JPS62188993A - Thermal shielding device for fast breeder reactor - Google Patents

Thermal shielding device for fast breeder reactor

Info

Publication number
JPS62188993A
JPS62188993A JP61030132A JP3013286A JPS62188993A JP S62188993 A JPS62188993 A JP S62188993A JP 61030132 A JP61030132 A JP 61030132A JP 3013286 A JP3013286 A JP 3013286A JP S62188993 A JPS62188993 A JP S62188993A
Authority
JP
Japan
Prior art keywords
heat
reactor vessel
cylindrical
fast breeder
shielding device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61030132A
Other languages
Japanese (ja)
Inventor
三郎 谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61030132A priority Critical patent/JPS62188993A/en
Publication of JPS62188993A publication Critical patent/JPS62188993A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、冷却材に液体金属ナトリウムなどを使用する
高速増殖炉の熱遮蔽装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a heat shielding device for a fast breeder reactor that uses liquid metal sodium or the like as a coolant.

〔発明の技術的背景〕[Technical background of the invention]

第8図はタンク型高速増殖炉の概略構成を示ずもので、
原子炉容器101内には、−次冷却材である液体金属ナ
トリウム102が充填されており、多数本の燃料集合体
く図示せず)を装荷してなる炉心103が原子炉容器1
01の中央部に位置するようにナトリウム102内に浸
漬配置されている。また原子炉炉容器101の内部空間
は炉心1o3の外周に設けられた仕切壁104により上
下に仕切られて、上方の高温ブレナム105と下方の低
温ブレナム106とに区画されており、この仕切u10
4に支持されたポンプ107を駆動することにより、ナ
トリウム102が炉心103の下方から上方へ流通して
原子炉容器101内を循環するようになっている。
Figure 8 does not show the schematic configuration of a tank-type fast breeder reactor.
The reactor vessel 101 is filled with liquid metal sodium 102 as a secondary coolant, and a reactor core 103 loaded with a large number of fuel assemblies (not shown) is placed inside the reactor vessel 1.
It is placed immersed in sodium 102 so as to be located in the center of 01. Further, the internal space of the reactor vessel 101 is divided into an upper and lower part by a partition wall 104 provided on the outer periphery of the reactor core 1o3, and divided into an upper high-temperature blemish 105 and a lower low-temperature blemish 106, and this partition u10
By driving a pump 107 supported by 4, sodium 102 flows from below to above the reactor core 103 and circulates within the reactor vessel 101.

前記原子炉容器101の上部開口はルーフスラブ108
により閉塞されており、このルーフスラブ108の中心
部には前記炉心103の真上に位置させて炉心上部機構
109が垂設されている。
The upper opening of the reactor vessel 101 is a roof slab 108.
A core upper mechanism 109 is vertically installed in the center of the roof slab 108, located directly above the core 103.

また、ルーフスラブ108の上部には二次冷却材供給機
1lI(図示せず)が取付けられており、前記仕切壁1
04にはこの二次冷却材供給機構より二次冷却材(液体
金属ナトリウム)の供給を受ける中間熱交換器110が
取付けられている。さらに炉心103の下方には、高圧
ブレナム111が設けられている。なお、液体金属ナト
リウム102の液面102aとルーフスラブ108との
門にはアルゴン、ヘリウム等の不活性ガスGがカバーガ
スとして充填されている。この不活性ガスGは、原子炉
運転時におけるナトリウム102の温度変化に伴ってそ
の体積が膨張した場合の、原子炉容器101の内圧変化
を吸収し、原子炉構成機器に及ぼす悪影響を防止するた
めのものである。
Further, a secondary coolant supply machine 1lI (not shown) is attached to the upper part of the roof slab 108, and the partition wall 1
04 is attached with an intermediate heat exchanger 110 that receives a secondary coolant (liquid metal sodium) from this secondary coolant supply mechanism. Furthermore, a high-pressure blemish 111 is provided below the core 103. Note that the gate between the liquid surface 102a of the liquid metal sodium 102 and the roof slab 108 is filled with an inert gas G such as argon or helium as a cover gas. This inert gas G is used to absorb changes in the internal pressure of the reactor vessel 101 when the volume of sodium 102 expands due to temperature changes during reactor operation, and to prevent adverse effects on the reactor components. belongs to.

以上の構成において、炉心103で約500〜600℃
に加熱されたナトリウム102は、高温ブレナム105
から中間熱交換器110に導入され、ここで二次冷却材
としての二次ナトリウムと熱交換して約300〜400
℃まで冷却される。
In the above configuration, the temperature in the core 103 is approximately 500 to 600°C.
Sodium 102 heated to high temperature Blenheim 105
is introduced into the intermediate heat exchanger 110, where it exchanges heat with secondary sodium as a secondary coolant to generate approximately 300 to 400
Cooled to ℃.

そして低温ブレナム106へ流下し、ポンプ107で加
圧されて炉心103下方の高圧ブレナム111内に圧送
される。
It then flows down to the low-temperature blemish 106, is pressurized by the pump 107, and is pumped into the high-pressure blemish 111 below the reactor core 103.

ところで、炉心103内の燃料集合体の交換等を行なう
場合、原子炉運転を停止することによりナトリウム10
2の温度は急激に低下し、燃料交換後の再運転時には急
激に上昇する。この温度変動は液面102a近傍で特に
著しく、運転停止時には約500〜600℃カラ約30
0〜400℃まで急激に温度降下し、再運転時には逆に
約300〜400℃から約500〜600℃まで急激に
温度上昇する。この急激な温度変動により、ナトリウム
102の液面102aが直接接触している原子炉容器1
01の周壁部、炉心上部機構109、ポンプ107、中
間熱交換器110などの厚肉板には大きな熱応力が発生
し、特に原子炉容器101の周壁部ではその影響が大き
く、素材となる厚肉板の疲労を速めるおそれがある。
By the way, when replacing the fuel assemblies in the reactor core 103, sodium 10
The temperature of No. 2 drops rapidly, and then rises rapidly when restarting operation after a fuel change. This temperature fluctuation is particularly remarkable near the liquid level 102a, and when the operation is stopped, it is about 500 to 600 degrees Celsius.
The temperature suddenly drops from 0 to 400°C, and when restarted, the temperature rises rapidly from about 300 to 400°C to about 500 to 600°C. Due to this rapid temperature fluctuation, the liquid surface 102a of the sodium 102 is in direct contact with the reactor vessel 1.
Large thermal stress occurs in thick plates such as the peripheral wall of the reactor vessel 101, the upper core mechanism 109, the pump 107, and the intermediate heat exchanger 110, and the effect is particularly large on the peripheral wall of the reactor vessel 101, which reduces the thickness of the material. There is a risk of accelerating fatigue of the meat plate.

そこで、原子炉容器101周壁部の温度変動を小さくし
、この部分の熱応力を減少させるために、原子炉容器1
01の内周部には熱遮蔽@置が設けられている。
Therefore, in order to reduce the temperature fluctuation in the peripheral wall of the reactor vessel 101 and reduce the thermal stress in this part, the reactor vessel 101
A heat shield is provided on the inner circumference of 01.

これは、第7図および第8図に示すように原子炉容器1
01の内周面全周にわたって、ナトリウム102の自由
液面102aを含む高さ位置に筒状壁112を取付ける
ことにより原子炉容器]O1の内周部に円筒状の空間部
(ガスダム)113を形成し、この空間部113内に輻
射熱をa断するための複数の熱遮蔽板114を周方向お
よび径方向に配設してなるものである。
This corresponds to the reactor vessel 1 as shown in Figures 7 and 8.
By installing a cylindrical wall 112 at a height including the free liquid level 102a of the sodium 102 over the entire inner circumference of the reactor vessel O1, a cylindrical space (gas dam) 113 is created in the inner circumference of the reactor vessel O1. A plurality of heat shielding plates 114 are arranged in the circumferential direction and the radial direction in this space 113 to cut off radiant heat.

上記熱遮蔽板114は熱膨張を見込んで周方向に一定の
間隙115をあけて配列され、径方向にも熱伝達防止の
ために一定の間隙116をあけて配列されている。上記
空間部113の下端開口は環状底板117によって閉塞
されており、この底板117と各熱遮蔽板114の下端
との間にも熱遮蔽板114の上下方向の熱膨張を見込ん
で間隙118をあけている。そしてこれらの熱遮蔽板1
14は、筒状壁112と原子炉容器101の周壁との間
に径方向に固定されたボルト119によって支持される
とともに、上端は共通のカバー120を介して原子炉容
器101の内周面に固定されている。
The heat shielding plates 114 are arranged with constant gaps 115 in the circumferential direction in anticipation of thermal expansion, and are also arranged with constant gaps 116 in the radial direction to prevent heat transfer. The lower end opening of the space 113 is closed by an annular bottom plate 117, and a gap 118 is also provided between this bottom plate 117 and the lower end of each heat shield plate 114 in anticipation of vertical thermal expansion of the heat shield plate 114. ing. And these heat shield plates 1
14 is supported by bolts 119 fixed in the radial direction between the cylindrical wall 112 and the peripheral wall of the reactor vessel 101, and its upper end is connected to the inner peripheral surface of the reactor vessel 101 via a common cover 120. Fixed.

なお、これらの熱遮蔽板114は第7図の如く各層ごと
に互に周方向へずらして配置され、各層の周方向間II
!115が互に重なり合わないように配慮されている。
As shown in FIG. 7, these heat shielding plates 114 are arranged so as to be shifted in the circumferential direction for each layer, with a distance II between the layers in the circumferential direction.
! 115 are taken into consideration so that they do not overlap each other.

以上の構成では、原子炉容器101の内側に形成された
空間部113がガス断熱層となって、ナトリウム102
から原子炉容器101の周壁方向への熱移動が抑制され
、また空間部113内の熱遮蔽板114により輻射によ
る熱移動も抑制される。
In the above configuration, the space 113 formed inside the reactor vessel 101 serves as a gas insulation layer, and the sodium 102
Heat transfer from the reactor vessel 101 toward the peripheral wall of the reactor vessel 101 is suppressed, and heat transfer due to radiation is also suppressed by the heat shield plate 114 in the space 113.

〔背景技術の問題点〕[Problems with background technology]

しかしながら、上記熱遮蔽装置では、空間部113内に
おいて周方向間隙115および径方向間隙116を通し
て周方向、軸方向および径方向にガスが自然対流により
流通し、原子炉容器101の周壁方向への熱移動を必ず
しも効果的に遮蔽することは期待できない。すなわち、
第7図および第8図に矢印で示すように、空間部113
内において、筒状壁112近傍の径方向間隙116内で
は高温プレナム105に存在する軸方向温度差の影響を
受け、筒状壁112に沿って軸方向上向きのガス上昇流
aが発生する。このガス上昇流aは空@部113の上部
で流れの方向を変え、空間部113の断熱効果により生
じた筒状壁112と原子炉容器101の周壁との温度差
により径方向間隙115を通過する半径方向のガス流す
となる。
However, in the above heat shielding device, gas flows in the circumferential direction, axial direction, and radial direction within the space 113 through the circumferential gap 115 and the radial gap 116 by natural convection, and heat is transferred in the direction of the circumferential wall of the reactor vessel 101. It cannot be expected to necessarily effectively block movement. That is,
As shown by arrows in FIGS. 7 and 8, the space 113
Inside, the radial gap 116 near the cylindrical wall 112 is affected by the axial temperature difference existing in the high temperature plenum 105, and an upward axial gas flow a is generated along the cylindrical wall 112. This upward gas flow a changes its flow direction at the upper part of the empty part 113 and passes through the radial gap 115 due to the temperature difference between the cylindrical wall 112 and the peripheral wall of the reactor vessel 101 caused by the insulation effect of the empty part 113. This results in a radial gas flow.

そして原子炉容器101の周壁に達したガス流しは、今
度は原子炉101の内周壁面に沿って軸方向下向きの下
降流Cとなり、さらに熱遮蔽板114の下方を内側へ回
りこんで筒状壁112に沿うガス上昇流となる。
Then, the gas flow that has reached the peripheral wall of the reactor vessel 101 becomes a downward flow C in the axial direction along the inner peripheral wall surface of the reactor 101, and further goes around inside under the heat shielding plate 114 to form a cylindrical shape. This results in an upward flow of gas along the wall 112.

このように、各熱遮蔽板114間に周方向間隙115お
よび径方向間隙116が存在し、さらに熱遮蔽板114
の下方がおいているために、自然対流による循環ガス流
a、b、cが生じて筒状壁112に接する液体金属ナト
リウム102から原子炉容器101の周壁へ至るガス流
による伝達熱量が大きく、空間部113の断熱効果は必
ずしも満足すべきものとはいえなかった。
In this way, a circumferential gap 115 and a radial gap 116 exist between each heat shield plate 114, and furthermore, the heat shield plate 114
Because the lower part of the reactor vessel 101 is located at the bottom, circulating gas flows a, b, and c occur due to natural convection, and the amount of heat transferred by the gas flow from the liquid metal sodium 102 in contact with the cylindrical wall 112 to the peripheral wall of the reactor vessel 101 is large. The heat insulation effect of the space 113 was not necessarily satisfactory.

さらに、原子炉容器101周型および筒状壁112の各
表面の軸方向の温度分布が不均一となるため、熱応力発
生およびこれにffう変形発生のおそれもあり、原子炉
容器101の健全性を充分維持するものとはいえなかっ
た。
Furthermore, since the temperature distribution in the axial direction of each surface of the circumferential shape of the reactor vessel 101 and the cylindrical wall 112 becomes non-uniform, there is a risk of thermal stress generation and deformation due to this. It could not be said that it was sufficient to maintain sex.

〔発明の目的〕[Purpose of the invention]

本発明はこのような事情にもとづいてなされたもので、
その目的は、冷却材から原子炉容器周壁部への熱流束を
大幅に減少させることができ、さらに原子炉容器の内周
部に形成される環状空間部内でのカバーガスの自然対流
をも有効に防止して、原子炉容器の周壁部の熱応力およ
び熱変形を大幅に軽減し、原子炉容器の健全性を維持し
、その信頼性の向上を図り得る高速増殖炉の熱遮蔽装置
を提供することにある。
The present invention was made based on these circumstances, and
The purpose is to significantly reduce the heat flux from the coolant to the reactor vessel peripheral wall, and also to improve the natural convection of the cover gas within the annular space formed at the inner circumference of the reactor vessel. Provides a thermal shielding device for a fast breeder reactor that can significantly reduce thermal stress and thermal deformation of the peripheral wall of the reactor vessel, maintain the integrity of the reactor vessel, and improve its reliability. It's about doing.

〔発明の概要〕[Summary of the invention]

以上の目的達成のため、本発明の熱遮蔽装置は、冷却材
を収容した原子炉容器内に、その原子炉容器内周の全周
にわたって前記冷却材の自由液面を含む高さ位置に設け
られ原子炉容器内周面との間に筒状空間部を形成する筒
状壁と、前記筒状空間のド端間口を閉塞する環状底板と
、前記筒状空間内に周方向および径方向に間隔をあけて
、かつそれぞれの下端と前記環状底板との間にも間隔を
あけて周方向および径方向に配列された複数の熱遮蔽板
と、これらの熱遮蔽板の径方向の各列ごとに対応して設
けられ前記環状底板の上面より立上がって上端部を前記
径方向の各列の熱遮蔽体の外周面または内周面下部に接
触させた複数の円筒状対流防止板とを具備して構成され
る。
In order to achieve the above object, the heat shielding device of the present invention is installed in a reactor vessel containing a coolant at a height including the free liquid level of the coolant over the entire inner circumference of the reactor vessel. a cylindrical wall that forms a cylindrical space between the cylindrical space and the inner peripheral surface of the reactor vessel; an annular bottom plate that closes the end opening of the cylindrical space; a plurality of heat shield plates arranged in the circumferential direction and the radial direction at intervals and also at intervals between each lower end and the annular bottom plate, and each row of these heat shield plates in the radial direction; a plurality of cylindrical convection prevention plates that are provided corresponding to the annular bottom plate and that stand up from the upper surface of the annular bottom plate and whose upper ends are in contact with the outer circumferential surface or the lower inner circumferential surface of each row of heat shields in the radial direction. It is composed of

従って、熱遮蔽異端下方を内方へ向って回り込むガス流
路は遮断されて自然対流を防止することができ、原子炉
容器の周壁を低温に維持することができる。
Therefore, the gas flow path that goes inward under the heat shield is blocked, and natural convection can be prevented, and the peripheral wall of the reactor vessel can be maintained at a low temperature.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の第1の実施例を示す。第1図はタンク型
^速増殖炉の概略構成を示すもので、原子炉容器1内に
は、−次冷却材である液体金属ナトリウム2が充填され
ており、多数本の燃料集合体(図示せず)を装荷してな
る炉心3が原子炉容器1の中央部に位置するようにナト
リウム2内に浸漬配置されている。また原子炉容器1の
内部空間は炉心3の外周に設番ノられた仕切壁4により
上下に仕切られて、上方の高温ブレナム5と下方の低温
ブレナム6とに区画されており、この仕切壁4に支持さ
れたポンプ7を駆動することにより、ナトリウム2が炉
心3の下方から上方へ流通して原子炉容器1内を循環す
るようになっている。
A first embodiment of the present invention will be described below. Figure 1 shows the schematic configuration of a tank-type fast breeder reactor, in which a reactor vessel 1 is filled with liquid metal sodium 2, which is a secondary coolant, and a large number of fuel assemblies (Fig. A reactor core 3 loaded with a reactor (not shown) is placed immersed in sodium 2 so as to be located in the center of the reactor vessel 1. Further, the internal space of the reactor vessel 1 is partitioned into an upper and lower part by a partition wall 4 numbered on the outer periphery of the reactor core 3, and divided into an upper high-temperature blemish 5 and a lower low-temperature blemish 6. By driving the pump 7 supported by the reactor 4, the sodium 2 flows from below to above the reactor core 3 and circulates within the reactor vessel 1.

前記原子炉容器1の上部開口はルーフスラブ8により閉
塞されており、このルーフスラブ8の中心部には前記炉
心3の真上に位置させて炉心上部m構9が垂設されてい
る。また、ルーフスラブ8の上部には二次冷却材供給1
1桐(図示せず)が取付けられており、前記仕切壁4に
はこの二次冷却月供給機構より二次冷却材(液体金属ナ
トリウム)の供給を受ける中間熱交換器10が取付けら
れている。さらに炉心3の下方には、高圧ブレナム11
が設けられている。なお、液体金属ナトリウム2の液面
2aとルーフスラブ8との間にはアルゴン、ヘリウム等
の不活性ガスGがカバーガスとして充填されている。こ
の不活性ガスGは、原子炉運転時におけるナトリウム2
の温度変化に伴ってその体積が膨張した場合の、原子炉
容器1の内圧変化を吸収し、原子炉構成機器に及ぼす悪
影響を防止するためのものである。
The upper opening of the reactor vessel 1 is closed by a roof slab 8, and a core upper m structure 9 is vertically installed in the center of the roof slab 8, located directly above the reactor core 3. In addition, a secondary coolant supply 1 is provided at the top of the roof slab 8.
1 paulownia (not shown) is attached to the partition wall 4, and an intermediate heat exchanger 10 is attached to the partition wall 4, which receives a supply of secondary coolant (liquid metal sodium) from this secondary cooling moon supply mechanism. . Furthermore, below the core 3, there is a high-pressure blemish 11
is provided. Note that an inert gas G such as argon or helium is filled as a cover gas between the liquid surface 2a of the liquid metal sodium 2 and the roof slab 8. This inert gas G is sodium 2 during reactor operation.
This is to absorb changes in the internal pressure of the reactor vessel 1 when its volume expands due to temperature changes, and to prevent adverse effects on the reactor components.

原子炉容器1の内周面部には熱辿蔽装訪が設けられてい
る。これを第2図および第3図により説明すると、まず
図中12は原子炉容器1の内周面全周にわたって、ナト
リウム2の自由液面2aを含む高さ位置に取付けられた
筒状壁12である。
A heat tracing device is provided on the inner peripheral surface of the reactor vessel 1 . To explain this with reference to FIGS. 2 and 3, first, reference numeral 12 in the figure denotes a cylindrical wall 12 installed at a height position including the free liquid level 2a of sodium 2 over the entire inner peripheral surface of the reactor vessel 1. It is.

これは原子炉容器1の内周部に円筒状の空間部(ガスダ
ム)13を形成して原子炉容器1の周壁を高温のナトリ
ウム2より隔離するためのもので、空間部13内には輻
射熱を遮断するための複数の熱遮蔽板14が、周方向お
よび径方向に配列されている。
This is to form a cylindrical space (gas dam) 13 on the inner circumference of the reactor vessel 1 to isolate the peripheral wall of the reactor vessel 1 from the high-temperature sodium 2. A plurality of heat shielding plates 14 are arranged in the circumferential direction and the radial direction.

上記熱遮蔽板14は熱膨張を見込んで周方向に一定のl
l1ll!15をあけて配列され、径方向にも熱伝達防
止のために一定の間隙16をあけて配列されている。上
記空間部13の下端開口は環状底板17によって閉塞さ
れており、この底板17と各熱遮蔽板14の下端との間
にも熱遮蔽板14の上下方向の熱膨張を見込んで間隙1
8をあけている。
The heat shield plate 14 has a constant l in the circumferential direction in anticipation of thermal expansion.
l1ll! They are arranged with a certain gap 15 in between, and also in the radial direction with a certain gap 16 in order to prevent heat transfer. The lower end opening of the space 13 is closed by an annular bottom plate 17, and there is also a gap 1 between this bottom plate 17 and the lower end of each heat shield plate 14 in anticipation of vertical thermal expansion of the heat shield plate 14.
8 is open.

そしてこれらの熱遮蔽板14は、筒状壁12と原子炉容
器1の周壁との間に径方向に固定されたボルト19によ
って支持されるとともに、上端は共通のカバー20を介
して原子炉容器1の内周面に固定されている。
These heat shielding plates 14 are supported by bolts 19 fixed in the radial direction between the cylindrical wall 12 and the peripheral wall of the reactor vessel 1, and their upper ends are connected to the reactor vessel through a common cover 20. It is fixed to the inner peripheral surface of 1.

なお、これらの熱遮蔽板14は第2図の如く各層ごとに
互に周方向へずらして配置され、各層の周方向間隙15
が互に重なり合わないように配慮されている。
As shown in FIG. 2, these heat shielding plates 14 are arranged so as to be offset in the circumferential direction for each layer, and the circumferential gap 15 between each layer is
Care has been taken to ensure that they do not overlap each other.

前記各熱遮蔽板14の表面は高度の反射率が得られるよ
うに鏡面加工が施され、空間部13内の放射熱を遮断す
るようにしている。
The surface of each of the heat shielding plates 14 is mirror-finished so as to obtain a high degree of reflectance, and is designed to block radiant heat within the space 13.

また図中21は前記熱遮蔽板12の径方向の各列ごとに
対応して設けられた円筒状対流防止板である。これらは
環状底板17の上面に設置された環状板22より立上が
って各上端部21aを熱遮蔽板12の外周面に接触させ
ている。
Further, in the figure, reference numeral 21 denotes a cylindrical convection prevention plate provided corresponding to each row of the heat shield plate 12 in the radial direction. These are raised from an annular plate 22 installed on the upper surface of the annular bottom plate 17, and each upper end portion 21a is brought into contact with the outer circumferential surface of the heat shield plate 12.

以上のような構成では、空間部13内において熱遮蔽板
14の下方を回り込もうとするガス流が対流防止板21
によって遮断され、しかも各熱遮蔽板14の表面は高度
の反射率が得られるように鏡面加工が施されているので
、ガスの自然対流および放射熱により高温のナトリウム
2から筒状壁12および空間部13を介して原子、炉容
器1周壁へ至る熱流束を効率よく遮断することができ、
原子炉容器1周壁の温度を低温に維持して過大な熱応力
、熱変形の発生を防止することができる。また、複数の
対流防止板21は共通の環状板22に取付けて一体化さ
れているので、空間部13内への組込みがきわめて容易
に行なえる。
In the above configuration, the gas flow that tries to go around below the heat shielding plate 14 in the space 13 passes through the convection prevention plate 21.
Moreover, since the surface of each heat shield plate 14 is mirror-finished to obtain a high degree of reflectance, natural convection of the gas and radiant heat cause the high-temperature sodium 2 to be removed from the cylindrical wall 12 and the space. The heat flux reaching the atom and the peripheral wall of the reactor vessel 1 through the part 13 can be efficiently blocked,
The temperature of the peripheral wall of the reactor vessel 1 can be maintained at a low temperature to prevent excessive thermal stress and thermal deformation from occurring. Further, since the plurality of convection prevention plates 21 are attached to a common annular plate 22 and integrated, they can be incorporated into the space 13 very easily.

次に、第4図は本発明の第2の実施例を示すもので、図
中23は円筒状対流防止板である。これらの対流防止板
23は上端部23aを縦断面波形として、共通の環状板
22より立ち上げである。
Next, FIG. 4 shows a second embodiment of the present invention, in which reference numeral 23 is a cylindrical convection prevention plate. These convection prevention plates 23 have an upper end 23a having a corrugated longitudinal section and are upright from the common annular plate 22.

また第5図は本発明の第3の実施例を示すもので、図中
24は円筒状対流防止板である。これらの対流防止板2
4は上端部24aを対応する熱遮蔽板14に向けて屈曲
させており、共通の環状板22より立ち上げである。
Further, FIG. 5 shows a third embodiment of the present invention, in which numeral 24 is a cylindrical convection prevention plate. These convection prevention plates 2
4 has an upper end portion 24a bent toward the corresponding heat shield plate 14, and is raised from the common annular plate 22.

以上の第2.第3の実施例によっても第1の実施例と同
様の効果を得ることができる。
The second above. The third embodiment can also provide the same effects as the first embodiment.

〔発明の効果) 以上詳述したように、本発明に係る高速増殖炉の熱遮蔽
装置によれば、冷却材から原子炉容器周壁部への熱流束
を大幅に減少させることができ、さらに原子炉容器の内
周部に形成される環状空間部内でのカバーガスの自然対
流をも有効に防止して、原子炉容器の周壁部の熱応力お
よび熱変形を大幅に軽減し、原子炉容器の健全性を維持
し、その信頼性の向上を図ることができる。
[Effects of the Invention] As detailed above, according to the heat shielding device for a fast breeder reactor according to the present invention, the heat flux from the coolant to the reactor vessel peripheral wall can be significantly reduced, and the It also effectively prevents natural convection of the cover gas within the annular space formed on the inner periphery of the reactor vessel, greatly reducing thermal stress and thermal deformation on the peripheral wall of the reactor vessel, and improving the stability of the reactor vessel. It is possible to maintain soundness and improve its reliability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第3図は本発明の第1の実施例を示すもの
で、第1図は高速増殖炉の縦断面図、第2図は熱遮蔽装
置の一部を示す横断面図、第3図は第2図の■−■断面
図、第4図は第2の実施例における熱遮蔽itの一部を
拡大して示す縦断面図、第5図は第3の実施例における
熱遮蔽装置の一部を拡大して示す縦断面図、第6図ない
し第8図は従来例を示すもので、第6図は高速増殖炉の
縦断面図、第7図は熱遮蔽装置の一部を示す横断面図、
第8図は第6図の■−■断面図である。 1・・・原子炉容器、2・・・液体金属ナトリウム(−
次冷却材)、3・・・炉心、12・・・筒状壁、13・
・・円筒状の空間部、14・・・熱遮蔽板、17・・・
環状底板、21.22.24・・・円筒状対流防止板、
22・・・環状板、21a 、23a 24a・・・上
端部。 出願人代理人 弁理士 鈴江武彦 第1図 第4図 1ム 第5 図 t
1 to 3 show a first embodiment of the present invention, in which FIG. 1 is a longitudinal cross-sectional view of a fast breeder reactor, FIG. 2 is a cross-sectional view showing a part of a heat shielding device, and FIG. 3 is a sectional view taken along the line ■-■ in FIG. 2, FIG. 4 is an enlarged vertical sectional view of a part of the heat shield IT in the second embodiment, and FIG. 5 is a cross-sectional view of the heat shield in the third embodiment. A vertical cross-sectional view showing an enlarged part of the device, Figures 6 to 8 show conventional examples, Figure 6 is a vertical cross-sectional view of a fast breeder reactor, and Figure 7 is a part of a heat shielding device. A cross-sectional view showing
FIG. 8 is a sectional view taken along the line ■-■ in FIG. 6. 1...Reactor vessel, 2...Liquid metal sodium (-
secondary coolant), 3... core, 12... cylindrical wall, 13...
...Cylindrical space, 14...Heat shielding plate, 17...
Annular bottom plate, 21.22.24... Cylindrical convection prevention plate,
22... Annular plate, 21a, 23a 24a... Upper end portion. Applicant's representative Patent attorney Takehiko Suzue Figure 1 Figure 4 Figure 1 Figure 5 T

Claims (5)

【特許請求の範囲】[Claims] (1)冷却材を収容した原子炉容器内に、その原子炉容
器内周の全周にわたって前記冷却材の自由液面を含む高
さ位置に設けられ原子炉容器内周面との間に筒状空間部
を形成する筒状壁と、前記筒状空間の下端開口を閉塞す
る環状底板と、前記筒状空間内に周方向および径方向に
間隔をあけて、かつそれぞれの下端と前記環状底板との
間にも間隔をあけて周方向および径方向に配列された複
数の熱遮蔽板と、これらの熱遮蔽板の径方向の各列ごと
に対応して設けられ前記環状底板の上面より立上がつて
上端部を前記径方向の各列の熱遮蔽体の外周面または内
周面下部に接触させた複数の円筒状対流防止板とを具備
したことを特徴とする高速増殖炉の熱遮蔽装置。
(1) A cylinder installed in the reactor vessel containing the coolant at a height including the free liquid level of the coolant over the entire inner circumference of the reactor vessel and between the reactor vessel inner circumferential surface. a cylindrical wall forming a cylindrical space; an annular bottom plate that closes a lower end opening of the cylindrical space; A plurality of heat shield plates are arranged in the circumferential direction and the radial direction with intervals between A heat shield for a fast breeder reactor, comprising a plurality of cylindrical convection prevention plates that rise and have upper ends in contact with the outer peripheral surface or the lower inner peripheral surface of each row of heat shields in the radial direction. Device.
(2)前記熱遮蔽板は表面が鏡面加工を施されているこ
とを特徴とする特許請求の範囲第1項記載の高速増殖炉
の熱遮蔽装置。
(2) The heat shielding device for a fast breeder reactor according to claim 1, wherein the surface of the heat shielding plate is mirror-finished.
(3)前記複数の円筒状対流防止板は前記環状底板上に
設置された共通の環状板に下端が固着されていることを
特徴とする特許請求の範囲第1項記載の高速増殖炉の熱
遮蔽装置。
(3) The heat of the fast breeder reactor according to claim 1, wherein the plurality of cylindrical convection prevention plates have lower ends fixed to a common annular plate installed on the annular bottom plate. Shielding device.
(4)前記各円筒状対流防止板は上端部を断て断面波形
としたことを特徴とする特許請求の範囲第1項記載の高
速増殖炉の熱遮蔽装置。
(4) The heat shielding device for a fast breeder reactor according to claim 1, wherein each of the cylindrical convection prevention plates has an upper end section cut to form a corrugated cross section.
(5)前記各円筒状対流防止板は上端部を前記熱遮蔽板
に向けて屈曲させていることを特徴とする特許請求の範
囲第1項記載の高速増殖炉の熱遮蔽装置。
(5) The heat shielding device for a fast breeder reactor according to claim 1, wherein each of the cylindrical convection prevention plates has an upper end bent toward the heat shielding plate.
JP61030132A 1986-02-14 1986-02-14 Thermal shielding device for fast breeder reactor Pending JPS62188993A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61030132A JPS62188993A (en) 1986-02-14 1986-02-14 Thermal shielding device for fast breeder reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61030132A JPS62188993A (en) 1986-02-14 1986-02-14 Thermal shielding device for fast breeder reactor

Publications (1)

Publication Number Publication Date
JPS62188993A true JPS62188993A (en) 1987-08-18

Family

ID=12295249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61030132A Pending JPS62188993A (en) 1986-02-14 1986-02-14 Thermal shielding device for fast breeder reactor

Country Status (1)

Country Link
JP (1) JPS62188993A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8973731B2 (en) 2010-12-17 2015-03-10 Otis Elevator Company Regenerative power control for passenger conveyors

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8973731B2 (en) 2010-12-17 2015-03-10 Otis Elevator Company Regenerative power control for passenger conveyors

Similar Documents

Publication Publication Date Title
US3962032A (en) Fast nuclear reactor
CN109147969B (en) Nuclear reactor molten material core retention passive cooling system
JP6395802B2 (en) Reactor system and method
US4055465A (en) Device for thermal insulation of a vessel wall
JPH0727050B2 (en) Liquid metal cooled nuclear reactor with passive cooling system
FI74830C (en) Nuclear reactor, whose core is shielded with a construction of rods and transverse plates.
JPH0326795B2 (en)
JPS62188993A (en) Thermal shielding device for fast breeder reactor
US4198271A (en) Liquid metal cooled nuclear reactor constructions
JP2008122248A (en) Fast reactor
JPS5952795B2 (en) Reactor
GB1314499A (en) Nuclear reactior installation
JPS62188995A (en) Thermal shielding device for fast breeder reactor
US4655996A (en) East neutron reactor having a storage structure independent of the core structure
JP2986348B2 (en) Upper head reactor vessel
JPS61180190A (en) Heat shielding device for fast breeder reactor
US20100172459A1 (en) Fast reactor
JPH0827368B2 (en) Fast breeder reactor
JP2837874B2 (en) Liquid metal cooled fast neutron reactor
JPS6157889A (en) Upper shielding body of fast breeder reactor
JPH0462037B2 (en)
JP2725804B2 (en) Reactor vessel
JPH02266296A (en) Thermal shield device for nuclear reactor vessel
JPS5939994A (en) Circulating pump for fast breeder of tank type
JPH0143671Y2 (en)