた光電特性、光学吸収特性を有する。
The end face of this optical fiber 1 is mirror-finished to such an extent that no scattering of light occurs, and the light-receiving element 3 is directly formed thereon. The light receiving element 3 includes a transparent electrode 5 made of a semiconductor thin film (MESA film, ITo film, etc.) that is in contact with the end surface of the optical fiber 1;
It is composed of an amorphous silicon layer 7 and a gold electrode 9 which are connected to each other in a p-1-n manner. The amorphous silicon layer 7 is formed by a method such as plasma CVD using silane (Sin 12n+2) as a material gas. ! ! 1!7 Hydrogenated amorphous silicon JI17 can be easily converted into p-type or n-type by adding diborane (B 2 Hs ), phosphine (]), etc., and has excellent photoelectric properties and optical properties. Has absorption properties.

本実施例では、このアモルファスシリコン層7は光フア
イバ1端而より、pi、! (i!!抵抗)f4.n層
の順に積層化されており、p−1−nホトダイオ−ドと
同等の構造を有づるアモルファスシリコン太陽電池とし
て形成されている。また、両電極5.9間には負荷抵抗
器R1が接続されており、太1[池として働く受光素子
3により電流が流れる構成となっている。尚、水素化さ
れたアモルファスシリコンm7は、プラズマCVDに限
らず、光CvDや電子ナイクロトロン共鳴プラズマCv
D等の手法によっても形成することができる。
In this embodiment, this amorphous silicon layer 7 is made of optical fiber 1, pi,! (i!! resistance) f4. It is formed as an amorphous silicon solar cell having a structure equivalent to a p-1-n photodiode, in which n layers are laminated in this order. Further, a load resistor R1 is connected between both electrodes 5.9, and a current flows through the light-receiving element 3, which acts as a resistor. Note that hydrogenated amorphous silicon m7 can be processed not only by plasma CVD but also by optical CVD and electron nicrotron resonance plasma CVD.
It can also be formed by a method such as D.

以上の構成を有する本実施例においては、光ファイバ1
のコア1aを伝播してきた光は、光フフイバ1の端面よ
り透明電極5を介して受光素子3のアモルファスシリコ
ン層7に直接入射する。この時、アー[ルファスシリコ
ンm7は入射した光の強度に応じた起電力を生じ、これ
により負荷抵抗器R1に流れる電流に基づいて出力信号
Iを得ることができる。
In this embodiment having the above configuration, the optical fiber 1
The light propagating through the core 1a of the optical fiber 1 directly enters the amorphous silicon layer 7 of the light receiving element 3 via the transparent electrode 5 from the end face of the optical fiber 1. At this time, the alpha silicon m7 generates an electromotive force according to the intensity of the incident light, and thereby an output signal I can be obtained based on the current flowing through the load resistor R1.

本実施例の光検出装置では、光ファイバ1の端部に、透
明電極5を直接接触させて受光素子3を形成しているの
で、光フアイバ1中を伝送された光は、透明電極5にJ
:る減衰を除いて、総て受光素子3内での光電変換に供
される。従って、本実施例の光検出装置は、光フアイバ
1端而や受光素子3表面での光の反射や散乱がほとんど
ないことと相俟って、高い検出効率を実現している。尚
、第2図に示すように、受光素子3を、光ファイバ1端
面の一部に形成し、光)7・イバ1中を伝送され端面よ
り外部に導出される光の強度を、受光素子3によってモ
ニタタるよう構成することもできる。こうした光検出装
置は、パルス発振レーザのように出力の強度を一定とづ
ることが困難な光源を用いて、種々、の計測を行なう場
合等に有用である。尚、これらの光検出装置では、アモ
ルファスシリコン層7の起電力を直接増幅器に入力し、
信号として取出ずよう構成することもできる。
In the photodetection device of this embodiment, the transparent electrode 5 is brought into direct contact with the end of the optical fiber 1 to form the light receiving element 3, so that the light transmitted through the optical fiber 1 is transmitted to the transparent electrode 5. J
: All of the light except for attenuation is subjected to photoelectric conversion within the light receiving element 3. Therefore, the photodetection device of this embodiment achieves high detection efficiency, in combination with the fact that there is almost no reflection or scattering of light on the surface of the optical fiber 1 or the light receiving element 3. As shown in FIG. 2, a light receiving element 3 is formed on a part of the end face of the optical fiber 1, and the intensity of the light transmitted through the optical fiber 1 and led out from the end face is measured by the light receiving element 3. It can also be configured to be monitored by 3. Such a photodetector is useful when performing various measurements using a light source such as a pulsed laser whose output intensity is difficult to maintain at a constant level. In addition, in these photodetecting devices, the electromotive force of the amorphous silicon layer 7 is input directly to the amplifier,
It can also be configured so that it is not taken out as a signal.

次に本発明の第2の実施例について説明する。Next, a second embodiment of the present invention will be described.

第2実施例の光検出装置は、第3図に示すように、コア
11a、クラッド11b、被[11cJ:りなる第1実
施例と同様の光ファイバ11の端面に、透明電極15.
・光導m層17.金属電極19よりなる受光素子20を
設けたものである。光導電層17は、硫化カドミウムC
dSあるいは硫化鉛PbS等から形成されており、入射
する光の強度に応じてそのインピーダンス(抵抗値)は
変化する。
As shown in FIG. 3, the photodetecting device of the second embodiment has a core 11a, a cladding 11b, a transparent electrode 15.
・Light guiding m layer 17. A light receiving element 20 made of a metal electrode 19 is provided. The photoconductive layer 17 is made of cadmium C sulfide.
It is made of dS or lead sulfide PbS, and its impedance (resistance value) changes depending on the intensity of incident light.

従って、この抵抗値Rの変化を、外部の電IIE2より
供給される電流の変化として、ここでは抵抗@R2の電
圧として取り出すことにより、光フアイバ1内を伝送さ
れる光の強度を容易に検出することができる。
Therefore, by extracting this change in the resistance value R as a change in the current supplied from the external electric current IIE2, here as the voltage across the resistor @R2, the intensity of the light transmitted within the optical fiber 1 can be easily detected. can do.

本実施例によれば、第1実施例と同様に高い変換効率が
得られる上、受光素子20を光導ff1W417により
構成して、N造工敗、コスト等の低減を図ることも出来
る。
According to this embodiment, not only can a high conversion efficiency be obtained as in the first embodiment, but also the light receiving element 20 can be configured by the light guide ff1W417, thereby reducing manufacturing costs, costs, etc.

尚、第4図に示すように、光3’)ffii!17を光
ファイバ11の端面に直接形成し、その上に、金属電極
19a、19bを離開して設番プることも何等差支えな
い。この場合には、透明電極を用いる必要がなく、透明
電極により光の減衰が存在しないので、充電変換効率を
一層良好なものにすることができる。また、製造工数、
コスト共に低減することもできる。
In addition, as shown in FIG. 4, the light 3') ffii! 17 may be formed directly on the end face of the optical fiber 11, and the metal electrodes 19a and 19b may be separated and placed thereon. In this case, there is no need to use a transparent electrode, and there is no attenuation of light due to the transparent electrode, so that the charge conversion efficiency can be made even better. In addition, manufacturing man-hours,
It is also possible to reduce both costs.

更に、第5図(A)、(B)に示すように、金lff1
電極19a、19bG;i、光導?l!1117の周部
に設けることも考えられる。この場合には、金属電極を
光ファイバ11の端部外周にM首した後、両サイドの電
極を機械的に除去して分離・絶縁して。
Furthermore, as shown in FIGS. 5(A) and (B), gold lff1
Electrodes 19a, 19bG; i, light guide? l! It is also conceivable to provide it around the periphery of 1117. In this case, after a metal electrode is attached to the outer periphery of the end of the optical fiber 11, the electrodes on both sides are mechanically removed to separate and insulate.

もよいし、電極を蒸着する際にマスキングを施すことに
より2つの電極19a、19bを形成してもよい。この
例では、金属?!極19a、19bと光導電層17との
接触面積が増え(接触抵抗は減少し)光検出装置として
の感度の向上に資することができる。
Alternatively, the two electrodes 19a and 19b may be formed by masking when depositing the electrodes. In this example, metal? ! The contact area between the poles 19a, 19b and the photoconductive layer 17 increases (contact resistance decreases), which contributes to improving the sensitivity of the photodetecting device.

次に、本発明の第3実施例について説明づる。Next, a third embodiment of the present invention will be described.

第3実施例のコネクタ付光検出装置は、第6図に示ずよ
うに、光ファイバ21の端面に第1実施例と同様に透明
′Ni極25.アモルファスシリコン層27、金属電極
29よりなる受光素子3oを設け、これに更にゴネクタ
32を一体に組付けて構成されている。コネクタ32は
、透明電極25と電気的に接続され外周部に雄ねじを形
成した係合部34、系合部34内に絶縁部材3Gを介し
て支持され受光素子30の金属型l4J29に接続され
たジjrツク部38とから形成されている。従って、本
実施例にJ:れば、第1実施例と同様の効果を秦する他
、プラグ40をこのコネクタ32にフリーナラ1へ41
によって容易に着脱づることができ、光検出装置ど電子
機器との接続のll!!l易化を図ることができる。
As shown in FIG. 6, the optical detection device with a connector of the third embodiment has a transparent Ni electrode 25 on the end face of the optical fiber 21, as in the first embodiment. A light receiving element 3o made of an amorphous silicon layer 27 and a metal electrode 29 is provided, and a goconnector 32 is further integrally assembled thereto. The connector 32 includes an engaging part 34 that is electrically connected to the transparent electrode 25 and has a male screw formed on the outer periphery, and is supported within the connecting part 34 via an insulating member 3G and connected to the metal type l4J29 of the light receiving element 30. It is formed from a jack portion 38. Therefore, if J: is used in this embodiment, in addition to achieving the same effect as in the first embodiment, the plug 40 is connected to this connector 32 and the free connector 1 is connected to the connector 41.
It can be easily attached and detached, and can be connected to photodetectors and other electronic devices! ! It can be made easier.

更に、光ファイバを多数束ねて用いるイメージガイドや
ファイバハンドル等に本発明を適用することらでさる。
Furthermore, the present invention can be applied to image guides, fiber handles, etc. that use a large number of bundled optical fibers.

第7図は、イメージガイドに応用した実施例を示ず断面
図である。図示する如く、本実施例では、個々に被覆5
1cを有する光ファイバ51を多数束ねてイメージガイ
ドを形成するが、これらの光ファイバ51の端面ば揃え
られて鎖部加工されている。この上に、まず透明電極5
5を多数の光ファイバ51に亘って直1&形成づる。
FIG. 7 is a cross-sectional view, not showing an embodiment applied to an image guide. As shown in the figure, in this embodiment, the coating 5 is individually coated.
An image guide is formed by bundling a large number of optical fibers 51 having 1c, and the end faces of these optical fibers 51 are aligned and chained. On top of this, first transparent electrode 5
5 is directly connected and formed over a large number of optical fibers 51.

この結果、透明電極55は多数の光ファイバ51に対し
て」1通電極となる。次に、この透明電極55上に、光
ファイバ51の端面の位置を除く位置をマスクづるマス
キングパターンを布置し、プラズマCVDににす、p−
1−n接合を右づるアモルファスシリコン層57を成長
さ゛せる。更に、金属電極59をアモルファスシリコン
層57十に形成してからマスキングパターンを除去すれ
ば、アモルファスシリコン層57と金属電極59とは、
光フアイバ51毎に受光素子60として形成されたこと
になる。
As a result, the transparent electrode 55 becomes a single electrode for a large number of optical fibers 51. Next, a masking pattern is placed on the transparent electrode 55 to mask positions other than the end face of the optical fiber 51, and a p-
An amorphous silicon layer 57 is grown to the right of the 1-n junction. Furthermore, if the masking pattern is removed after the metal electrode 59 is formed on the amorphous silicon layer 570, the amorphous silicon layer 57 and the metal electrode 59 are
This means that a light receiving element 60 is formed for each optical fiber 51.

従って、イメージガイドとして、光フアイバ51群の一
喘に成立した光学像を光ファイバ511σにm子化され
た電気信号に容易に変換することかできる。しかも、本
実施例のイメージガイドは、光フアイバ51毎に光軸あ
わせ等を行なう必要がなく、製造工数、コストを格段に
低減しえる上、光軸のばらつぎによる検出効率の不揃い
を生じることがないので、その調整等も簡略化すること
がでさる。
Therefore, as an image guide, it is possible to easily convert an optical image formed in one part of the group of optical fibers 51 into an electrical signal converted into m-converters in the optical fiber 511σ. Moreover, the image guide of this embodiment does not require alignment of the optical axis for each optical fiber 51, which can significantly reduce manufacturing man-hours and costs, and eliminates the possibility of uneven detection efficiency due to variations in the optical axes. Since there is no adjustment, the adjustment etc. can be simplified.

以上、本発明の幾つかの実施例について説明したが本発
明はこれらの実施例に同等限定されるものではなく、被
覆のない光フフイバを用いた構成や受光素子をp−1−
nもしくはアバランシェホトダイオードとして形成した
り、あるいはプラズマCVD以外のCVD′!A置やス
パッタリング蒸着等の薄膜形成手段により形成するなど
、本発明の要旨を変更しない範囲において種々なる態様
で大施しえることは勿論である。
Although several embodiments of the present invention have been described above, the present invention is not limited to these embodiments.
n or formed as an avalanche photodiode, or by CVD other than plasma CVD'! Of course, it can be applied in various ways without departing from the gist of the present invention, such as by forming by a thin film forming means such as A-position or sputtering vapor deposition.

発明の効果 以上詳)ホしたように、本発明の光検出装置にJ:れば
、光フアイバ中を伝送された光を総て受光素子に)9く
ことができるので、光の検出を高い効率で行なうことが
できるという極めて門れた効果を秦覆る。また、光軸調
整の必要がなり、WyJ造工数。
Effects of the Invention As mentioned above, if the photodetection device of the present invention is used, all the light transmitted through the optical fiber can be transmitted to the light receiving element, so that the light detection can be performed at high speed. Qin overturns the extremely effective effect of being able to do it efficiently. In addition, optical axis adjustment is required, which increases the man-hours required for WyJ construction.

コストの低減を図ることができる上、小型を図ることが
でき、光軸ずれを1しないため光検出装置の信頼性を一
層向トさせることもできる。更に、九ファイバ」に受光
素子を直接形成しているので、塵埃等の使用環境の影響
を災けることもなく、光検出の再現性し良好どなる。
In addition to being able to reduce costs, it is also possible to achieve a smaller size, and since optical axis deviation is prevented by 1, the reliability of the photodetecting device can be further improved. Furthermore, since the light-receiving element is directly formed on the 9-fiber, it is not affected by the usage environment such as dust, and the reproducibility of light detection is excellent.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明第1実施例どしての光検出装置の構造を
示す断面図、第2図は第1実施例の変形例を示り゛断面
図、第3図は本発明の第2実施例としての光検出装Uの
構造を示す断面図、第4図。 第5図(Δ)、(B)は各々第2実施例の変形例を示す
概略構成図、第6図は本発明第3実施例としてのコネク
タ付き光検出装置の構造をプラグと共に示す断面図、第
7図は本発明第4実施例としてのイメージガイドの構成
を示す概略構成図、である。 1・・・光ファイバ   3・・・受光素子5・・・透
明電極
FIG. 1 is a cross-sectional view showing the structure of a photodetecting device according to the first embodiment of the present invention, FIG. 2 is a cross-sectional view showing a modification of the first embodiment, and FIG. FIG. 4 is a sectional view showing the structure of a photodetector U as a second embodiment. 5(Δ) and (B) are schematic configuration diagrams showing modifications of the second embodiment, respectively, and FIG. 6 is a sectional view showing the structure of a photodetecting device with a connector as a third embodiment of the present invention together with a plug. , FIG. 7 is a schematic configuration diagram showing the configuration of an image guide as a fourth embodiment of the present invention. 1... Optical fiber 3... Light receiving element 5... Transparent electrode

Claims (1)

【特許請求の範囲】 1 光導波路として形成された光ファイバと、該光ファ
イバの一端面に直接形成され、該光ファイバを透過して
きた光の強度を検出する受光素子と、 からなる光検出装置。 2 前記受光素子は、前記光ファイバー端面に直接形成
された透明電極と、入射する光の強度に応じて電気的特
性が変化する半導体と、該半導体の電気的特性の変化を
前記透明電極と共に取り出す電極と、を積層して形成さ
れた特許請求の範囲第1項記載の光検出装置。 3 前記光ファイバは複数の光導波路からなるマルチフ
ァイバであり、 前記受光素子は、前記透明電極を複数の光導波路に対し
て共通に形成し、前記半導体と前記電極とは前記複数の
光導波路毎に形成した特許請求の範囲第2項記載の光検
出装置。 4 前記受光素子は、前記光ファイバー端面に直接設け
られた光導電層と、該光導電層上に離間して設けられた
2つの電極とから構成された特許請求の範囲第1項記載
の光検出装置。
[Scope of Claims] 1. A photodetection device comprising: an optical fiber formed as an optical waveguide; and a light receiving element formed directly on one end surface of the optical fiber to detect the intensity of light transmitted through the optical fiber. . 2. The light receiving element includes a transparent electrode formed directly on the end face of the optical fiber, a semiconductor whose electrical characteristics change depending on the intensity of incident light, and an electrode that extracts changes in the electrical characteristics of the semiconductor together with the transparent electrode. The photodetecting device according to claim 1, which is formed by laminating the above. 3. The optical fiber is a multi-fiber consisting of a plurality of optical waveguides, and the light receiving element has the transparent electrode formed in common for the plurality of optical waveguides, and the semiconductor and the electrode are formed for each of the plurality of optical waveguides. A photodetecting device according to claim 2, which is formed as follows. 4. The photodetector according to claim 1, wherein the light receiving element is comprised of a photoconductive layer provided directly on the end face of the optical fiber, and two electrodes provided spaced apart on the photoconductive layer. Device.
JP3681886A 1986-02-21 1986-02-21 Photodetecting device Pending JPS62195610A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3681886A JPS62195610A (en) 1986-02-21 1986-02-21 Photodetecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3681886A JPS62195610A (en) 1986-02-21 1986-02-21 Photodetecting device

Publications (1)

Publication Number Publication Date
JPS62195610A true JPS62195610A (en) 1987-08-28

Family

ID=12480339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3681886A Pending JPS62195610A (en) 1986-02-21 1986-02-21 Photodetecting device

Country Status (1)

Country Link
JP (1) JPS62195610A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0968410A1 (en) * 1997-03-20 2000-01-05 Hartford Hospital Method and apparatus for evaluating the performance characteristics of endoscopes
JP2007017810A (en) * 2005-07-08 2007-01-25 National Institute Of Advanced Industrial & Technology Structure for connecting optical element-attached optical fiber with coaxial electric wiring
JP2008128636A (en) * 2006-11-16 2008-06-05 Nichia Chem Ind Ltd Light-emitting device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0968410A1 (en) * 1997-03-20 2000-01-05 Hartford Hospital Method and apparatus for evaluating the performance characteristics of endoscopes
EP0968410A4 (en) * 1997-03-20 2000-05-24 Hartford Hospital Method and apparatus for evaluating the performance characteristics of endoscopes
JP2007017810A (en) * 2005-07-08 2007-01-25 National Institute Of Advanced Industrial & Technology Structure for connecting optical element-attached optical fiber with coaxial electric wiring
JP2008128636A (en) * 2006-11-16 2008-06-05 Nichia Chem Ind Ltd Light-emitting device

Similar Documents

Publication Publication Date Title
CN101490856B (en) inverted planar avalanche photodiode
US6897498B2 (en) Polycrystalline germanium-based waveguide detector integrated on a thin silicon-on-insulator (SOI) platform
Ma et al. CMOS-compatible integrated spectrometer based on echelle diffraction grating and MSM photodetector array
CN107532967B (en) System for testing performance of optical device and method for testing optical device
US7276770B1 (en) Fast Si diodes and arrays with high quantum efficiency built on dielectrically isolated wafers
KR20150088627A (en) Photodetector
CA2030008C (en) Light-receiving device
EP1233458A1 (en) Photodetector array
US6844607B2 (en) Photodiode array device, a photodiode module, and a structure for connecting the photodiode module and an optical connector
AU637704B2 (en) Photo detectors
JPS62195610A (en) Photodetecting device
CN109671795B (en) Back incidence type array photoelectric chip and preparation method thereof
CN109801983B (en) Back incidence type coplanar electrode photoelectric chip and preparation method thereof
JP2005123513A (en) Photodetector
US11894471B2 (en) Photoelectric chip, manufacturing method and installation method
JPS60182779A (en) Photocoupler
Brown et al. Monolithically integrated 1× 12 array of planar InGaAs/InP photodiodes
JPH05251673A (en) Photodetector
JPH03202732A (en) Color sensor
JP3982138B2 (en) Photodiode array element
CN215266304U (en) 8-channel structure based on polarization beam splitter and photoelectric detector
WO2004017428A1 (en) Wavelength-demultiplexer with integrated monolithic photodiodes
JP2001228021A (en) Optical signal measuring circuit
JP3162184B2 (en) Light detection device
CN109860210A (en) Normal incidence coplanar electrode array photoelectric chip and preparation method thereof