JPS62188771A - Surface hardening method for structural steel - Google Patents

Surface hardening method for structural steel

Info

Publication number
JPS62188771A
JPS62188771A JP2895386A JP2895386A JPS62188771A JP S62188771 A JPS62188771 A JP S62188771A JP 2895386 A JP2895386 A JP 2895386A JP 2895386 A JP2895386 A JP 2895386A JP S62188771 A JPS62188771 A JP S62188771A
Authority
JP
Japan
Prior art keywords
gas
plasma
surface hardening
structural steel
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2895386A
Other languages
Japanese (ja)
Inventor
Katsunori Takada
高田 勝典
Kenji Isogawa
礒川 憲二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2895386A priority Critical patent/JPS62188771A/en
Publication of JPS62188771A publication Critical patent/JPS62188771A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable desired surface hardening even in case of a low-C member by using a gaseous mixture of an inert gas with a nitriding gas and a carburizing gas as a working gas when a plasma jet flame or plasma arc is irradiated on a steel member. CONSTITUTION:A plasma jet flame or plasma arc is generated by using a gaseous mixture of an inert gas such as Ar or He with a nitriding gas such as nitrogen and a carburizing gas such as methane as a working gas, and the flame or arc is irradiated on a structural steel member to carry out surface hardening. By this method, N and C atoms penetrate rapidly into the surface of the member, so satisfactory surface hardness and desired high fatigue strength are obtd. even when the member has a low C content.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明はプラズマジェットフレーム又はプラズマアー
クを用いて構造用鋼で構成される部材表面を硬化させる
構造用鋼の表面硬化方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for surface hardening structural steel, which hardens the surface of a member made of structural steel using a plasma jet flame or a plasma arc.

(従来の技術及びその問題点) 疲れ強さや耐摩耗性が要求される部材にはその表面に浸
炭焼入れ、高周波焼入れ等の表面硬化処理が一般的に実
施されている。しかしながら、浸炭焼入れ、高周波焼入
れ等の表面硬化処理は加熱領域が比較的広範囲に亘るた
め、部材の変形が生じ易い、これに対し、レーザー、プ
ラズマなどの高エネルギー密度の熱源を部材局部に照射
して硬化すれば熱処理歪みの発生が抑制されることが知
られている。この場合、硬化層の硬さは部材の炭素含有
量により略決定されるので、所望の高疲労強度、良好な
耐摩耗性を得るには部材に炭素含有量の多い高炭素鋼を
使用する必要がある。
(Prior art and its problems) Surface hardening treatments such as carburizing and hardening, induction hardening, etc. are generally performed on the surface of members that require fatigue strength and wear resistance. However, surface hardening treatments such as carburizing and induction hardening involve heating over a relatively wide area, which tends to cause deformation of the part. It is known that the occurrence of heat treatment distortion can be suppressed by hardening the material. In this case, the hardness of the hardened layer is approximately determined by the carbon content of the component, so it is necessary to use high carbon steel with a high carbon content in the component to obtain the desired high fatigue strength and good wear resistance. There is.

部材に高炭素鋼を使用すると、表面硬化処理前に部材の
前加工工程として焼ならし、焼なまし等の熱処理を必要
とするばかりか、高炭素鋼は靭性や被削性に劣るので、
冷鍛、切削工程等において、多くの加工上の問題を招来
する。
When high carbon steel is used for parts, not only does it require heat treatment such as normalization and annealing as a pre-processing process for the part before surface hardening treatment, but also high carbon steel has poor toughness and machinability.
This causes many processing problems in cold forging, cutting processes, etc.

本発明は斯かる問題点を解決するためになされたもので
、炭素含有量の低い部材であっても所望の高疲労強度及
び良好な耐摩耗性が得られ、しかも、部材表面の所望の
部位だけを硬化させることができる構造用鋼の表面硬化
方法を提供することを目的とする。
The present invention was made in order to solve these problems, and it is possible to obtain the desired high fatigue strength and good wear resistance even with a member having a low carbon content, and furthermore, it is possible to obtain the desired high fatigue strength and good wear resistance even in a member with a low carbon content. The purpose of the present invention is to provide a surface hardening method for structural steel that can harden only the steel.

(問題点を解決するための手段) 上述の目的を達成するために本発明に依れば、構造用鋼
で構成される部材表面にプラズマジェットフレーム又は
プラズマアークを照射し、該部材表面を溶融せずに加熱
して硬化させる表面硬化方法において、前記プラズマジ
エ’7トフレーム又はプラズマアークを発生させる作動
ガスに、不活性ガスと、窒化性ガス及び浸炭性ガスの1
種又は2種とから成る混合ガスを使用することを特徴と
する構造用鋼の表面硬化方法が提供される。
(Means for Solving the Problems) In order to achieve the above-mentioned object, according to the present invention, a plasma jet flame or a plasma arc is irradiated onto the surface of a member made of structural steel to melt the surface of the member. In the surface hardening method in which the plasma jet flame or plasma arc is generated, an inert gas and one of a nitriding gas and a carburizing gas are added to the working gas for generating the plasma jet flame or plasma arc.
Provided is a method for surface hardening structural steel, characterized in that it uses a gas or a mixture of two gases.

又、必要に応じ、不活性ガスと、窒化性ガス及び浸炭性
ガスの1種又は2種とから成る混合ガスをシールドガス
として、該シールドガスにより前記プラズマジェットフ
レーム又はプラズマアークをシールドすることも可能で
ある。
Further, if necessary, the plasma jet flame or plasma arc may be shielded by using a mixed gas consisting of an inert gas and one or two of a nitriding gas and a carburizing gas as a shielding gas. It is possible.

(作用) アルゴン、ヘリウム等の不活性ガスに窒素ガス、アンモ
ニアガス等の窒化性ガス及び/又はメタン等の浸炭性ガ
スを加えた混合ガスを作動ガスとしてプラズマジェット
フレーム又はプラズマアークを発生させると、プラズマ
は約6000℃以上の高温であるため、窒化性ガス及び
/又は浸炭性ガスは、例えば、 N2→2N、CH,→C+4H の化学反応により解離及びイオン化し、N原子及び/又
はC原子の部材表面への浸入が極めて急速に行われるた
め、部材の炭素含有量が低くても十分な表面硬さが得ら
れる。尚、N原子等のイオン化はプラズマが得られるよ
うな高温でないと生じないため、火炎焼入れ法では火炎
温度が低く上述したようなN原子等の部材表面への浸入
は殆ど認められず、レーザーを用いる焼入れ法では加熱
源として光を用いるため、上記の方法の適用はできない
(Function) When a plasma jet flame or plasma arc is generated using a mixed gas of an inert gas such as argon or helium and a nitriding gas such as nitrogen gas or ammonia gas and/or a carburizing gas such as methane as the working gas. Since the plasma has a high temperature of approximately 6000°C or higher, the nitriding gas and/or carburizing gas is dissociated and ionized by the chemical reaction of, for example, N2 → 2N, CH, → C+4H, and N atoms and/or C atoms Penetration into the surface of the component takes place very rapidly, so that sufficient surface hardness can be obtained even if the carbon content of the component is low. Note that ionization of N atoms, etc., does not occur unless the temperature is high enough to generate plasma, so in the flame hardening method, the flame temperature is low, and as mentioned above, almost no penetration of N atoms, etc. into the surface of the material is observed, and it is difficult to use a laser. Since the quenching method used uses light as a heating source, the above method cannot be applied.

(実施例) 以下本発明の実施例について説明する。(Example) Examples of the present invention will be described below.

第1表は本発明方法及び従来の比較方法を適用して表面
硬化処理が施される供試材の化学成分例を示す。供試材
No、1は炭素含有量が0.20%の低炭素構造用鋼で
あり、供試材No、2は炭素含有量が0.60%の高炭
素構造用鋼である。そして、供試材No、3は軟窒化鋼
、供試材No、4は5Cr420相当鋼、供試材No、
5はSC?1420相当鋼、供試材No、6はSN0M
420相当鋼であり、いずれも炭素含有量は供試材No
、1と同程度である。
Table 1 shows examples of chemical components of test materials subjected to surface hardening treatment by applying the method of the present invention and the conventional comparative method. Test material No. 1 is a low carbon structural steel with a carbon content of 0.20%, and test material No. 2 is a high carbon structural steel with a carbon content of 0.60%. And, test material No. 3 is soft nitrided steel, test material No. 4 is 5Cr420 equivalent steel, test material No.
5 is SC? 1420 equivalent steel, sample material No. 6 is SN0M
420 equivalent steel, and the carbon content in both cases is the same as that of sample material No.
, is about the same as 1.

第1表に示す各化学成分の鋼を電気炉で溶解したのち造
塊し、分塊圧延、小型圧延して50φの丸棒材に成形し
た。そして、各50φの丸棒材を、No、1の供試材に
ついては900℃XIHr、NoJの供試材については
850℃X1llr 、 No、3の供試材については
950℃xlHr 、 No、4乃至No、6の供試材
については925℃xlllrで夫々焼ならししたのち
空冷して45φX300 fの供試片を切り出した。
Steel having each chemical composition shown in Table 1 was melted in an electric furnace and then formed into an agglomerate, followed by blooming and compact rolling to form a 50φ round bar. Then, each 50φ round bar material was heated to 900℃XIHr for the sample material No. 1, 850℃X1llr for the sample material No. 3, 950℃XIHr for the sample material No. 4, The test materials No. to No. 6 were normalized at 925° C. xllllr, cooled in air, and test pieces of 45 φ x 300 f were cut out.

第2表賃式験昂吉果 第2表 (続き) (以下余白) 従来公知のプラズマアーク発生装置のトーチ内の棒状陰
極とノズル陽極間に80Aの直流アークを生しさせ、そ
の周りに第2表に示す成分割合(体積割合)の作動ガス
を流してプラズマアークを発生させ、更にこのプラズマ
アークの周囲に第2表に示す成分割合(体積割合)のシ
ールドガスを噴出させ、これらのアークを上述のように
して切り出した各供試材の表面に照射させる。このとき
、トーチを固定し、各供試材を軸回りに回転させ、走査
速度(周速度) 300mm/1ainのプラズマ焼入
れが行われる。尚、各試験No、 (al〜(rlにお
いて使用される作動ガス及びシールドガスは夫々不活性
ガスとしてのアルゴンガスをベースに、窒化性ガスとし
ての窒素ガス及び浸炭性ガスとしてのメタンガスを第2
表に示す体積割合で混合したものである。そして、各供
試材のプラズマ焼入れをした表面から0.05mmの深
さ位置でビッカース硬さく1lv)を4点計測し、これ
らの平均値を第2表に示しである。
Table 2 Table 2 (Continued) (Left below) A DC arc of 80 A is generated between the rod-shaped cathode and the nozzle anode in the torch of a conventionally known plasma arc generator. A plasma arc is generated by flowing a working gas having the component ratio (volume ratio) shown in Table 2, and a shielding gas having the component ratio (volume ratio) shown in Table 2 is ejected around this plasma arc to generate a plasma arc. irradiate the surface of each sample material cut out as described above. At this time, the torch is fixed, each specimen is rotated around its axis, and plasma hardening is performed at a scanning speed (circumferential speed) of 300 mm/1 ain. In addition, the working gas and shielding gas used in each test No.
These are mixed at the volume ratio shown in the table. Then, the Vickers hardness (1 lv) was measured at four points at a depth of 0.05 mm from the plasma-hardened surface of each sample material, and the average values are shown in Table 2.

窒化性ガス及び浸炭性ガスをいずれも含まない作動ガス
及びシールドガスを使用してプラズマ焼入れを行う従来
の比較法では、供試材No、2にプラズマ焼入れする試
験No、(1)において、焼入れ硬さはtlv値710
であり、供試材No、1.3〜6にプラズマ焼入れする
試験No、 (al、(kl、[m)、(0)及び(q
lにおいて、焼入れ硬さはHv値440乃至480であ
る。供試材中に含まれるC量が多い高炭素鋼の場合には
(試験No、(i))、比較法でも必要な焼入れ硬さが
得られるが、C量の少ない低炭素鋼の場合には(試験N
o、 (a) 、(kl、+II+1、(0)及びfq
l) 、必要な焼入れ硬さが得られない。
In the conventional comparative method in which plasma hardening is performed using a working gas and a shielding gas that do not contain either nitriding gas or carburizing gas, in Test No. Hardness is tlv value 710
, and test No. of plasma hardening to sample material No. 1.3 to 6, (al, (kl, [m), (0) and (q
1, the quenched hardness has an Hv value of 440 to 480. In the case of high carbon steel containing a large amount of C in the test material (Test No. (i)), the required quenching hardness can be obtained even with the comparative method, but in the case of low carbon steel with a small amount of C, (Test N
o, (a), (kl, +II+1, (0) and fq
l) The required quenching hardness cannot be obtained.

一方、作動ガスに窒化性ガス及び/又は浸炭性ガスを加
えると低炭素鋼でもその焼入れ硬さは著しく増加し、前
記高炭素鋼の供試材NO12に比較法でプラズマ焼入れ
したとき(試験No、 (41)の硬さより11ν値が
高くなっている(試験No、 (bl乃至(d+、(n
+及び(r))。
On the other hand, when nitriding gas and/or carburizing gas is added to the working gas, the quenching hardness of even low carbon steel increases significantly. , the 11ν value is higher than the hardness of (41) (Test No., (bl to (d+, (n
+ and (r)).

作動ガスに代えて、シールドガスに窒化性ガス及び/又
は浸炭性ガスを加えても、前記試験No。
Even if a nitriding gas and/or a carburizing gas was added to the shielding gas instead of the working gas, the test No.

(bl乃至(d+の場合よりは劣るが比較法(試験No
(bl to (comparative method, although inferior to the case of d+ (Test No.
.

(a))に比べると)lv値が著しく高(なっている(
試験No、 tel及び(f))。
The lv value (compared to (a)) is significantly higher (
Test No. tel and (f)).

更に、作動ガスに窒化性ガス及び/又は浸炭性ガスを加
えると共にシールドガスにも窒化性ガス及び/又は浸炭
性ガスを加えると、作動ガスのみに加えた場合(試験N
o、 (bl及び(d+の場合)に比べ、更に焼入れ硬
さが増している(試験No、 ib)及び+d)に夫々
対応する試験No、 (gl及び(hl) 。
Furthermore, if a nitriding gas and/or a carburizing gas are added to the working gas and a nitriding gas and/or a carburizing gas is also added to the shielding gas, the case where it is added only to the working gas (Test N
Test Nos., (gl and (hl)) corresponding to (Test Nos. ib) and +d, which have even higher quenched hardness than o, (bl and (d+ cases)), respectively.

高炭素鋼の場合には従来の比較法によるプラズマ焼入れ
でも前述の通り高いHv値が得られるが(試験No、 
fil) 、高炭素鋼に本発明方法を適用するとより高
いIIν値かえられる(試験No、 (jl)。
In the case of high carbon steel, a high Hv value can be obtained as described above even with plasma quenching using the conventional comparative method (Test No.
fil), when the method of the present invention is applied to high carbon steel, a higher IIv value can be obtained (Test No., (jl)).

(発明の効果) 以上詳述したように本発明の構造用鋼の表面硬化方法に
依れば、プラズマアークを発生させる作動ガスに、不活
性ガスと、窒化性ガス及び浸炭性ガスの1種又は2種と
から成る混合ガスを使用するようにしたので、焼入れ部
材の炭素含有量が低くても所要の表面硬さが得られる。
(Effects of the Invention) As detailed above, according to the surface hardening method for structural steel of the present invention, the working gas for generating a plasma arc includes an inert gas and one of a nitriding gas and a carburizing gas. Alternatively, since a mixed gas consisting of two types is used, the required surface hardness can be obtained even if the carbon content of the quenched member is low.

従って、本発明方法はC含有量の低い種々の構造用鋼に
も、必要に応じて高炭素鋼にも適用可能である。又、部
材表面の必要な局所にだけ焼入れすることも出来、更に
、個々の部品に適用して個別に表面硬化処理が出来るの
で、1個の部品にでもエネルギーの損失なく表面硬化処
理が出来るばかりか、この表面硬化処理工程を製造ライ
ンに組み込んで、所謂インライン化、FMS化等が可能
となるという種々の効果を奏する。
Therefore, the method of the present invention is applicable to various structural steels with low C contents and, if necessary, to high carbon steels. In addition, it is possible to harden only the necessary areas on the surface of the part, and furthermore, it can be applied to individual parts to perform surface hardening treatment individually, so surface hardening treatment can be applied to even a single part without energy loss. Alternatively, by incorporating this surface hardening treatment process into a production line, various effects such as so-called in-line production, FMS production, etc. can be achieved.

Claims (2)

【特許請求の範囲】[Claims] (1)構造用鋼で構成される部材表面にプラズマジェッ
トフレーム又はプラズマアークを照射し、該部材表面を
溶融せずに加熱して硬化させる表面硬化方法において、
前記プラズマジェットフレーム又はプラズマアークを発
生させる作動ガスに、不活性ガスと、窒化性ガス及び浸
炭性ガスの1種又は2種とから成る混合ガスを使用する
ことを特徴とする構造用鋼の表面硬化方法。
(1) A surface hardening method in which the surface of a member made of structural steel is irradiated with a plasma jet flame or a plasma arc, and the surface of the member is heated and hardened without melting,
A surface of structural steel, characterized in that a mixed gas consisting of an inert gas and one or two of a nitriding gas and a carburizing gas is used as the working gas for generating the plasma jet flame or plasma arc. Curing method.
(2)不活性ガスと、窒化性ガス及び浸炭性ガスの1種
又は2種とから成る混合ガスをシールドガスとして、該
シールドガスにより前記プラズマジェットフレーム又は
プラズマアークをシールドすることを特徴とする特許請
求の範囲第1項記載の構造用鋼の表面硬化方法。
(2) A mixed gas consisting of an inert gas and one or two of a nitriding gas and a carburizing gas is used as a shielding gas, and the plasma jet flame or plasma arc is shielded by the shielding gas. A method for surface hardening structural steel according to claim 1.
JP2895386A 1986-02-14 1986-02-14 Surface hardening method for structural steel Pending JPS62188771A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2895386A JPS62188771A (en) 1986-02-14 1986-02-14 Surface hardening method for structural steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2895386A JPS62188771A (en) 1986-02-14 1986-02-14 Surface hardening method for structural steel

Publications (1)

Publication Number Publication Date
JPS62188771A true JPS62188771A (en) 1987-08-18

Family

ID=12262776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2895386A Pending JPS62188771A (en) 1986-02-14 1986-02-14 Surface hardening method for structural steel

Country Status (1)

Country Link
JP (1) JPS62188771A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62294160A (en) * 1986-06-13 1987-12-21 バルツエルス アクチエンゲゼルシヤフト Thermochemical surface treatment of material in reactive gaseous plasma
US5549764A (en) * 1995-04-21 1996-08-27 Caterpillar Inc. Wear resistant coated steel article
EP2007543A2 (en) * 2006-04-20 2008-12-31 Materials and Electrochemical, Research (Mer) Corporation Method of using a thermal plasma to produce a functionally graded composite surface layer on metals
JP2014111821A (en) * 2012-11-02 2014-06-19 Oita Univ Hardening treatment method of low alloy steel

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62294160A (en) * 1986-06-13 1987-12-21 バルツエルス アクチエンゲゼルシヤフト Thermochemical surface treatment of material in reactive gaseous plasma
US5549764A (en) * 1995-04-21 1996-08-27 Caterpillar Inc. Wear resistant coated steel article
EP2007543A2 (en) * 2006-04-20 2008-12-31 Materials and Electrochemical, Research (Mer) Corporation Method of using a thermal plasma to produce a functionally graded composite surface layer on metals
EP2007543A4 (en) * 2006-04-20 2011-04-27 Mat & Electrochem Res Corp Method of using a thermal plasma to produce a functionally graded composite surface layer on metals
US8203095B2 (en) 2006-04-20 2012-06-19 Materials & Electrochemical Research Corp. Method of using a thermal plasma to produce a functionally graded composite surface layer on metals
JP2014111821A (en) * 2012-11-02 2014-06-19 Oita Univ Hardening treatment method of low alloy steel

Similar Documents

Publication Publication Date Title
SU1373326A3 (en) Method of nitriding steel articles in glow discharge
GR3001890T3 (en) Mixed nitride layers with at least two metals and method for their manufacture
DE19525182C2 (en) Process for the production of corrosion and wear protection layers on iron-based materials
RU2418096C2 (en) Procedure for creation of macro non-uniform structure of material at nitriding
US5372655A (en) Method for the treatment of alloy steels and refractory metals
GB2261227A (en) Surface treatment of metals at low pressure
JPS62188771A (en) Surface hardening method for structural steel
US3891820A (en) Weld-plating of steel
RU2291227C1 (en) Construction-steel parts surface hardening method
US3616383A (en) Method of ionitriding objects made of high-alloyed particularly stainless iron and steel
EP1291445B1 (en) Steel material production method
JPH04232247A (en) Method for applying nitride layer to member composed of titanium and titanium alloy
JPH06128720A (en) Quick ionic nitriding induction hardening method
Terakado et al. Simultaneous plasma treatment for carburizing and carbonitriding using hollow cathode discharge
JPS5757867A (en) Surface hardening method of titanium and titanium alloy
SU1719461A1 (en) Method of carbonitriding of steel products
JPH01201459A (en) Parts combining high toughness with wear resistance
RU2197556C2 (en) Method of applying hard coatings
JPH0225559A (en) Nitriding treatment for ti or ti alloy
KR20010057596A (en) a method for welding a duplex stainless steel
JPH0368109B2 (en)
RU2210617C1 (en) Combined carbon steel boronizing method
SU1411102A1 (en) Method of applying pulverulent coatings on the surface of parts
RU2025539C1 (en) Method of chemical heat treatment of articles of tool steel
JP3073630B2 (en) How to strengthen ultra low carbon steel