JPS62186987A - Method for removing impurity by ionization - Google Patents

Method for removing impurity by ionization

Info

Publication number
JPS62186987A
JPS62186987A JP2994186A JP2994186A JPS62186987A JP S62186987 A JPS62186987 A JP S62186987A JP 2994186 A JP2994186 A JP 2994186A JP 2994186 A JP2994186 A JP 2994186A JP S62186987 A JPS62186987 A JP S62186987A
Authority
JP
Japan
Prior art keywords
water
ionization
magnetic
magnetic field
removal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2994186A
Other languages
Japanese (ja)
Inventor
Katsumi Iwasaki
岩崎 克己
Toshikazu Hanamoto
花本 敏和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2994186A priority Critical patent/JPS62186987A/en
Publication of JPS62186987A publication Critical patent/JPS62186987A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PURPOSE:To ionize and remove the impurities in ordinary water which passes a magnetic treatment unit by providing different electrodes forming magnetic fields with magnets to the surface of said unit in contact with water and respectively projecting the different electrodes toward the inside so as to face each other. CONSTITUTION:Pure water is produced by passing the pretreated water successively through a filter, magnetic treatment unit, reverse osmosis unit and ion exchange unit. The different electrodes 19, 20 which form the magnetic fields with the magnets 8 are provided on the surface 5 of the magnetic treatment unit 53 to contact the water. The different electrodes are disposed to face each other and to respectively project inward to sharply change the passing section of the water passed therebetween and further to generate turbulence therein. The intensity of the magnetic fields thereof is made 300-750kA/m nera the proximate parts of the projections and 50-100kA/m on the far opposed surfaces except the projections. The water flow passage and the projections of the magnetic fields are so provided that the turbulence of the water passage area attains 2,300-5,000 Reynolds number. The surfaces thereof are brought into contact with the water via a nonmagnetic material. As a result, the impurities in the ordinary water are ionized and removed and the pure water is obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は純水または超純水製造装置に用いるユニットに
係り、特に水中の不純な結晶物をイオン化して除去する
イオン化除去の方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a unit used in a pure water or ultrapure water production apparatus, and particularly to an ionization removal method for ionizing and removing impure crystals in water.

〔従来の技術〕[Conventional technology]

水中の不純物はイオンの形で存在する電解質と結晶で存
在する非電解質、そして微小分散性の固体粒子とガス泡
の三つに分類され、各種素性の超微細粒子の量は極めて
多い。
Impurities in water are classified into three types: electrolytes that exist in the form of ions, non-electrolytes that exist in the form of crystals, and microdispersed solid particles and gas bubbles, and the amount of ultrafine particles of various elements is extremely large.

水の導電率はイオンの濃度と移動度に依存し、この導電
率を以て純水または超純水のバロメータとしている。イ
オン化する反応を促進するためには中性原子や分子が実
電荷を得ることからイオン化エネルギーが必要とされる
が、この必要なエネルギーとして磁気利用する開示があ
る。
The electrical conductivity of water depends on the concentration and mobility of ions, and this electrical conductivity is used as a barometer for pure or ultrapure water. In order to promote the ionization reaction, ionization energy is required because neutral atoms and molecules acquire a real charge, and there is a disclosure of using magnetism as this necessary energy.

例えば、ベルギー特許第460560号には水あか防止
手段として磁気処理があって、水槽の管路に多用されて
いるし、水の磁気処理(日ソ通信社59,1.25発行
)の114〜125頁に詳説されている。
For example, Belgian Patent No. 460,560 describes magnetic treatment as a water scale prevention means, which is often used in pipes of aquariums, and Magnetic Treatment of Water (published by Nippon-Soviet Press 59, 1.25), pp. 114-125. It is explained in detail on page.

また、更には本発明者の特願昭60−137343には
イオン化エネルギーを水流に与えるために永久磁石また
は電磁石を用いて磁場を形成し1発生する磁力の方向に
対して直交または水平の方向に流水する構成を示した。
Furthermore, in Japanese Patent Application No. 137343/1988, the inventor of the present invention describes the method of forming a magnetic field using permanent magnets or electromagnets in order to impart ionization energy to a water stream. A configuration with flowing water is shown.

水中に必然的に含有している炭酸カルシウム(CaCO
3)と炭酸ガス(CO2)は、化学親和力によって結び
つけられている原子団の分子から構成されて結晶した形
体で粒子として存在する。
Calcium carbonate (CaCO), which is naturally contained in water,
3) and carbon dioxide (CO2) exist as particles in a crystalline form composed of molecules of atomic groups bound together by chemical affinity.

このことから、次の化学式が成り立つ。From this, the following chemical formula holds true.

CaCo3+H20+C02gCa”+2HC:03−
即ち、イオン化エネルギーを与えることによって、カル
シウムイオン(Ca2+)と炭酸イオン(2Hco3−
)にイオン化することが可能である。
CaCo3+H20+C02gCa"+2HC:03-
That is, by applying ionization energy, calcium ions (Ca2+) and carbonate ions (2Hco3-
) can be ionized.

化学親和力・分子引力作用などに起因する分子間運動に
ついては、水の不純物の超微細粒子の量が極めて多いこ
とから解明に至ってないが、ソ連特許第288683号
には流体の処理効果を高める目的から通路の作用区間を
縦型永久磁石で作り、その各々が中心部に端の極と反対
符号の極から成る突起を持ち、一方圧いに向い合って配
置される突起の極が異なる符号を持つとしている。
The intermolecular motion caused by chemical affinity, molecular attraction, etc. has not been elucidated due to the extremely large amount of ultrafine particles of impurities in water, but Soviet Patent No. 288683 states that it is intended to improve the treatment effect of fluids. The active section of the passage is made of vertical permanent magnets, each of which has a protrusion in its center with a pole of opposite sign to that of the end, while the poles of the protrusions disposed opposite to each other have a different sign. It is said that it will have it.

水の磁気処理として経験法則的に電磁場の作用機構は共
振型の現象と考えられ、磁界強さと周波数及びその周期
的関係において顕著に表われる。電磁場の短時間作用は
水の構造の事前破壊となり、磁場によってもたらされる
分子の歳差運動による有効衝突断面の増大はよりイオン
化への反応を促進する。
As a rule of thumb for the magnetic treatment of water, the action mechanism of electromagnetic fields is considered to be a resonance type phenomenon, which is clearly manifested in the magnetic field strength, frequency, and their periodic relationship. The short-term action of the electromagnetic field results in a preliminary destruction of the water structure, and the increase in the effective collision cross section due to the precession of the molecules brought about by the magnetic field makes it more responsive to ionization.

水の不純物であるCaC0,、CO2を水流によって有
効衝突断面を増加し、磁場によって分子との結合を弱め
、系の平衡を減じるには高勾配の磁場への侵入初時点、
磁極間隙内の流れ、磁界内の水の滞留時間、そしてミク
ロ粒子の表面付近での水の小規模乱流についてか必要で
ある。
In order to increase the effective collision cross section of the water impurities CaC0, CO2 by the water flow, weaken the bond with molecules by the magnetic field, and reduce the equilibrium of the system, the first point of entry into the high gradient magnetic field,
We need information about the flow in the magnetic pole gap, the residence time of water in the magnetic field, and the small-scale turbulence of water near the surface of microparticles.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前記した従来技術においては次のような問題があった。 The prior art described above has the following problems.

即ち、異なる極の間隙に流水することによって水路の多
少の凸凹によって乱流となるものの有効衝突の回数、交
番磁場の形成において満足すべき構成ではなく、水路壁
面と磁場発生面とによる水抵抗によって一定のイオン化
エネルギーが与えられずに水の磁気処理としての効率が
低かったのである。そして、その結果として後流に設け
るイオン交換樹脂がアニオンブレークを生じ、イオン交
換樹脂の再生タイミングが一定しないという問題点があ
った。
In other words, the number of effective collisions is not satisfactory for the formation of an alternating magnetic field, although turbulent flow occurs due to the unevenness of the channel due to water flowing into the gap between different poles, and due to the water resistance between the channel wall surface and the magnetic field generation surface. The efficiency of magnetic treatment of water was low because a certain amount of ionization energy was not provided. As a result, the ion exchange resin provided downstream suffers an anion break, resulting in the problem that the regeneration timing of the ion exchange resin is inconsistent.

本考案の目的は1通常の水中の不純物をイオン化して除
去し、純粋な水を得ることにある。
The purpose of the present invention is to obtain pure water by ionizing and removing impurities in ordinary water.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は磁場強度50〜750KA/mの磁場を設けて
磁力作用の方向と直交するように水を供給して通水し、
磁場は交番磁場とすると共に通水はレイノルズ2,30
0〜5,000の乱流となるようにする。
The present invention provides a magnetic field with a magnetic field strength of 50 to 750 KA/m and supplies water perpendicular to the direction of magnetic force action,
The magnetic field is an alternating magnetic field, and the water flow is Reynolds 2,30.
Aim for turbulence of 0 to 5,000.

磁場に影響される部位において急激な通水圧力変動を生
ゼしぬ、次段の磁場においても同様の作用をして繰返し
をし磁気エネルギーをイオン化エネルギーに効率よく充
当することにある。
The purpose is to efficiently allocate magnetic energy to ionization energy by repeating the same action in the next stage of magnetic field without causing sudden water flow pressure fluctuations in areas affected by the magnetic field.

〔実施例〕〔Example〕

本発明のプロセスフローを第3図に示す。処理すべき原
水50は清澄な水道水または高度処理水、地下水などを
用い、10μm以下の孔径をもつフィルター51で微粒
子を除去して処理水1とする。
The process flow of the present invention is shown in FIG. The raw water 50 to be treated is clear tap water, highly treated water, underground water, etc., and treated water 1 is obtained by removing particulates with a filter 51 having a pore size of 10 μm or less.

処理水1は磁気処理ユニット53で磁力によるイオン化
を促進されてカルシウムイオンと炭酸イオンになる。こ
のイオン化水2は逆浸透ユニット54にて約90%のイ
オン56を除去し。
The treated water 1 is ionized by magnetic force in the magnetic treatment unit 53 and becomes calcium ions and carbonate ions. About 90% of ions 56 are removed from this ionized water 2 in a reverse osmosis unit 54.

透過するイオン残存水52をイオン交換ユニット55へ
供給する。
The permeated ion residual water 52 is supplied to an ion exchange unit 55.

このイオン交換ユニット55はアニオン系とカチオン系
の樹脂を適宜な混合比を以て充填したものであって、こ
のユニットで残存イオン57を置換除去して純水58を
得る。
This ion exchange unit 55 is filled with anionic and cationic resins at an appropriate mixing ratio, and this unit replaces and removes residual ions 57 to obtain pure water 58.

磁気処理ユニット53でイオン化したイオンの多くを逆
浸透ユニット54で一次除去し、更に二次除去をイオン
交換ユニット55でするのである。
Most of the ions ionized in the magnetic processing unit 53 are primarily removed in the reverse osmosis unit 54, and then secondary removal is performed in the ion exchange unit 55.

本発明の磁気処理ユニット53はこのようなプロセスフ
ローを満足させるにあって、以下に第1図を以て詳説す
る。
The magnetic processing unit 53 of the present invention satisfies such a process flow and will be explained in detail below with reference to FIG. 1.

一体のフレーム11を磁性体でコ字状にしその溝内にS
極とN極が対面するように磁石8を設け、磁石8の対面
する間隙に筒状の非磁性体からなる水接面5を設ける。
The integral frame 11 is made of magnetic material into a U-shape, and an S is inserted into the groove.
A magnet 8 is provided so that the pole and the north pole face each other, and a water contact surface 5 made of a cylindrical non-magnetic material is provided in the gap where the magnet 8 faces each other.

水接面5と連通ずるフランジ15を以て入口ユニット1
8を構成する。同様にフレーム1oと磁石7と水接面を
以て中間ユニット17とし、出口ユニット16はフレー
ム9と磁石6と水接面3とフランジ14で構成し、これ
らの入口、中間、出口ユニット18.1116は非磁性
体からなる隔体13.12を介して水密に連結する。
The inlet unit 1 has a flange 15 communicating with the water contact surface 5.
8. Similarly, the frame 1o, the magnet 7, and the water contact surface constitute an intermediate unit 17, and the outlet unit 16 is composed of the frame 9, the magnet 6, the water contact surface 3, and the flange 14, and these inlet, intermediate, and outlet units 18.1116 are They are watertightly connected via partitions 13 and 12 made of non-magnetic material.

第2図は第1図のA−A断面を示し、入口ユニット18
について述べる。
FIG. 2 shows the AA cross section of FIG. 1, and shows the inlet unit 18.
Let's talk about.

磁石8ははゾ平板状とし片面にのみ突起19を設けてN
極とし、対面する磁石20はゾ同様構成とするがS極と
し、反極して磁石8と磁石20の突起が近接するように
設ける。
The magnet 8 is in the shape of a flat plate and has a protrusion 19 on only one side.
The magnets 20 that face each other have the same structure as in Z, but have S poles and are oppositely polarized so that the protrusions of the magnets 8 and 20 are close to each other.

水接面5は処理水1の水流による乱流が凹部においてレ
イノルズ数およそ2300.突起部においてはおよそ5
000となるようにし、磁石8と20との突起で成す磁
場強度を300〜750KA/mとし、他の部分では5
0〜100KA/mとする。
The water contact surface 5 has a Reynolds number of approximately 2300 in the concave portion where turbulent flow due to the water flow of the treated water 1 occurs. Approximately 5 at the protrusion
000, and the magnetic field strength formed by the protrusions of magnets 8 and 20 is set to 300 to 750 KA/m, and the other parts are set to 5
0 to 100 KA/m.

この水接面5について第4図を以て詳説する。This water contact surface 5 will be explained in detail with reference to FIG.

突起19は永久磁石である複合マグネット。The protrusion 19 is a composite magnet that is a permanent magnet.

フェライトマグネット、希土類コバルト、鋳造マグネッ
トなどの永久磁石若しくは電磁石であって、処理水1と
接する近接点21と流圧の変点22.25を以て水接面
5の全体を構成する。
It is a permanent magnet or electromagnet such as a ferrite magnet, a rare earth cobalt magnet, or a cast magnet, and constitutes the entire water contact surface 5 with the proximal point 21 in contact with the treated water 1 and the fluid pressure transition points 22 and 25.

突起19の表面24には非磁性体である合成樹脂系また
はゴム系の離隔層23を設けて処理水1へ磁石性分の溶
出を防止する。外表面に磁石性分の素材が露出しない内
装された複合マグネットが最適であって、プラスチック
マグネット、ゴムマグネットなどを用いるか、又は磁石
の表層にテフロン、セラミックなどの非磁性体をコーテ
ィングするようにしても良い。
A separation layer 23 made of synthetic resin or rubber, which is a non-magnetic material, is provided on the surface 24 of the protrusion 19 to prevent magnetic components from leaching into the treated water 1. An internal composite magnet with no magnetic material exposed on the outer surface is optimal; use a plastic magnet, rubber magnet, etc., or coat the surface layer of the magnet with a non-magnetic material such as Teflon or ceramic. It's okay.

突起19の断面外形は円弧または角形、台形とするがそ
の表面を粗面にするか又は断面の頂点を波形で凸凹する
段差にするとかすると更に乱流効果が大となる。流圧の
変点22と25は近接点21に対して対称とは限らず、
処理水1の通過量と速度及び磁場強度から適宜に選択す
る。
The cross-sectional outline of the protrusion 19 may be an arc, a square, or a trapezoid, but the turbulent flow effect will be further enhanced if the surface is roughened or the apex of the cross-section is formed into a corrugated step. The fluid pressure turning points 22 and 25 are not necessarily symmetrical with respect to the adjacent point 21,
An appropriate selection is made based on the amount and speed of the treated water 1 passing through and the magnetic field strength.

第2図に示したように水接面5を形成する離隔管26を
独立して設け、別体の磁石8をフレーム11との間に挿
入自在に設けると磁石8の磁場強度を変えるに好都合で
ある。この場合の接面27.28は密着して設は適宜に
固定する。
As shown in FIG. 2, it is advantageous to provide an independent separation tube 26 that forms the water contact surface 5 and to provide a separate magnet 8 that can be freely inserted between the frame 11 and the magnetic field strength of the magnet 8. It is. In this case, the contact surfaces 27 and 28 are in close contact with each other and are appropriately fixed.

次に磁場を形成する近接点21の配置について第1図を
参照し、第5図で例示説明する。
Next, the arrangement of the proximity points 21 that form a magnetic field will be illustrated with reference to FIG. 1 and FIG. 5.

流心線O−0に対して、近接点21を仮りにN□、N2
、N3点とし対応する位置にSL、 S2゜83点を設
け、その点を各々S極、N極とすればS□−N1磁場が
形成され、S2−N2、S、−N、と各々独立した磁場
が形成される。この時の磁力振幅の最大はMであり、流
心線〇−〇を通過する処理水1は各点において相反する
逆方向の磁気作用を受ける。N□からN2までの距離。
With respect to the center line O-0, let's assume that the nearby point 21 is N□, N2
, N3 point and SL, S2゜83 points are set at the corresponding positions, and if these points are set as S pole and N pole respectively, S□-N1 magnetic field is formed, and S2-N2, S, -N are each independent. A magnetic field is formed. The maximum amplitude of the magnetic force at this time is M, and the treated water 1 passing through the flow center line 〇-〇 is subjected to contradictory magnetic effects in opposite directions at each point. Distance from N□ to N2.

N2からN3までの距離は30〜80mmの範囲に設け
、50mをベストとする。
The distance from N2 to N3 is set in the range of 30 to 80 mm, with 50 m being the best.

この距離は非磁性体である帰休12,13などで変える
と同時に隣接する異極との縁を切る。
This distance is changed by using non-magnetic materials such as furrows 12, 13, etc., and at the same time, the edge of the adjacent different poles is cut off.

第1図と第2図に示した流心線は処理水1の入口から出
口まで一直線状に示しているが、第6図に示したように
0点を中心に0□〜04のようにずらして流水すると乱
流効果と磁場効果がより促進されるので、ランダムに屈
折した流心線0−Oとすることもできる。この場合には
帰休12,13の部位で適宜に心をずらすのである。
The flow center lines shown in Figures 1 and 2 are shown in a straight line from the inlet to the outlet of the treated water 1, but as shown in Figure 6, they are drawn from 0□ to 04 with the 0 point as the center. Since the turbulent flow effect and the magnetic field effect are further promoted when the water flows in a staggered manner, it is also possible to create a randomly bent flow center line 0-O. In this case, the mind should be shifted appropriately at the points 12 and 13.

〔発明の効果〕〔Effect of the invention〕

実施事例を表−1に基づいて詳述する。 The implementation example will be explained in detail based on Table-1.

使用水としてPH6,8,水温19°Cの水道水を用い
て突起部で2m/sの通水をした。
Tap water with a pH of 6.8 and a water temperature of 19°C was used as the water used, and water was passed through the protrusion at a rate of 2 m/s.

磁石はフェライト磁石で半径5mの円弧状突起を設け、
突起は反極となるようにし、隣接する磁石とも反極とな
るようにし鋼板に固定した。
The magnet is a ferrite magnet with an arcuate projection with a radius of 5m.
The protrusions were fixed to a steel plate so that they had opposite polarities, and the adjacent magnets also had opposite polarities.

突起の表面はPVC(塩化ビニール)で覆いをし、50
mピッチで3個所数けた。
The surface of the protrusion is covered with PVC (vinyl chloride) and
I counted three places with m pitch.

尚、水道水の無機性炭素濃度は22■/Qであって、磁
場処理水は塩除去率97%のスパイラル型の逆浸透ユニ
ットを通過させ、この通過水の無機性炭素濃度を表−1
に示す。
The inorganic carbon concentration of tap water is 22■/Q, and the magnetically treated water is passed through a spiral type reverse osmosis unit with a salt removal rate of 97%, and the inorganic carbon concentration of this water is shown in Table 1.
Shown below.

事例1は無磁場を示し、逆浸透ユニットでの除去効果の
みを表わす。磁場での磁気処理をせずにダイレクトに逆
浸透ユニットに通水すると79%の除去率となるが、事
例2に示すように100KA/m程度の磁気処理をする
と無機性炭素濃度が4.6から0.7に下がり6.6倍
もの効果がある。極めて顕著にその効果が表われる。
Case 1 shows no magnetic field and represents only the removal effect in the reverse osmosis unit. If water is passed directly through the reverse osmosis unit without magnetic treatment in a magnetic field, the removal rate will be 79%, but as shown in case 2, if magnetic treatment is performed at about 100 KA/m, the inorganic carbon concentration will be 4.6%. This decreases from 0.7 to 0.7, which is 6.6 times more effective. The effect is extremely noticeable.

更に突起部における磁場強度をアップして事例3の30
0KA/mにすると2,3倍の効果があるが、これ以上
の磁場強度では余り効果がない。
Furthermore, the magnetic field strength at the protrusion was increased to 30 in Case 3.
A magnetic field strength of 0 KA/m is two to three times more effective, but a magnetic field strength higher than this is not very effective.

突起部のないストレートな流れで、単なる磁場をかける
特1[6O−137343(7)表−1と無機性炭素濃
度が0.7前後であって、事例2に相当する。このこと
から突起部を設けて乱流を促進し、300〜500KA
/mの磁場をかけると倍加する効果がある。
It is a straight flow with no protrusions, and the inorganic carbon concentration is around 0.7, which corresponds to Case 2. For this reason, protrusions are provided to promote turbulence, and the 300-500KA
Applying a magnetic field of /m has a doubling effect.

表−1 以下づTable-1 The following

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の磁気処理ユニットを示す断面図、第2
図は第1図のA−A断面図、第3図は本発明のプロセス
フロー図、第4図は第1図の突起19を示す詳細図、第
5図は第1図の磁場を形成する配置説明図、第6図は第
1図に示す処理水1とイオン化水2の流心を示す説明図
。 r白 寿1 図 第2月 第〕圀 発4凶
FIG. 1 is a sectional view showing the magnetic processing unit of the present invention, and FIG.
The figure is a sectional view taken along the line A-A in FIG. 1, FIG. 3 is a process flow diagram of the present invention, FIG. 4 is a detailed view showing the protrusion 19 in FIG. 1, and FIG. 5 is a diagram showing the formation of the magnetic field in FIG. Layout explanatory diagram, FIG. 6 is an explanatory diagram showing flow centers of treated water 1 and ionized water 2 shown in FIG. 1. r Hakuju 1 Fig. 2nd month] Kokuhatsu 4

Claims (1)

【特許請求の範囲】 1、前処理した水をフィルターと磁気処理ユニットと逆
浸透ユニット及びイオン交換ユニットを順に通過して純
水を製造する方法において、磁気処理ユニットの水接面
に磁石で磁場を形成する異極を設け、異極は対面して各
々が内方に突起し、水の通過断面が急変して更に乱流と
なるように通水することを特徴とするイオン化除去の方
法。 2、磁場の強度は突起の近接部において300〜750
KA/mとし、突起外の遠対面では50〜100KA/
mとすることを特徴とする特許請求の範囲第1項記載の
イオン化除去の方法。 3、通水域の乱流がレイノルズ数2300〜5000と
なるように通水路及び磁場の突起を設け、その表面は非
磁性体を介して水接することを特徴とする特許請求の範
囲第1項記載のイオン化除去の方法。 4、磁石は永久磁石若しくは電磁石とし、突起の断面外
形は内方に向けて円弧とすることを特徴とする特許請求
の範囲第1項記載のイオン化除去の方法。 5、通水方向に対して直交するように突起する異極を設
け、隣接する極とも異極となるように交番磁場がかかる
複数段の突起を設けることを特徴とする特許請求の範囲
第1項記載のイオン化除去の方法。 6、磁石は非磁性体を介して各々が独立し、常に異極が
対面するように交互に設け、隔たる突起の近接点の上下
流側を対称若しくは非対称とすることを特徴とする特許
請求の範囲第4項記載のイオン化除去の方法。
[Claims] 1. In a method for producing pure water by passing pretreated water through a filter, a magnetic treatment unit, a reverse osmosis unit, and an ion exchange unit in order, a magnetic field is applied to the surface of the magnetic treatment unit in contact with water using a magnet. A method for removing ionization, characterized by providing different poles forming a , the different poles face each other, each protruding inwardly, and water is passed through so that the cross section of the water passing through it suddenly changes to create a more turbulent flow. 2. The strength of the magnetic field is 300-750 in the vicinity of the protrusion.
KA/m, and 50 to 100 KA/m on the far side outside the protrusion.
The method of ionization removal according to claim 1, characterized in that m is used for ionization removal. 3. The water passage and the magnetic field protrusion are provided so that the turbulent flow in the water flow has a Reynolds number of 2300 to 5000, and the surface thereof is in contact with water through a non-magnetic material, as described in claim 1. Method of ionization removal. 4. The ionization removal method according to claim 1, wherein the magnet is a permanent magnet or an electromagnet, and the cross-sectional shape of the protrusion is an inwardly arcuate shape. 5. Claim 1, characterized in that different poles protruding perpendicularly to the water flow direction are provided, and a plurality of protrusions to which an alternating magnetic field is applied are provided so that adjacent poles are also different poles. The method of ionization removal described in section. 6. A patent claim characterized in that the magnets are each independent through a non-magnetic material, and are arranged alternately so that different poles always face each other, and the upstream and downstream sides of the adjacent points of the separating protrusions are symmetrical or asymmetrical. The ionization removal method according to item 4.
JP2994186A 1986-02-14 1986-02-14 Method for removing impurity by ionization Pending JPS62186987A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2994186A JPS62186987A (en) 1986-02-14 1986-02-14 Method for removing impurity by ionization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2994186A JPS62186987A (en) 1986-02-14 1986-02-14 Method for removing impurity by ionization

Publications (1)

Publication Number Publication Date
JPS62186987A true JPS62186987A (en) 1987-08-15

Family

ID=12290011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2994186A Pending JPS62186987A (en) 1986-02-14 1986-02-14 Method for removing impurity by ionization

Country Status (1)

Country Link
JP (1) JPS62186987A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6439899U (en) * 1987-08-31 1989-03-09
JPH0283096U (en) * 1988-01-19 1990-06-27
WO1998031637A1 (en) * 1997-01-22 1998-07-23 Seh America, Inc. Production of ultrapure water by non-chemical treatment
WO2005077524A1 (en) * 2004-02-12 2005-08-25 Kihira, Katsutoshi Magnetic treatment system
WO2023145669A1 (en) * 2022-01-27 2023-08-03 テンソー電磁技術工業株式会社 Microbubbles amplifier

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6439899U (en) * 1987-08-31 1989-03-09
JPH0446880Y2 (en) * 1987-08-31 1992-11-05
JPH0283096U (en) * 1988-01-19 1990-06-27
WO1998031637A1 (en) * 1997-01-22 1998-07-23 Seh America, Inc. Production of ultrapure water by non-chemical treatment
WO2005077524A1 (en) * 2004-02-12 2005-08-25 Kihira, Katsutoshi Magnetic treatment system
WO2023145669A1 (en) * 2022-01-27 2023-08-03 テンソー電磁技術工業株式会社 Microbubbles amplifier
JP2023109206A (en) * 2022-01-27 2023-08-08 テンソー電磁技術工業株式会社 Microbubble amplifier

Similar Documents

Publication Publication Date Title
US8168055B2 (en) Arrangement of ion exchange material within an electrodeionization apparatus
US4563286A (en) System of ionized oxygen allotrope gas water purification and method and apparatus therefor
TW200803967A (en) Method and apparatus for shifting current distribution in electrodeionization systems
HU225090B1 (en) Treatment of water and apparatus for desalinating
GB2307235A (en) Water treatment method and water treatment facilities
CN109534465B (en) Parallel seawater desalination device based on ion concentration polarization effect
JP2011502030A5 (en)
US20040007452A1 (en) Water purification: ion separation
US8197684B2 (en) Desalination device using selective membranes and magnetic fields
US20050126974A1 (en) Water purifier having magnetic field generation
JPS62186987A (en) Method for removing impurity by ionization
JP2001087768A (en) Electric deionizing device
JP3966421B2 (en) Ultra-high magnetic field fluid treatment system
RU66329U1 (en) MAGNETIC LIQUID TREATMENT DEVICE IN A PIPELINE
SU874090A1 (en) Electrodialyzer
AU2004303816B2 (en) Fluid purifier having magnetic field generation
JP2002186973A (en) Continuous electro-deionization device
JP4038279B2 (en) Water treatment equipment using multipolar magnetic field
US20170165630A1 (en) Membrane Plasma Reactor
JP2000263058A (en) Electric desalting apparatus
JP3128743U (en) Fluid magnetic processing equipment
RU20310U1 (en) LIQUID TREATMENT DEVICE
SU753468A1 (en) Magnetic apparatus
JPS621495A (en) Apparatus for removing carbonic acid in water
JPS6316091A (en) Manufacturing facility for activated water