JPS62192809A - Position controller - Google Patents

Position controller

Info

Publication number
JPS62192809A
JPS62192809A JP61033987A JP3398786A JPS62192809A JP S62192809 A JPS62192809 A JP S62192809A JP 61033987 A JP61033987 A JP 61033987A JP 3398786 A JP3398786 A JP 3398786A JP S62192809 A JPS62192809 A JP S62192809A
Authority
JP
Japan
Prior art keywords
piezoelectric element
stage
driving
clamper
movable stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61033987A
Other languages
Japanese (ja)
Inventor
Masaru Otsuka
勝 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP61033987A priority Critical patent/JPS62192809A/en
Publication of JPS62192809A publication Critical patent/JPS62192809A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
    • B23Q1/25Movable or adjustable work or tool supports
    • B23Q1/26Movable or adjustable work or tool supports characterised by constructional features relating to the co-operation of relatively movable members; Means for preventing relative movement of such members
    • B23Q1/28Means for securing sliding members in any desired position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
    • B23Q1/25Movable or adjustable work or tool supports
    • B23Q1/26Movable or adjustable work or tool supports characterised by constructional features relating to the co-operation of relatively movable members; Means for preventing relative movement of such members
    • B23Q1/34Relative movement obtained by use of deformable elements, e.g. piezoelectric, magnetostrictive, elastic or thermally-dilatable elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Control Of Position Or Direction (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

PURPOSE:To perform high-speed, high-accuracy positioning operation by providing a clamper which clamps a stage directly. CONSTITUTION:A position controller is equipped with the stage 11 where a semiconductor wafer, etc., is mounted, its guide and base, and a driving piezoelectric element 14, and this is provided with a member 15 to be clamped which is connected to the other end of the piezoelectric element 14, a clamper, and its driving piezoelectric element 16b. Further, the clamper which clamps the stage 11 itself and its driving piezoelectric element 17b are provided and a position detection sensor 51 for the stage 11, an amplifier 52, a controller 53, a driver 54, and a power source 55 are provided. Then, the current position of the stage 11 is detected by the sensor 51 to perform microstep driving operation when the distance difference between the current position and a target position is larger than the quantity of movement by unit microstep driving or expansion quantity control driving operation for adjusting the quantity of expansion of the driving piezoelectric element 14 when smaller.

Description

【発明の詳細な説明】 [発明の分野] 本発明は、位置制御装置に関し、特に半導体露光装置等
において、回路パターンをウェハに焼付ける際にウェハ
等を載置するアライメント用ステージの位置決めを行な
うための装置に関する。
[Detailed Description of the Invention] [Field of the Invention] The present invention relates to a position control device, and particularly to a position control device for positioning an alignment stage on which a wafer or the like is placed when printing a circuit pattern on the wafer in a semiconductor exposure device or the like. Relating to a device for

[発明の背景] 従来、半導体露光装置等におけるウェハステージの微小
位置決め装置においては、第6図に示すように、運動方
向をガイドされたステージ1の一端にマイクロステップ
駆動されるロッド2を押しあて、バネ3等によって予荷
重をかけて往復運動を可能とする構成が用いられていた
。そして、ロッド2を駆動するための2組のロッドクラ
ンプ用圧電素子4,5および8,9と、ロット2をステ
ージ1の運動方向に駆動するための駆動用圧電素子6,
7とが用いられていた。このような各圧電素子によるマ
イクロステップ駆動は、例えば圧電素子8.9を伸長さ
せてロッド2をクランプした状、態で圧電素子6,7を
伸縮させ圧電素子6.7が伸縮している状態でクランプ
用圧電素子4,5を伸長させてロッド2をクランプする
。この状態で、圧電素子8.9によるクランプを解除し
かつ駆動用圧電素子6.7を前とは逆に縮めまたは伸長
させることによりロッド2がいずれかの方向に駆動され
る。その後再び圧電素子8.9によってロッド2をクラ
ンプしかつ圧電素子4.5によるクランプを゛解除して
前述と同様の動作を繰り返すことにより、ロッド2は微
小距離づつ変位し、ステージ1も同様に変位する。この
ようにして、所望の回数だけマイクロステップ駆動を行
なうことによりステージ1の位置決めが行なわれる。
[Background of the Invention] Conventionally, in a micro-positioning device for a wafer stage in a semiconductor exposure apparatus, etc., as shown in FIG. , a configuration in which a preload is applied by a spring 3 or the like to enable reciprocating motion has been used. Two sets of rod clamping piezoelectric elements 4, 5 and 8, 9 for driving the rod 2, and a driving piezoelectric element 6 for driving the lot 2 in the movement direction of the stage 1.
7 was used. Such microstep driving by each piezoelectric element can be performed, for example, in a state in which the piezoelectric element 8.9 is extended and the rod 2 is clamped, and in a state in which the piezoelectric elements 6 and 7 are expanded and contracted so that the piezoelectric element 6.7 is expanded and contracted. The clamping piezoelectric elements 4 and 5 are extended to clamp the rod 2. In this state, the rod 2 is driven in either direction by releasing the clamp by the piezoelectric element 8.9 and retracting or expanding the driving piezoelectric element 6.7 in the opposite direction. Thereafter, the rod 2 is again clamped by the piezoelectric element 8.9, the clamp by the piezoelectric element 4.5 is released, and the same operation as described above is repeated, whereby the rod 2 is displaced by minute distances, and the stage 1 is similarly displaced. Displace. In this way, the stage 1 is positioned by performing microstep driving a desired number of times.

しかしながら、前述の従来形においては、バネ3による
予荷重を大きくすると、1駆勅ステップ当りの移動量が
変化したりあるいはクラジブ部が滑ったりするため予荷
重を大きくすることが不可能であった。このため、ステ
ージおよびロッドを含めた可動部分の駆動方向の固有周
波数が下がり高速にマイクロステップ駆動を行なうこと
ができないという不都合が生じていた。
However, in the conventional type described above, it was impossible to increase the preload because increasing the preload by the spring 3 would change the amount of movement per 1-wheel drive step or cause the crab part to slip. . For this reason, the natural frequency of the movable parts including the stage and the rod in the driving direction decreases, resulting in the inconvenience that high-speed microstep driving cannot be performed.

さらに、従来形の駆動方法では、1駆動ステップ当りの
移動量は一定であり、したがって位置決めの分解能を上
げるためには1ステツプ当たりの移動量を小さくする必
要があり、分解能を上げると送り速度が低下するという
不都合があった。
Furthermore, in conventional drive methods, the amount of movement per one drive step is constant, so in order to increase the resolution of positioning, it is necessary to reduce the amount of movement per one step, and increasing the resolution increases the feed rate. There was an inconvenience that it decreased.

[発明の目的] 本発明は、前述の従来形における問題点に鑑み、位置制
御装置において、簡単な構成により高速かつ高精度の位
置決めを可能にするとともに、位置決め後にステージ本
体を強固にクランプし駆動方向の剛性が高くなるように
して外部振動等の外乱による位置変動等の悪影響を除去
することを目的とする。
[Object of the Invention] In view of the problems with the conventional type described above, the present invention enables high-speed and high-precision positioning with a simple configuration in a position control device, and also firmly clamps and drives the stage body after positioning. The purpose is to increase the rigidity in the direction and eliminate the adverse effects such as positional fluctuations due to disturbances such as external vibrations.

[発明の概要] 上述の目的を達成するため、本発明においては、可動ス
テージを移動させる駆動用圧電素子の他にクランプ用ア
クチュエータを使用するが、このクランプ用アクチュエ
ータはステージ本体あるいはステージ本体と機械的に固
定された部分をクランプするよう構成される。
[Summary of the Invention] In order to achieve the above object, in the present invention, a clamping actuator is used in addition to a drive piezoelectric element that moves the movable stage, and this clamping actuator is connected to the stage body or the stage body and the machine. configured to clamp a fixed part.

また、本発明においては、ステージの位置を検出するセ
ンサを設け、このセンサによって検知されたステージの
現在位置と目標位置との距離差が単位マイクロステップ
駆動による移動量より大きい時はマイクロステップ駆動
を行ない、小さい時は駆動用アクチュエータの伸縮量を
調節する。このような駆動方法によって高速かつ高精度
の位置決めが可能になる。
Further, in the present invention, a sensor is provided to detect the position of the stage, and when the distance difference between the current position of the stage and the target position detected by this sensor is larger than the amount of movement by unit microstep driving, microstep driving is performed. If it is small, adjust the amount of expansion/contraction of the drive actuator. Such a driving method enables high-speed and highly accurate positioning.

[実施例の説明] 以下、図面により本発明の詳細な説明する。[Explanation of Examples] Hereinafter, the present invention will be explained in detail with reference to the drawings.

第1図は、本発明の1実施例に係わる位置制御装置の概
略を示す。同図の装置は、半導体ウニ八等が載置される
ステージ11、該ステージ11の運動を定めるガイド1
2a、 12b、ベース13、片端がステージ11に固
定されたステージ駆動用圧電素子14、圧電素子14の
他端に接続された被クランプ部材15、ステージ駆動用
圧電素子14の片端をクランプするクランパ1Fia、
クランパ16aの駆動用圧電素子16bを具備している
。さらに、第1図の装置は本発明にしたがい、ステージ
ll自体をクランプするクランパ17aおよびクランパ
17aの駆動用圧電素子17bを備えている。なお、第
1図の実施例においては、ステージ11をクランプする
クランパ17aおよびその圧電素子17bが2組設けら
れている。
FIG. 1 schematically shows a position control device according to an embodiment of the present invention. The device shown in the figure includes a stage 11 on which a semiconductor urchin, etc. is placed, and a guide 1 that determines the movement of the stage 11.
2a, 12b, a base 13, a stage driving piezoelectric element 14 whose one end is fixed to the stage 11, a clamped member 15 connected to the other end of the piezoelectric element 14, a clamper 1Fia that clamps one end of the stage driving piezoelectric element 14. ,
A piezoelectric element 16b for driving the clamper 16a is provided. Furthermore, the apparatus of FIG. 1 is provided with a clamper 17a for clamping the stage II itself and a piezoelectric element 17b for driving the clamper 17a, according to the invention. In the embodiment shown in FIG. 1, two sets of clampers 17a for clamping the stage 11 and their piezoelectric elements 17b are provided.

第2図は、本実施例の装置の概略ブロック回路図である
。同図に示すように、本実施例の装置は、ステージ11
の位置を検出するセンサ51、増幅器52、コントロー
ラ53、ドライバ54および電源55を具備している。
FIG. 2 is a schematic block circuit diagram of the device of this embodiment. As shown in the figure, the apparatus of this embodiment has a stage 11
It is equipped with a sensor 51 for detecting the position of , an amplifier 52 , a controller 53 , a driver 54 , and a power source 55 .

次に、第3図を参照して上述の実施例の装置の動作を説
明する。第3図(a) に示すように、圧電素子16b
に例えば高レベルの電圧を印加してクランパ16aを動
作させ、ステージ駆動用圧電素子14の片端を固定する
。この状態で、ステージ駆動用圧電素子14に電圧を印
加すると各圧電素子は例えば長さLだけ伸長しステージ
11を変位させる。次に、ステージクランプ用の圧電素
子17bを動作させてステージ11を固定した後圧電素
子16bの印加電圧を除去する。このような動作を繰り
返すことにJこりステージ11は圧電素子14の伸び量
lずつマイクロステップ駆動されることになる。
Next, the operation of the apparatus of the above embodiment will be explained with reference to FIG. As shown in FIG. 3(a), the piezoelectric element 16b
For example, a high level voltage is applied to the clamper 16a to operate the clamper 16a, thereby fixing one end of the stage driving piezoelectric element 14. In this state, when a voltage is applied to the stage driving piezoelectric elements 14, each piezoelectric element expands by a length L, for example, and displaces the stage 11. Next, the stage clamping piezoelectric element 17b is operated to fix the stage 11, and then the voltage applied to the piezoelectric element 16b is removed. By repeating such an operation, the J stiffness stage 11 is driven in microsteps by the amount l of elongation of the piezoelectric element 14.

また、この場合第3図(b)  に示すようにステージ
駆動用圧電素子14に印加する電圧を調整し、該印加電
圧に応じて伸び量λ′を調節することにより前述の単位
穆動量λ以下の微調整が可能となる。
In this case, as shown in FIG. 3(b), by adjusting the voltage applied to the piezoelectric element 14 for driving the stage and adjusting the amount of elongation λ' according to the applied voltage, the amount of elongation λ is less than or equal to the unit displacement amount λ. It is possible to make fine adjustments.

第4図は、第3図(a)に示すマイクロステップ駆動と
、第3図(b)に示す圧電素子の伸縮量制御駆動とを組
み合わせることにより高速かつ高精度な位置決めを行な
う場合の制御手順を示す。すなわち、第4図に示すよう
に、まず、目標位置情報を参照し、現在の位置と目標位
置との差が圧電素子の伸び量1より短いか否かを判定す
る。もし、目標位置と現在位置との距離差が伸び量1よ
りも大きい場合にはマイクロステップ駆動を行なう。
FIG. 4 shows a control procedure for high-speed and highly accurate positioning by combining the microstep drive shown in FIG. 3(a) and the expansion/contraction control drive of the piezoelectric element shown in FIG. 3(b). shows. That is, as shown in FIG. 4, first, the target position information is referred to and it is determined whether the difference between the current position and the target position is shorter than the amount of elongation 1 of the piezoelectric element. If the distance difference between the target position and the current position is greater than the extension amount 1, microstep driving is performed.

もし、この距離差が伸び量℃より短い場合には該距離差
に応じた電圧を圧電素子に印加して目標位置に到達させ
る。この場合、圧電素子に印加する電圧は、例えば徐々
に上昇させステージが目標位置に達したことを検出して
該電圧の上2−を停止する。
If this distance difference is shorter than the amount of elongation °C, a voltage corresponding to the distance difference is applied to the piezoelectric element to reach the target position. In this case, the voltage applied to the piezoelectric element is, for example, gradually increased, and when it is detected that the stage has reached the target position, the voltage is stopped.

このような位置ny+J御を行なうため、木実奥側は、
第2図に示すようにセンサ51とコントローラ53等を
含むフィードバッタ系を構成している。すなわち、この
場合、コントローラ53は、センサ51の出力に応じて
ステージ11の目標位置と現在位置との差が圧電素子1
4の最大単位伸び量よりも大きいか小さいかを判定し、
前述のようにマイクロステップ駆動か伸縮量制御駆動か
を判定し、各制御方式に応じた信号をドライバ54に供
給する。
In order to perform such position ny+J control, the back side of the tree should be
As shown in FIG. 2, a feed batter system including a sensor 51, a controller 53, etc. is configured. That is, in this case, the controller 53 determines whether the difference between the target position and the current position of the stage 11 is determined by the piezoelectric element 1 according to the output of the sensor 51.
Determine whether it is larger or smaller than the maximum unit elongation amount in 4.
As described above, it is determined whether the drive is microstep drive or expansion/contraction amount control drive, and a signal corresponding to each control method is supplied to the driver 54.

第5図は、回転型のステージに応用した本発明の他の実
施例に係わる位置制御装置を示す。同図の装置は、回転
型のステージ21、ステージ21の回転運動をガイドす
るベアリング22、ベース23、片端がステージ21に
固定されたステージ駆動用圧電素子24、圧電素子24
の他端に接続された被クランプ部材25、圧電素子24
の片端をクランプするクランパ26a、クランパ28a
の駆動用圧電素子26b、そしてステージ21をクラン
プするクランパ27aと該クランパ27aの駆動用圧電
素子27bとを有している。なお、クランパ27aと圧
電素子27bとはそれぞれステージ21の周りに3組設
けられている。
FIG. 5 shows a position control device according to another embodiment of the present invention applied to a rotary stage. The device shown in the figure includes a rotating stage 21, a bearing 22 that guides the rotational movement of the stage 21, a base 23, a piezoelectric element 24 for driving the stage whose one end is fixed to the stage 21, and a piezoelectric element 24.
Clamped member 25 and piezoelectric element 24 connected to the other end
A clamper 26a and a clamper 28a clamp one end of the
It has a driving piezoelectric element 26b, a clamper 27a for clamping the stage 21, and a driving piezoelectric element 27b of the clamper 27a. Note that three sets of clampers 27a and piezoelectric elements 27b are each provided around the stage 21.

また、参照数字28はベース23からつき出しベアリン
グ22の内輪に固定されたシャフトである。
Further, reference numeral 28 is a shaft that projects from the base 23 and is fixed to the inner ring of the bearing 22.

第5図の装置も、前記実施例と同様に第2図のような位
置制御システムとして構成される。また、第4図に示す
制御手順で第3図のように駆動される。
The apparatus shown in FIG. 5 is also configured as a position control system as shown in FIG. 2, similar to the embodiment described above. Further, it is driven as shown in FIG. 3 according to the control procedure shown in FIG. 4.

[発明の効果] 以上のように、本発明によれば、ステージを直接的にク
ランプするクランパを設けることにより、予荷重をかけ
る必要がなくかつ駆動方向の剛性が高い位置制御装置が
得られる。また、高速駆動が可能なマイクロステップ駆
動と微小位置決めが可能な圧電素子伸縮駆動とを併用す
ることにより、高速かつ高精度の位置決めを行なうこと
が可能となる。
[Effects of the Invention] As described above, according to the present invention, by providing a clamper that directly clamps the stage, a position control device that does not require preloading and has high rigidity in the driving direction can be obtained. In addition, by using both microstep drive capable of high-speed drive and piezoelectric element expansion/contraction drive capable of minute positioning, it becomes possible to perform high-speed and highly accurate positioning.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の1実施例に係わる位置制御装置を示す
斜視図、第2図は第1図の装置の概略的ブロック回路図
、第3図(a)および(b)は本発明に係わる位置制御
装置の動作を説明するための波形図、第4図は第1図ま
たは第2図の装置を用いた位置制御システムの動作原理
を示すフローチャート、第5図は本発明の他の実施例に
係わる位置制御装置を示す斜視図、そして第6図は従来
形の位置制御装置を示す説明図である。 1 、11.21:ステージ、 2:ロッド、 3:バネ、 4.5.・・・・、9.圧電素子、 12a、  12b ニガイド、 13.23:ベース、 14、16b、 17b、 24.26b、 27b 
:圧電素子、16a、 17a、 26a、 27a・
クランパ、15.25+被クランプ部材、 22:ベアリング、 28:シャフト。 17b           15 第2図 第6図
FIG. 1 is a perspective view showing a position control device according to an embodiment of the present invention, FIG. 2 is a schematic block circuit diagram of the device in FIG. 1, and FIGS. 3(a) and (b) are A waveform diagram for explaining the operation of the related position control device, FIG. 4 is a flowchart showing the operating principle of a position control system using the device in FIG. 1 or 2, and FIG. 5 is a diagram showing another embodiment of the present invention. FIG. 6 is a perspective view showing a position control device according to an example, and FIG. 6 is an explanatory diagram showing a conventional position control device. 1, 11.21: Stage, 2: Rod, 3: Spring, 4.5. ...,9. Piezoelectric element, 12a, 12b Ni guide, 13.23: Base, 14, 16b, 17b, 24.26b, 27b
: Piezoelectric element, 16a, 17a, 26a, 27a・
Clamper, 15.25 + member to be clamped, 22: Bearing, 28: Shaft. 17b 15 Figure 2 Figure 6

Claims (1)

【特許請求の範囲】[Claims] 1、可動ステージと、該可動ステージに片端が固定され
該可動ステージに機械的変位を与える駆動用圧電素子と
、該可動ステージを固定するステージ用クランパと、前
記駆動用圧電素子の他端を固定および開放できる圧電素
子用クランパと、前記可動ステージの移動量を検知する
センサとを具備し、前記圧電素子用クランパと前記ステ
ージ用クランパとを交互に作用させて前記可動ステージ
を機械的に駆動するに際し、該可動ステージの現在位置
と目標位置との距離が前記駆動用圧電素子の単位最大伸
縮量より小さくなるまでマイクロステップ駆動を行ない
、該距離が該単位最大伸縮量より短くなると該駆動用圧
電素子に印加する電圧を制御して微小位置決めを行ない
、該可動ステージが目標位置に到達すると、該可動ステ
ージをクランプすることを特徴とする位置制御装置。
1. A movable stage, a driving piezoelectric element having one end fixed to the movable stage and giving mechanical displacement to the movable stage, a stage clamper fixing the movable stage, and fixing the other end of the driving piezoelectric element. and a piezoelectric element clamper that can be opened, and a sensor that detects the amount of movement of the movable stage, and the piezoelectric element clamper and the stage clamper act alternately to mechanically drive the movable stage. At this time, microstep driving is performed until the distance between the current position and the target position of the movable stage becomes smaller than the unit maximum expansion/contraction amount of the driving piezoelectric element, and when the distance becomes shorter than the unit maximum expansion/contraction amount, the driving piezoelectric element A position control device that performs minute positioning by controlling a voltage applied to an element, and clamps the movable stage when the movable stage reaches a target position.
JP61033987A 1986-02-20 1986-02-20 Position controller Pending JPS62192809A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61033987A JPS62192809A (en) 1986-02-20 1986-02-20 Position controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61033987A JPS62192809A (en) 1986-02-20 1986-02-20 Position controller

Publications (1)

Publication Number Publication Date
JPS62192809A true JPS62192809A (en) 1987-08-24

Family

ID=12401827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61033987A Pending JPS62192809A (en) 1986-02-20 1986-02-20 Position controller

Country Status (1)

Country Link
JP (1) JPS62192809A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002017382A1 (en) * 2000-08-25 2002-02-28 Toray Engineering Co., Ltd. Alignment device
CN102744716A (en) * 2011-07-29 2012-10-24 沈阳大学 Ultrasonic high precision linear working table
CN103522083A (en) * 2013-10-14 2014-01-22 吴江市博众精工科技有限公司 Adjusting mechanism

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002017382A1 (en) * 2000-08-25 2002-02-28 Toray Engineering Co., Ltd. Alignment device
US6825915B2 (en) 2000-08-25 2004-11-30 Toray Engeneering Co., Ltd. Alignment device
KR100821797B1 (en) * 2000-08-25 2008-04-11 토레이 엔지니어링 컴퍼니, 리미티드 Alignment device
CN102744716A (en) * 2011-07-29 2012-10-24 沈阳大学 Ultrasonic high precision linear working table
CN103522083A (en) * 2013-10-14 2014-01-22 吴江市博众精工科技有限公司 Adjusting mechanism

Similar Documents

Publication Publication Date Title
Shamoto et al. Development of a “walking drive” ultraprecision positioner
EP0160707B1 (en) Piezoelectric stepping rotator
JPH11289780A (en) Driver using electromechanical converting element
JPS62192809A (en) Position controller
JPH07108101B2 (en) Linear actuator drive controller
US5086263A (en) Bi-axial synchronous driving apparatus
JPS62192685A (en) Position controller
JP3320276B2 (en) Precision control device
JP2001062765A (en) Method and device for automatic pressing
Moriwaki et al. Ultraprecision feed system based on walking drive
JP3380898B2 (en) Slider mechanism and driving method of slider mechanism
JPH1015713A (en) Cutting tool holder unit, working machine using the unit, and working method for rotary head drum
JPS63306854A (en) Tool control system for machine tool device
JPH0424178B2 (en)
JPH0897590A (en) Method and device for automatically pressing object against another object
JPH05292762A (en) Electrostriction element drive motor and control method therefor
JPH0430989A (en) Positioning actuator
JPH04315553A (en) Positioning control device
JPH10271895A (en) Motor driver
JPH01136582A (en) Speed controller
JPH01204112A (en) Speed controller
JPH01260510A (en) Method for controlling deceleration of mobile body
JPH0516050A (en) Precision feed mechanism
JPH01158612A (en) Method for positioning rotary magnetic head
JPH0423109A (en) Microalignment device incorporated with piezoelectric element having feedback function