JPS62190414A - Brushless resolver - Google Patents

Brushless resolver

Info

Publication number
JPS62190414A
JPS62190414A JP3095686A JP3095686A JPS62190414A JP S62190414 A JPS62190414 A JP S62190414A JP 3095686 A JP3095686 A JP 3095686A JP 3095686 A JP3095686 A JP 3095686A JP S62190414 A JPS62190414 A JP S62190414A
Authority
JP
Japan
Prior art keywords
rotor
transformer
output
winding
wound around
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3095686A
Other languages
Japanese (ja)
Inventor
Kanji Kitazawa
完治 北沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tamagawa Seiki Co Ltd
Original Assignee
Tamagawa Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tamagawa Seiki Co Ltd filed Critical Tamagawa Seiki Co Ltd
Priority to JP3095686A priority Critical patent/JPS62190414A/en
Publication of JPS62190414A publication Critical patent/JPS62190414A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

PURPOSE:To reduce the size of structure and simplify the structure, and to obtain an high-accuracy brushless resolver by providing a rotary transformer and a fixed transformer at one place and leading a composite output out of the fixed transformer. CONSTITUTION:The rotary transformer 4A provided integrally to a rotor 1A is wound with primary coils 15 and 16 and the fixed transformer 5A which is arranged opposite the rotary transformer 4A and provided integrally to a stator 2A is wound with a secondary coil 19. Then, voltages VS and VC are impressed to exciting winding parts 11 and 12 and then their output voltages V1 and V2 are passed through the coils 15 and 16, added together by the coil 19, and led out. Thus, a shaft angle is converted into variation in phase angle and reflected upon the output voltage Vt with high accuracy.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、精度の高い出力電圧が得られるブラシレス
レゾルバに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a brushless resolver that can obtain a highly accurate output voltage.

[従来の技術] 第4図及び第5図はそれぞれ従来のブラシレスレゾルバ
を示す回路図及び側断面図である0図において、(1)
は回転子、(2)は回転子(1)を包囲するように対向
配置された円筒状の固定子、(3)は回転子(1)と固
定子(2)との間に介在された軸受、(4a)及び(4
b)は回転子(1)と一体に設けられた回転1〜ランス
、(5a)及び(5b)は各回転トランス(4n)、(
4b)に対向配置され、それぞれ固定子(2)に一体に
設けられた固定トランスである。
[Prior Art] FIGS. 4 and 5 are a circuit diagram and a side sectional view showing a conventional brushless resolver, respectively, in which (1)
is a rotor, (2) is a cylindrical stator disposed facing the rotor (1), and (3) is a stator interposed between the rotor (1) and the stator (2). Bearings, (4a) and (4
b) is the rotation 1 to lance provided integrally with the rotor (1), (5a) and (5b) are each rotation transformer (4n), (
4b), and are fixed transformers each provided integrally with the stator (2).

<11)は固定子(2〉に巻かれた第1の励磁巻線、(
Sl)及び(S3)は第1の励磁巻線(11)の両端子
、(12)は第1の励磁巻線(11)と電気的に90°
ずらして固定子(2)に巻かれた第2の励磁巻線、(S
l)及び(S4)は第2の励磁巻線(12〉の両端子、
(13)は回転子(1)に巻かれた第1の出力巻線、(
R1)及び(R3)は第1の出力巻線(13)の両端子
、(14)は第1の出力巻線(X3)と電気的に90°
ずらして回転子(1)に巻かれた第2の出力巻線、(R
2)及び(R4〉は第2の出力巻線(14)の両端子、
(15)は回転トランス(4a)に巻かれた第1の一次
コイル、(RTI)及び(RT3)は第1の一次コイル
(15)の両端子、り16)は回転トランス(4b)に
巻かれた第2の一次コイル、(I(T2)及び(RT4
)は第2の一次コイル(16)の両端子である。
<11) is the first excitation winding wound around the stator (2>), (
Sl) and (S3) are both terminals of the first excitation winding (11), and (12) is electrically 90° with respect to the first excitation winding (11).
A second excitation winding, (S
l) and (S4) are both terminals of the second excitation winding (12>),
(13) is the first output winding wound around the rotor (1), (
R1) and (R3) are both terminals of the first output winding (13), and (14) is electrically 90° with the first output winding (X3).
A second output winding, (R
2) and (R4> are both terminals of the second output winding (14),
(15) is the first primary coil wound around the rotating transformer (4a), (RTI) and (RT3) are both terminals of the first primary coil (15), and 16) is wound around the rotating transformer (4b). The second primary coil, (I(T2) and (RT4)
) are both terminals of the second primary coil (16).

(17)は固定トランス(5a〉に巻かれた第1の二次
コイル、(STI>及び(Sl3)は第1の二次コイル
(17)の両端子、(18)は固定1ヘランス(5b)
に巻かれた第2の二次コイル、(Sl2)及び(Sl4
)は第2の二次コイル(18)の両端子である。
(17) is the first secondary coil wound around the fixed transformer (5a), (STI> and (Sl3) are both terminals of the first secondary coil (17), and (18) is the fixed transformer (5b). )
a second secondary coil, (Sl2) and (Sl4
) are both terminals of the second secondary coil (18).

従来のブラシレスレゾルバは上記のように構成され、第
1の励磁巻線(11)の両端子(St)、(S3)間及
び第2の励磁巻線り12)の両端子(Sl)、(S4)
間にそれぞれ、 V s= V 5in6Jt         −■V
 c= V cosωt         −■但し、
■、励磁電圧の絶対値 し二時間 ω=2πf  (f:励磁周波数) の励磁電圧Vs、Vcを印加すると、第1の出力巻線(
13)の両端子(R1)、(R3)間及び第2の出力巻
線(14)の両端子(R2)、([4)間にはそれぞれ
、V l= K 5in(ωL十θ+εl(θ))  
・=  ■V z=  K cos(ωt+ θ + 
ε 2くθ))・・   ■但し、θ:回転子(1)の
軸角度 ε、(θ):出力電圧■1に含まれる誤差ε2(θ):
出力電圧■2に含まれる誤差の出力電圧v1、■2が発
生するようになっている。
The conventional brushless resolver is configured as described above, and there is a connection between both terminals (St) and (S3) of the first excitation winding (11) and between both terminals (Sl), (S1) of the second excitation winding 12). S4)
In between, respectively, V s= V 5in6Jt −■V
c= V cosωt −■ However,
(2) When the absolute value of the excitation voltage is applied for two hours ω = 2πf (f: excitation frequency) excitation voltages Vs and Vc, the first output winding (
13) between both terminals (R1) and (R3) and between both terminals (R2) and ([4) of the second output winding (14), V l = K 5in (ωL + θ + εl (θ ))
・= ■V z= K cos(ωt+ θ +
ε 2 × θ))... ■However, θ: Axis angle ε of rotor (1), (θ): Output voltage ■Error included in 1 ε2 (θ):
The error output voltages v1 and (2) included in the output voltage (2) are generated.

この出力電圧■1、■2はそれぞれ、第1の一次コイル
(15)及び第2の一次コイル(14)を介して、第1
の二次コイル(17)の両端子(STI)、(Sl3)
間の出力電圧■E1、及び第2の二次コイル(18)の
両端子(STY)、(Sl4)間の出力電圧Vt2とし
て取り出される。
These output voltages ■1 and ■2 are applied to the first primary coil (15) and the second primary coil (14), respectively.
Both terminals (STI) of the secondary coil (17), (Sl3)
The output voltage between the two terminals (STY) and (Sl4) of the second secondary coil (18) is taken out as the output voltage Vt2.

このように、励磁電圧Vs、Vcに対して回転子(])
の軸角度θだけ位相のずれた出力電圧Vl、、Vl2が
各二次コイル(17)、(18)から得られるので、こ
の位相のずれを検出してブラシレスレゾルバの回転子(
1)の軸角度θを求めることができる。
In this way, for the excitation voltages Vs and Vc, the rotor (])
Since the output voltages Vl, Vl2 whose phase is shifted by the axis angle θ are obtained from each secondary coil (17), (18), this phase shift is detected and the rotor of the brushless resolver (
1) The axis angle θ can be determined.

しかし、各励磁巻線(11)、(12)及び各出力巻線
(14)、(15)の巻線作業等の製造上のバラツキに
より、軸角度θには■、0式に示した誤差ε1(θ)、
ε2(θ)が生じる。
However, due to manufacturing variations in the winding work of each excitation winding (11), (12) and each output winding (14), (15), the shaft angle θ has an error shown in ■, equation 0. ε1(θ),
ε2(θ) occurs.

この誤差ε1(θ)及びε2(θ)は各出力電圧Vt、
、Vl、2に6同等に生じ、1回転当たり2サイクルの
正弦波カーブで表わされる。従って、各出力電圧Vt+
、Vt、のそれぞれの誤差εI(θ)、ε2(θ)は、
ε1(θ)=ε5in2θ           ・・
・  ■ε2(θ〉=εsing(θ4−π/2)  
   ・・  ■但し、ε 誤差の絶対値 となる。
These errors ε1(θ) and ε2(θ) are each output voltage Vt,
, Vl, 2, and is represented by a sinusoidal curve of 2 cycles per revolution. Therefore, each output voltage Vt+
, Vt, the respective errors εI(θ) and ε2(θ) are as follows:
ε1(θ)=ε5in2θ...
・■ε2(θ〉=εsing(θ4−π/2)
... ■However, ε is the absolute value of the error.

[発明が解決しようとする問題点] 従来のブラシレスレゾルバは以上のように、各出力巻線
(13)、(14)に発生する出力電圧■2、■2を、
各一次コイル(15)、(16)を介して各二次コイル
(17)、り18)により出力電圧Vt、、Vt、とし
て取り出していたので、二次コイル(17)、〈18)
が2つ必要となって小形にできず、又、各出力電圧■L
l、Vl2に誤差ε、(θ)、ε2(θ)が生じてしま
うという問題点があった。
[Problems to be Solved by the Invention] As described above, the conventional brushless resolver converts the output voltages ■2 and ■2 generated in each output winding (13) and (14) into
Since the output voltages Vt, , Vt were taken out by the secondary coils (17) and 18) via the respective primary coils (15) and (16), the secondary coils (17) and 〈18)
It is not possible to make it compact because two are required, and each output voltage ■L
There is a problem in that errors ε, (θ), and ε2(θ) occur in l and Vl2.

この発明は上記のような問題点を解決するためになされ
たもので、構造を簡単にすると共に、軸角度に関係する
誤差を出力電圧から無くした高精度なブラシレスレゾル
バを得ることを目的とする。
This invention was made to solve the above-mentioned problems, and aims to provide a highly accurate brushless resolver that has a simple structure and eliminates errors related to the shaft angle from the output voltage. .

[問題点を解決するための手段] この発明に係るブラシレスレゾルバは、回転トランス及
びこれに対向する固定トランスを1箇所に設け、回転ト
ランスに第1及び第2の一次コイルを巻き、固定トラン
スに二次コイルを巻いたものである。
[Means for Solving the Problems] The brushless resolver according to the present invention includes a rotary transformer and a fixed transformer opposing the rotary transformer provided at one location, winding the first and second primary coils around the rotary transformer, and winding the first and second primary coils around the rotary transformer. It has a secondary coil wound around it.

[作用] この発明においては、各一次コイルに発生ずる電圧が合
成されて二次コイルから出力電圧として取り出され、各
一次コイルの出力電圧に含まれる誤差が相段される。
[Operation] In this invention, the voltages generated in each primary coil are combined and taken out as an output voltage from the secondary coil, and errors included in the output voltage of each primary coil are phased out.

[実施例] 以下、この発明の一実施例を図について説明する。第1
I21及び第2図はそれぞれこの発明の実施例を示す回
路図及び側断面図である0図において、(3)、(11
)〜(16〉、(Sl〉〜(S4〉、(R1)〜(R4
)及び(RTl)〜(flT4)は前述の従来構造と同
様のものであり、(1^)及び(2八)は、回転子(1
)、固定子(2)にそれぞれ対応している。(4^)は
回転子<1八)に一体に設けられた回転トランスであり
、各一次コイル(15)及び(16)が巻かれている。
[Example] Hereinafter, an example of the present invention will be described with reference to the drawings. 1st
I21 and FIG. 2 are a circuit diagram and a side sectional view showing an embodiment of the present invention, respectively, in FIG. 0, (3) and (11
)~(16>, (Sl>~(S4>, (R1)~(R4
) and (RTl) to (flT4) are similar to the conventional structure described above, and (1^) and (28) are rotor (1).
) and stator (2), respectively. (4^) is a rotating transformer provided integrally with the rotor <18), around which primary coils (15) and (16) are wound.

(5^)は回転トランスく4^)に対向配置されて固定
子〈2^)に一体に設けられた固定トランス、(19)
は固定トランス(5^)に巻かれた二次コイル、(ST
II)及び(ST13)は二次コイル(19)の両端子
である。
(5^) is a fixed transformer placed opposite to the rotating transformer (4^) and integrally provided with the stator (2^); (19)
is a secondary coil wound around a fixed transformer (5^), (ST
II) and (ST13) are both terminals of the secondary coil (19).

次に、第1図及び第2図に示したこの発明の一実施例の
動イtについて説明する。前述と同様に、各励磁巻線(
11)、(12)に、■、■式の励磁電圧VS、Vc、
I!IIち、 Vs=Vsinωt         ・・ ■V c
 = V cosωL         ・・・ ■を
印加すると、各出力電圧Vl、■2は、■、0式%式% このように励磁された各出力電圧V1、■2を、各一次
コイル(15)、(16)を介して二次コイル(19)
により合成して取り出すと、二次コイル(19)の出力
電圧Vtは、 V  L=  K  ’   (V  +  十 V 
 2)= K ’ K [5iu(ωt+θ+ε1(θ
))+cos(ωL十〇+ε2(θ))] −2K ′ Ksin[ωt+θ+π/4+(ε、(θ
)+ε2(θ))/2] xcos[(ε1(θ)−ε2(θ))/2−π/4]
・・・  ■ となる。ここで、■、0式即ち、 εI(θ)=ε5in2θ       ・・・ ■ε
 2(θ )= ε sin2くθ + π/2)  
     ・・・   ■を0式に代入すると、 vt=  2  K  ′ Ksin[ω t + θ
 + π/4+ Ie 5in2θ+ε5in2(θ+
7r/2)l/2]xcos[(ε5in2θ−εsi
ng(θ+π/2)l/2−π/4] =  2  K  ′ K 5in(ω L+ θ モ
 π/4)xcosfεcos(θ十π/2)十π/4
)  ・・・■となる。ここで、 K、=2に′K J(c)=cosfεcos(θ+π/2)+π/4)
とすれば、0式は、 V  t=  K  oJ  <  c )sin(ω
 L  + θ + π /4)    ・・ ■とな
る。
Next, the operation of the embodiment of the present invention shown in FIGS. 1 and 2 will be explained. As before, each excitation winding (
11), (12), excitation voltages VS, Vc,
I! II, Vs=Vsinωt... ■V c
= V cosωL ... When ■ is applied, each output voltage Vl, ■2 becomes ■, 0 formula % formula % Each output voltage V1, ■2 excited in this way is applied to each primary coil (15), ( 16) through the secondary coil (19)
When synthesized and extracted, the output voltage Vt of the secondary coil (19) is:
2)=K'K[5iu(ωt+θ+ε1(θ
))+cos(ωL10+ε2(θ))] −2K′ Ksin[ωt+θ+π/4+(ε, (θ
)+ε2(θ))/2] xcos[(ε1(θ)−ε2(θ))/2−π/4]
...■ becomes. Here, ■, 0 formula, εI (θ) = ε5in2θ ... ■ε
2(θ) = ε sin2 × θ + π/2)
... Substituting ■ into equation 0, vt= 2 K ′ Ksin [ω t + θ
+ π/4+ Ie 5in2θ+ε5in2(θ+
7r/2)l/2]xcos[(ε5in2θ−εsi
ng(θ+π/2)l/2−π/4] = 2 K ′ K 5in(ω L+ θ mo π/4)xcosfεcos(θ1π/2)1π/4
) ・・・■. Here, K,=2′K J(c)=cosfεcos(θ+π/2)+π/4)
Then, Equation 0 becomes V t = K oJ < c ) sin (ω
L + θ + π /4) ... ■.

■弐から明らかなように、出力電圧Vtの位相が軸角度
θに応じて変化する項s i n (ωL+θ+π/4
)から誤差εが消える。又、K、J(ε)の項は、出力
電圧の絶対値を示しており、位相角検出とは無関係であ
る。従って、軸角度θを位相角の変fヒとして、高精度
で出力電圧Vtに反映させることができる。
■As is clear from Part 2, the term sin (ωL+θ+π/4
), the error ε disappears. Further, the terms K and J(ε) indicate the absolute value of the output voltage and are unrelated to phase angle detection. Therefore, the shaft angle θ can be reflected in the output voltage Vt with high precision as a change in the phase angle.

尚、上記実施例では、第2図のように回転トランス(4
八)を回転子(1Δ)の回転軸方向に離間させて設けた
が、第3図のように回転トランス(4B)を回転子(1
赫)の回転径方向に離間させて設けても同等の効果が得
られることは言うまぐもない。この場き、回転子(IB
)と一体の回転トランス〈4B)は出力巻線(12)、
(14)の内側に同心的に設けられており、固定子(2
B)と一体の固定l・ランス(5B)は軸受(3〉の外
側に同心的に回転トランス(4B)に対向して設けられ
ている。従って、第2図の実施例と比鮫して軸方向の長
さが小さくなるので、設計に応じて適宜第3図の構造を
採用すればよい。
In the above embodiment, a rotary transformer (4
8) were provided spaced apart in the direction of the rotation axis of the rotor (1Δ), but as shown in Figure 3, the rotary transformer (4B)
It goes without saying that the same effect can be obtained even if they are spaced apart in the rotational radial direction. At this point, the rotor (IB
) and the integrated rotary transformer <4B) has an output winding (12),
(14) is provided concentrically inside the stator (2).
A fixed lance (5B) integral with B) is provided concentrically on the outside of the bearing (3) facing the rotating transformer (4B).Therefore, it is different from the embodiment shown in FIG. Since the length in the axial direction is small, the structure shown in FIG. 3 may be appropriately adopted depending on the design.

又、励磁巻線(IIL(12)及び出力巻線(13)、
(14)が、それぞれ一対ずつの構造で、物理的にも9
0”ずらして巻かれた場合を示したが、各出力巻線が多
極巻線構造で、物理的に45°以下の角度でずらして巻
かれたブラシレスレゾルバに対しても、上記実施例と同
様に実施でき、同等の効果を奏することは明らかである
In addition, the excitation winding (IIL (12) and the output winding (13),
(14) has a structure of one pair each, and physically there are 9
Although the case where the windings are wound with a 0" offset is shown, the above embodiment can also be applied to a brushless resolver in which each output winding has a multi-pole winding structure and is wound with a physical offset of 45 degrees or less. It is clear that it can be carried out in the same way and the same effect will be achieved.

[発明の効果コ 以上のようにこの発明によれば、回転トランス及びこれ
に対向する固定トランスを1箇所に設け、回転トランス
に第1及び第2の一次コイルを巻き、固定トランスに二
次コイルを巻き、各一次コイルに発生ずる出力電圧をき
成して二次コイルから出力電圧として取り出すようにし
たので、構造が簡単で小形になると共に、各一次コイル
の出力電圧に含まれる誤差が相殺された高精度なブラシ
レスレゾルバが得られる効果がある。
[Effects of the Invention] As described above, according to the present invention, a rotary transformer and a fixed transformer opposing the rotary transformer are provided at one location, the first and second primary coils are wound around the rotary transformer, and the secondary coil is wound around the fixed transformer. Since the output voltage generated in each primary coil is created by winding the coil and taken out as an output voltage from the secondary coil, the structure is simple and compact, and the error included in the output voltage of each primary coil is canceled out. This has the effect of providing a highly accurate brushless resolver.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を示す回路図、第2図はこ
の発明の一実施例を示す@断面図、第3図はこの発明の
他の実施例を示す側断面図、第4図は従来のブラシレス
レゾルバを示す回路図、第5図は従来のブラシレスレゾ
ルバを示す側断面図である。 (1^)、(IB)・・・回転子  (Z八)、(2B
)・・・固定子(4^)、(411)・・・回転トラン
スく5^)、(5B)・・・固定1〜ランス<11)・
・・第1の励磁巻線 (12)・・・第2の励磁8線(
13)・第1の出力巻線 (14)・・・第2の出力巻
線(15)・・第1の一次コイル (16)・・第2の一次コイル (19)・・・二次コイル   Vt・・・出力電圧尚
、図中、同一符号は同−又は相当部分を示す。
Fig. 1 is a circuit diagram showing one embodiment of the present invention, Fig. 2 is a sectional view showing one embodiment of the invention, Fig. 3 is a side sectional view showing another embodiment of the invention, and Fig. 4 is a sectional view showing another embodiment of the invention. The figure is a circuit diagram showing a conventional brushless resolver, and FIG. 5 is a side sectional view showing the conventional brushless resolver. (1^), (IB)...Rotor (Z8), (2B
)...Stator (4^), (411)...Rotating transformer 5^), (5B)...Fixed 1~Lance<11)・
...First excitation winding (12)...Second excitation 8 wires (
13) First output winding (14) Second output winding (15) First primary coil (16) Second primary coil (19) Secondary coil Vt...Output voltage In the drawings, the same reference numerals indicate the same or equivalent parts.

Claims (4)

【特許請求の範囲】[Claims] (1)回転子と、この回転子に一体に設けられた回転ト
ランスと、前記回転子に対向して配置された固定子と、
この固定子に一体に設けられ前記回転トランスに対向配
置された固定トランスと、前記固定子に互いに電気的に
90°ずらして巻かれた第1及び第2の励磁巻線と、こ
れら励磁巻線に対向して前記回転子に互いに電気的に9
0°ずらして巻かれた第1及び第2の出力巻線と、これ
ら出力巻線にそれぞれ接続され前記回転トランスに巻か
れた第1及び第2の一次コイルと、前記固定トランスに
巻かれた二次コイルとを備え、前記各出力巻線に発生す
る出力電圧を、前記各一次コイルを介して前記二次コイ
ルから合成して取り出すように構成したことを特徴とす
るブラシレスレゾルバ。
(1) a rotor, a rotating transformer provided integrally with the rotor, and a stator disposed opposite the rotor;
A fixed transformer that is integrally provided with the stator and is arranged to face the rotary transformer, first and second excitation windings that are wound around the stator electrically shifted by 90 degrees from each other, and these excitation windings. The rotor is electrically connected to each other by 9
first and second output windings wound with a 0° shift; first and second primary coils connected to these output windings and wound around the rotating transformer; and first and second primary coils wound around the fixed transformer. A brushless resolver comprising a secondary coil, and configured to combine and extract output voltages generated in each of the output windings from the secondary coil via each of the primary coils.
(2)回転トランスが、励磁巻線に対し、回転子の回転
軸方向に離間して設けられたことを特徴とする特許請求
の範囲第1項記載のブラシレスレゾルバ。
(2) The brushless resolver according to claim 1, wherein the rotating transformer is provided spaced apart from the excitation winding in the direction of the rotation axis of the rotor.
(3)回転トランスが、励磁巻線に対し、回転子の回転
径方向に離間して設けられたことを特徴とする特許請求
の範囲第1項記載のブラシレスレゾルバ。
(3) The brushless resolver according to claim 1, wherein the rotating transformer is provided spaced apart from the excitation winding in the rotational radial direction of the rotor.
(4)回転子に巻かれた第1及び第2の出力巻線がそれ
ぞれ多極巻線構造からなることを特徴とする特許請求の
範囲第1項乃至第3項のいずれかに記載のブラシレスレ
ゾルバ。
(4) The brushless according to any one of claims 1 to 3, wherein the first and second output windings wound around the rotor each have a multipolar winding structure. Resolver.
JP3095686A 1986-02-17 1986-02-17 Brushless resolver Pending JPS62190414A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3095686A JPS62190414A (en) 1986-02-17 1986-02-17 Brushless resolver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3095686A JPS62190414A (en) 1986-02-17 1986-02-17 Brushless resolver

Publications (1)

Publication Number Publication Date
JPS62190414A true JPS62190414A (en) 1987-08-20

Family

ID=12318133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3095686A Pending JPS62190414A (en) 1986-02-17 1986-02-17 Brushless resolver

Country Status (1)

Country Link
JP (1) JPS62190414A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006220571A (en) * 2005-02-10 2006-08-24 Minebea Co Ltd Resolver unit and resolver using the same
JP2007215321A (en) * 2006-02-09 2007-08-23 Tamagawa Seiki Co Ltd Thin resolver structure
JP2017521594A (en) * 2014-06-26 2017-08-03 シェフラー テクノロジーズ アー・ゲー ウント コー. カー・ゲーSchaeffler Technologies AG & Co. KG Camshaft adjusting device and method for identifying adjustment of camshaft adjusting device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006220571A (en) * 2005-02-10 2006-08-24 Minebea Co Ltd Resolver unit and resolver using the same
JP4542916B2 (en) * 2005-02-10 2010-09-15 ミネベア株式会社 Resolver unit and resolver using it
JP2007215321A (en) * 2006-02-09 2007-08-23 Tamagawa Seiki Co Ltd Thin resolver structure
JP2017521594A (en) * 2014-06-26 2017-08-03 シェフラー テクノロジーズ アー・ゲー ウント コー. カー・ゲーSchaeffler Technologies AG & Co. KG Camshaft adjusting device and method for identifying adjustment of camshaft adjusting device
US10865716B2 (en) 2014-06-26 2020-12-15 Schaefller Technologies AG & Co. KG Camshaft adjuster and method for determining the setting of a camshaft adjuster

Similar Documents

Publication Publication Date Title
JP3047231B1 (en) Resolver
US4255682A (en) Multipolar resolver
JP4158858B2 (en) Rotation angle detector
JP4692923B2 (en) Resolver device and motor device equipped with resolver device
JP2988597B2 (en) Rotational position detector
JPH06213614A (en) Position detection device
US4755751A (en) Brushless rotary position transducer
JP2001235307A (en) Rotary type position detecting apparatus
JP4882513B2 (en) Rotation angle detection device and torque sensor
US4928046A (en) Multiple rotational position sensor
JPS62190414A (en) Brushless resolver
JP3138606B2 (en) Angle detector
JPH11118521A (en) Vr type resolver and resolver signal processing circuit
JP3704462B2 (en) Absolute position detector using reluctance resolver
JP2000316266A (en) Variable reluctance position detector
CN110906958B (en) Multi-excitation angle measuring method
JPH0619292Y2 (en) Brushless resolver
JP2003232654A (en) Brushless resolver
JPS62185120A (en) Resolver
JP2000258186A (en) Self-correction angle detector and method for correcting detection accuracy
WO2001071288A1 (en) Torsional quantity measuring device
JP2556383B2 (en) Magnetic resolver
JPS5979808A (en) Resolver and detection circuit therefor
JP2001165703A (en) Winding type rotation detector
JPH0534897B2 (en)