JPS62193126A - Method and apparatus for microwave plasma treatment - Google Patents

Method and apparatus for microwave plasma treatment

Info

Publication number
JPS62193126A
JPS62193126A JP3303386A JP3303386A JPS62193126A JP S62193126 A JPS62193126 A JP S62193126A JP 3303386 A JP3303386 A JP 3303386A JP 3303386 A JP3303386 A JP 3303386A JP S62193126 A JPS62193126 A JP S62193126A
Authority
JP
Japan
Prior art keywords
sample
plasma
high frequency
sample stage
microwave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3303386A
Other languages
Japanese (ja)
Other versions
JPH0831438B2 (en
Inventor
Masaharu Saikai
西海 正治
Yoshinao Kawasaki
義直 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61033033A priority Critical patent/JPH0831438B2/en
Publication of JPS62193126A publication Critical patent/JPS62193126A/en
Publication of JPH0831438B2 publication Critical patent/JPH0831438B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To improve an etching speed, by providing a process for treating a sample, which is placed on a sample stage in a vacuum container with plasma, and providing a process for applying a high frequency voltage at a frequency of 10MHz or higher to the sample stage. CONSTITUTION:Treating gas is supplied to an end part 1a of a plasma chamber 1. Under the stage plasma chamber 1 is evacuated and its pressure is reduced to a specified pressure, a microwave is oscillated at a microwave oscillating source 8. Then the microwave is inputted to the end part 1 from a waveguide 7. The treating gas within the end part 1a is excited with the microwave. At this time, a magnetic field is generated within the end part 1a with a magnet 10, and more intense plasma is yield. The plasma is moved to the direction of a sample 3 by the control of the magnet is field. A high frequency voltage is applied to a sample stage 2, and high frequency discharge is yielded in the plasma, which is moved to the vicinity of the sample 3. A bias potential is generated at the sample stage 2. Ions in the plasma, which is formed by the high frequency discharge at the bias potential of the sample stage, is vertically inputted to the sample 3, and the sample 3 is etched. Thus the etching speed is increased.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はマイクロ波プラズマ処理方法および装置に係り
、特にプラズマ中のイオンによって固体表面のエツチン
グを行うのに好適なプラズマ処理方法および装置に関す
るものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a microwave plasma processing method and apparatus, and particularly to a plasma processing method and apparatus suitable for etching a solid surface using ions in plasma. It is.

〔従来の技術〕[Conventional technology]

従来の装置は、特公昭56−37311号に記載のよう
に、マイクロ波と磁場とを用いたプラズマ処理と、l 
Q Q KHz〜10 MHzの交流電圧を試料に印加
する手段とを併用して試料をエツチング処理するものが
あった。しかし、交流電圧に10MHz以上の高周波を
用いる点については考慮されていなかった。
Conventional equipment uses plasma processing using microwaves and a magnetic field, as described in Japanese Patent Publication No. 56-37311, and l
There is a method for etching a sample using a method for applying an alternating current voltage of 10 MHz to 10 MHz to the sample. However, no consideration was given to the use of a high frequency of 10 MHz or higher for the alternating current voltage.

0発明が解決しようとする問題点〕 上記従来技術は、10M)h以上の周波数の交流電圧を
用いたものについては考慮されておらず、実際には電波
法および工業技術の制約により、400 KHzまたは
3 Q Q KHzの低周波域の発振源しか用いること
ができず、さらにエツチング速度を向上させる上で限界
があるという問題があった。
0 Problems to be Solved by the Invention] The above-mentioned conventional technology does not take into consideration those using AC voltage with a frequency of 10 M)h or higher, and in reality, due to the restrictions of the Radio Law and industrial technology, the AC voltage of 400 KHz is not considered. Alternatively, only an oscillation source in a low frequency range of 3 Q Q KHz can be used, and furthermore, there is a problem that there is a limit to improving the etching speed.

本発明の目的は、エツチング速度を向上させ、さらに優
れた加工特性を得ることのできるマイクロ波プラズマ処
理方法および装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a microwave plasma processing method and apparatus that can improve etching speed and provide even better processing characteristics.

〔問題を解決するための手段〕[Means to solve the problem]

上記目的は、100 KHz 〜10 MHz cD低
周波域をl Q MHz以上の高周波域に変えて、試料
に交流電圧を印加することにより達成される。
The above object is achieved by changing the 100 KHz to 10 MHz cD low frequency range to a high frequency range of lQ MHz or more and applying an alternating current voltage to the sample.

〔作用〕[Effect]

従来技術の低周波放電を用いた場合、高真空圧力中でマ
イクロ波によって励起された、処理ガスの原子や分子の
イオンは、交流電圧の周期が長いため移動距離が長くな
り、トラップされることなく試料に到達する。このとき
、低周波放電の電気力線が試料に垂直に作用しているの
であれば、イオンは試料に対し垂直に入射してくる確率
が高(なるが、電気力線が試料に垂直に作用していない
場合は試料に対する方向性をもたせることが困難となる
When conventional low-frequency discharge is used, ions of atoms and molecules of the processing gas excited by microwaves in high vacuum pressure have a long travel distance due to the long period of the alternating current voltage, and can be trapped. reaching the sample without any problems. At this time, if the electric lines of force of the low-frequency discharge are acting perpendicularly to the sample, there is a high probability that the ions will be incident perpendicularly to the sample. If not, it will be difficult to provide directionality to the sample.

本発明のように例えば13.56 MHzのような高周
波放電を用いると、交流電圧の周期が短いためにイオン
の移動距離が短くなり、イオンがトラップされる。ここ
で、試料台と高周波発振源との間にブロッキングコンデ
ンサーを入れ、試料台をアース電位から浮かせた形にす
ると、上述のトラップ現象より、試料台に直流電位が定
常的に存在するようjこなる。この直流電位(アース電
位に対し、マイナス側に滞電する)とプラズマ電位(正
電位)との差によって、試料近傍にイオンシースが形成
され、高周波放電の電気力線に係わりなく、イオンが試
料に対し垂直に入射するようになる。また、この電位差
により、イオンが運動エネルギーを得るため、試料の処
理速度が低周波放電を利用するのに比べ向上する。
When a high frequency discharge such as 13.56 MHz is used as in the present invention, the period of the alternating current voltage is short, so the distance the ions travel becomes short, and the ions are trapped. If a blocking capacitor is inserted between the sample stage and the high-frequency oscillation source, and the sample stage is lifted from the ground potential, the trap phenomenon described above will cause a constant DC potential to exist on the sample stage. Become. Due to the difference between this DC potential (current is stored on the negative side with respect to the earth potential) and the plasma potential (positive potential), an ion sheath is formed near the sample, and ions are transferred to the sample regardless of the electric field lines of the high-frequency discharge. It becomes incident perpendicular to the Furthermore, because the ions gain kinetic energy due to this potential difference, the sample processing speed is improved compared to using low frequency discharge.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図と第2図とにより説明
する。
An embodiment of the present invention will be described below with reference to FIGS. 1 and 2.

第1図において、真空容器であるプラズマ室1内には、
試料3を配置する試料台2が設けである。
In FIG. 1, inside the plasma chamber 1, which is a vacuum container, there are
A sample stage 2 on which a sample 3 is placed is provided.

試料台2には、コンデンサ4を介して交流電圧を印加す
る手段である高周波電源5が接続されている。高周波電
源5は、例えば13.56 MHzの高周波を発振する
。高周波電源5の他方は、アースされている。試料台2
の周辺には、アース電極6が設けられている。アース電
極6はアースされている。試料台2の試料面に対向する
側には、プラズマ室1の端部1aを囲むように導波管7
が設けである。導波管7の端部にはマイクロ波発信源8
が取り付けである。マイクロ波発信源8には、直流電源
9が接続されている。マイクロ波発振源8は、例えば2
.45 GHzのマイクロ波を発振する。プラズマ室1
の端部1a周辺には、導波管7を介して磁場発生手段で
ある磁石10が設けである。プラズマ室1の端部1a付
近には、図示しないガス供給装置からプラズマ室1の端
部1aに処理ガスを導入するガス導入口12が設けであ
る。プラズマ室1の端部1aの反対側には、図示しない
排気装置に継ながる排気口が設けである。
A high frequency power source 5, which is a means for applying an alternating current voltage, is connected to the sample stage 2 via a capacitor 4. The high frequency power supply 5 oscillates a high frequency of 13.56 MHz, for example. The other end of the high frequency power source 5 is grounded. Sample stand 2
A ground electrode 6 is provided around the . The ground electrode 6 is grounded. A waveguide 7 is provided on the side of the sample stage 2 facing the sample surface so as to surround the end 1a of the plasma chamber 1.
is the provision. A microwave source 8 is located at the end of the waveguide 7.
is the installation. A DC power supply 9 is connected to the microwave oscillation source 8 . The microwave oscillation source 8 is, for example, 2
.. It oscillates microwaves at 45 GHz. plasma chamber 1
A magnet 10, which is a magnetic field generating means, is provided around the end 1a of the waveguide 7 via a waveguide 7. A gas inlet 12 is provided near the end 1a of the plasma chamber 1 for introducing a processing gas into the end 1a of the plasma chamber 1 from a gas supply device (not shown). An exhaust port connected to an exhaust device (not shown) is provided on the opposite side of the end 1a of the plasma chamber 1.

上記構成により、プラズマ室1の端部1alこ処理ガス
を供給し、プラズマ室1を所定圧力に減圧排気した状態
で、マイクロ波発振源8からマイクロ波を発振する。マ
イクロ波は導波管7に導かれてプラズマ室1の端部1a
を透過して端部1aに入る。端部1a内の処理ガスは、
マイクロ波によって励起される。この時、磁石10によ
って端部1a内に磁場を発生させ、より強いプラズマを
発生させるとともに、磁場の制御によってプラズマを試
料3の方へ輸送する。試料台2に高周波電圧を印加する
ことによって、試料3の近傍に輸送されてきたプラズマ
に高周波放電を発生させ、試料台2にバイアス電位を生
成させる。試料台2のバイアス電位により高周波放電に
よるプラズマ中のイオンが試料3に垂直に入射して、試
料3がエツチングされる。
With the above configuration, the processing gas is supplied to the end portion 1al of the plasma chamber 1, and the microwave oscillation source 8 oscillates microwaves while the plasma chamber 1 is depressurized and evacuated to a predetermined pressure. The microwave is guided to the waveguide 7 and reaches the end 1a of the plasma chamber 1.
and enters the end portion 1a. The processing gas in the end portion 1a is
Excited by microwaves. At this time, a magnetic field is generated within the end portion 1a by the magnet 10 to generate stronger plasma, and the plasma is transported toward the sample 3 by controlling the magnetic field. By applying a high frequency voltage to the sample stage 2, a high frequency discharge is generated in the plasma transported near the sample 3, and a bias potential is generated on the sample stage 2. Due to the bias potential of the sample stage 2, ions in the plasma caused by high-frequency discharge are perpendicularly incident on the sample 3, and the sample 3 is etched.

また、高周波電源5の電力を制御することによって、試
料台2のバイアス電位を制御してマイクロ波および磁場
の作用によって生成したプラズマとは無関係に、プラズ
マ中のイオンエネルギーを制御できる。
Furthermore, by controlling the power of the high-frequency power source 5, the bias potential of the sample stage 2 can be controlled, and the ion energy in the plasma can be controlled independently of the plasma generated by the action of microwaves and magnetic fields.

第2図に、処理ガスとしてSF6.ガス圧力を5.2X
10  Pa、 フィクロ波電力を250Wとした条件
で、各周波数の交流電圧を試料台2に印加した場合の全
印加電圧vppと自己バイアス電圧Vdcとの関係を示
す。
In FIG. 2, SF6. Gas pressure 5.2X
The relationship between the total applied voltage vpp and the self-bias voltage Vdc is shown when an AC voltage of each frequency is applied to the sample stage 2 under the conditions that the fibrous wave power is 10 Pa and 250 W.

第2図によれば、全印加電圧Vl)l)が大きくなるに
従い、自己バイアス電圧Vdcも大きくなっている。ま
た、同一全印加電圧Vppに対して、周波数が高くなる
につれて自己バイアス電圧Vdcも大きくなっている。
According to FIG. 2, as the total applied voltage Vl)l) increases, the self-bias voltage Vdc also increases. Further, for the same total applied voltage Vpp, as the frequency becomes higher, the self-bias voltage Vdc also becomes larger.

すなわち、低周波である1 0 MHzに比べて高周波
である13.56 MHzの方が、同一全印加電圧vl
)plこ対して自己バイアス電圧Vdcが大きい。
In other words, compared to the low frequency of 10 MHz, the high frequency of 13.56 MHz has the same total applied voltage vl.
) pl, the self-bias voltage Vdc is larger.

以上、本−実施例によれば、低周波である10MHz以
上の高周波を用いることにより、同一全印加電圧vpp
に対し自己バイアス電圧Vdcを大きくすることができ
、それだけ、イオンを加速するためのエネルギーが大き
くなり、エツチング速度を向上させることができる。逆
に、小さい入力電力でイオンの加速を制御できる。
As described above, according to this embodiment, by using a high frequency of 10 MHz or more, which is a low frequency, the same total applied voltage vpp
In contrast, the self-bias voltage Vdc can be increased, and the energy for accelerating ions increases accordingly, making it possible to improve the etching rate. Conversely, ion acceleration can be controlled with small input power.

また、工業上は、800 KHzや10 MHz等の低
周波発振器は一般に市販されておらず、高周波発振器で
は13.56 MHzのものが市販されており、13、
56 MHzの高周波発振器の方が機器コストが安い。
In addition, from an industrial perspective, low frequency oscillators such as 800 KHz and 10 MHz are generally not commercially available, but high frequency oscillators with a frequency of 13.56 MHz are commercially available.
The equipment cost of a 56 MHz high frequency oscillator is lower.

したがって13.56 MHzの高周波発振器を用いれ
ば、10 MHz以下の低周波発振器に比べて、イオン
の制御性が向上し、かつ装置が安価にできる。
Therefore, if a high frequency oscillator of 13.56 MHz is used, ion controllability is improved and the device can be made at a lower cost than a low frequency oscillator of 10 MHz or less.

なお、本−実施例は、プラズマ化手段に電子サイクロト
ロン共鳴(ECR)放電を用いた装置について記載した
が、プラズマ化手段にマイクロ波放電を用いたものでも
同様の効果がある。
Although this embodiment has described an apparatus using electron cyclotron resonance (ECR) discharge as the plasma generation means, a similar effect can be obtained using a microwave discharge as the plasma generation means.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、試料台に周波数10MHz以上の高周
派電圧印加すること蓄こより、エツチング速度を向上さ
せ、さらに優れた加工特性を得ることができるという効
果がある。
According to the present invention, by applying and storing a high-frequency voltage with a frequency of 10 MHz or more to the sample stage, the etching speed can be improved and even better processing characteristics can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例であるマイクロ波プラズマ処
理装置を示す縦断面図、第2図は全印加電圧と自己バイ
アス電圧の関係を示す図である。 1・・・・・・プラズマ室   2・・・・・・試料台
4・・・・・・コンデンサ   5・・・・・・高周波
発振器) フ ¥1図 /−−−−−7°うにマ堅 2−−−−一試粁台 a  −一一一マイ203庚i【拐鯵京lθ−−−−忌
FIG. 1 is a longitudinal sectional view showing a microwave plasma processing apparatus according to an embodiment of the present invention, and FIG. 2 is a diagram showing the relationship between the total applied voltage and the self-bias voltage. 1... Plasma chamber 2... Sample stage 4... Capacitor 5... High frequency oscillator) Ken 2----Ichitsukadai a - 111 Mai 203庚i

Claims (1)

【特許請求の範囲】 1、真空容器内に処理ガスを導入し該処理ガスをプラズ
マ化する工程と、前記真空容器内の試料台に配置された
試料を前記プラズマにより処理する工程と、前記試料台
に周波数10MHz以上の高周波電圧を印加する工程と
を有することを特徴とするマイクロ波プラズマ処理方法
。 2、真空容器と、該真空容器内に処理ガスを供給する手
段と、前記真空容器内を所定圧力に減圧排気する排気手
段と、前記真空容器内の処理ガスをプラズマ化する手段
と、前記真空容器内に設けられ試料を支持する試料台と
、該試料台に周波数10MHz以上の高周波電圧を印加
する高周波電圧印加手段とから成ることを特徴とするマ
イクロ波プラズマ処理装置。
[Claims] 1. A step of introducing a processing gas into a vacuum container and turning the processing gas into plasma, a step of treating a sample placed on a sample stage in the vacuum container with the plasma, and a step of treating the sample with the plasma. A microwave plasma processing method characterized by comprising the step of applying a high frequency voltage with a frequency of 10 MHz or more to the stage. 2. A vacuum container, a means for supplying a processing gas into the vacuum container, an evacuation means for reducing and exhausting the inside of the vacuum container to a predetermined pressure, a means for turning the processing gas in the vacuum container into plasma, and the vacuum A microwave plasma processing apparatus comprising: a sample stage provided in a container to support a sample; and a high-frequency voltage applying means for applying a high-frequency voltage with a frequency of 10 MHz or higher to the sample stage.
JP61033033A 1986-02-19 1986-02-19 Microwave plasma processing equipment Expired - Lifetime JPH0831438B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61033033A JPH0831438B2 (en) 1986-02-19 1986-02-19 Microwave plasma processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61033033A JPH0831438B2 (en) 1986-02-19 1986-02-19 Microwave plasma processing equipment

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP6199672A Division JP2629610B2 (en) 1994-08-24 1994-08-24 Microwave plasma processing equipment

Publications (2)

Publication Number Publication Date
JPS62193126A true JPS62193126A (en) 1987-08-25
JPH0831438B2 JPH0831438B2 (en) 1996-03-27

Family

ID=12375480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61033033A Expired - Lifetime JPH0831438B2 (en) 1986-02-19 1986-02-19 Microwave plasma processing equipment

Country Status (1)

Country Link
JP (1) JPH0831438B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0421430A2 (en) 1989-10-03 1991-04-10 Applied Materials, Inc. A plasma process, method and apparatus
US5759922A (en) * 1993-08-25 1998-06-02 Micron Technology, Inc. Control of etch profiles during extended overetch
KR100339813B1 (en) * 1999-12-16 2002-06-07 김덕중 Atmospheric Plasma System Using High Frequency Source

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5637311A (en) * 1979-08-27 1981-04-11 Kanebo Ltd Polyester fiber for woven and knitted fabric
JPS57164986A (en) * 1982-02-26 1982-10-09 Hitachi Ltd Microwave plasma etching device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5637311A (en) * 1979-08-27 1981-04-11 Kanebo Ltd Polyester fiber for woven and knitted fabric
JPS57164986A (en) * 1982-02-26 1982-10-09 Hitachi Ltd Microwave plasma etching device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0421430A2 (en) 1989-10-03 1991-04-10 Applied Materials, Inc. A plasma process, method and apparatus
EP0421430B2 (en) 1989-10-03 2003-12-10 Applied Materials, Inc. A plasma process, method and apparatus
US5759922A (en) * 1993-08-25 1998-06-02 Micron Technology, Inc. Control of etch profiles during extended overetch
KR100339813B1 (en) * 1999-12-16 2002-06-07 김덕중 Atmospheric Plasma System Using High Frequency Source

Also Published As

Publication number Publication date
JPH0831438B2 (en) 1996-03-27

Similar Documents

Publication Publication Date Title
EP0271341B1 (en) Method and apparatus for ion etching
KR100291152B1 (en) Plasma generating apparatus
US6849857B2 (en) Beam processing apparatus
KR890004881B1 (en) Plasma treating method and device thereof
EP0721514B1 (en) Magnetically enhanced multiple capacitive plasma generation apparatus and related method
JPH08181125A (en) Plasma treatment and device thereof
US6909086B2 (en) Neutral particle beam processing apparatus
JPS63155728A (en) Plasma processor
JPH0469415B2 (en)
JPS62193126A (en) Method and apparatus for microwave plasma treatment
JPH0766918B2 (en) Plasma processing device
JP2629610B2 (en) Microwave plasma processing equipment
JPS63103088A (en) Plasma treating device
JPH10284298A (en) Plasma processing method and device
KR930001857B1 (en) Treating method and apparatus using plasma
JPS5812346B2 (en) plasma etching equipment
JPH0217636A (en) Dry etching device
JPH0312924A (en) Plasma treatment device
JPH08246146A (en) Method for plasma treating and device therefor
JPS6223987A (en) Dry etching device
JP2827660B2 (en) Microwave plasma processing method
JP2515885B2 (en) Plasma processing device
JPS63318127A (en) Plasma processing device
JPS63104333A (en) Dry etching method
JPH05291190A (en) Plasma apparatus

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term