JPS62186650A - Solid-state image pickup device - Google Patents

Solid-state image pickup device

Info

Publication number
JPS62186650A
JPS62186650A JP61028535A JP2853586A JPS62186650A JP S62186650 A JPS62186650 A JP S62186650A JP 61028535 A JP61028535 A JP 61028535A JP 2853586 A JP2853586 A JP 2853586A JP S62186650 A JPS62186650 A JP S62186650A
Authority
JP
Japan
Prior art keywords
solid
original
light
state image
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61028535A
Other languages
Japanese (ja)
Inventor
Hajime Kurihara
一 栗原
Tetsuyoshi Takeshita
竹下 哲義
Satoshi Takenaka
敏 竹中
Hideaki Oka
秀明 岡
Kazumasa Hasegawa
和正 長谷川
Shuichi Matsuo
修一 松尾
Masabumi Kunii
正文 国井
Yoshio Nakazawa
良雄 中澤
Yoshihiko Machida
町田 佳彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP61028535A priority Critical patent/JPS62186650A/en
Publication of JPS62186650A publication Critical patent/JPS62186650A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a solid-state image pickup element with no optical adjustment, very short optical path and low cost by sending optical information to the solid-state image pickup element through the optical guide path close to the solid-state image pickup element having photoelectric transducing elements arranged linearly. CONSTITUTION:The solid-state image pickup element 204 consists of photoelectric transducing elements 203 arranged linearly and the optical guide path 202 close to the element 204. In case an original 201 is white, in the light transmitting through the original from a light source 200, only the light through the white light transmitting part of the optical guide path 202 reaches the elements 203. In case an original 201' is black, the light attenuated by an black original reaches the element 203 through the optical guide path 202 to read the original. In this case, the light transmitting part of the optical guide path 202 has the area of the elements 203 or below to prevent the leakage of the light of adjacent photoelectric transducing elements thereby preventing the deterioration in the resolution. Further, the optical guide path 202 consists of the white light transmitting part and the light untransmitting part shown in hatched lines.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はレンズが不必要な@着像の固体撮隊装牧に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a solid-state imaging system that does not require a lens.

〔発明の概要〕[Summary of the invention]

本発明はレンズを用いて固体撮鍬素子上に結はさせる固
体撮像装置の方式と異なり、鍬の元情報を先導波路内で
、直接固本撮泳素子に送るもので、固体撮は素子の画素
(光電f換素子)の面積以下■光透過部分(402)を
通してyt、情報を込り、該元情報が所定Q光透過部分
からもれない様に、光不透過な部分(401)7&:設
けたこと全特徴としたも0である。
The present invention differs from a solid-state imaging device that uses a lens to focus on a solid-state imaging device, in which the original information of the imaging device is sent directly to a solid-state imaging device within a guiding wavepath. Less than the area of the pixel (photoelectric f conversion element) yt, information is included through the light-transmitting part (402), and the light-impermeable part (401) 7& is included so that the original information does not leak from the predetermined Q light-transmitting part : All features provided are 0.

〔従来の技術〕[Conventional technology]

従来、密着型■固体逢慮装置は嶋4図に示す様に、5Y
、源1022等倍正立実鍬が得られるレンズ103、及
び、固体撮像素子104で開成され。
Conventionally, the close-contact type solid-state mixing device is 5Y as shown in Figure 4.
, a source 1022, a lens 103 that can obtain an erect image at the same magnification, and a solid-state image sensor 104.

通常、#光源102としてLEDアレイ光源、該レンズ
103としてはセル7オツクレンズ(日本板硝子法式会
社商標)、該固本撮隊素子としては硫化カドミウムや非
晶質シリコンなどt光電変換素子として1次元に配クリ
した固体撮は104が用いられている。101は原稿を
示す。
Usually, the light source 102 is an LED array light source, the lens 103 is a cell 7 lens (trademark of Nippon Sheet Glass Co., Ltd.), and the solid-state camera element is a one-dimensional photoelectric conversion element such as cadmium sulfide or amorphous silicon. 104 is used for solid-state photography. 101 indicates a manuscript.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来、以下の嫌な問題点を仔していた。 In the past, the following unpleasant problems were encountered.

ω レンズ103を用いて、固体撮@素子104上に結
縁させるため、原稿101.レンズ及び固体撮像素子の
位置決めに、高精度を要し、光学調整が必要である。
ω Using the lens 103, the original 101. High precision is required for positioning the lens and solid-state image sensor, and optical adjustment is required.

(2)  レンズを用ハるため、光路長を最少でも14
m程度有し、又、光路長を少さくすると(14sn−2
0、)色収差が大きく、単色光源しか用^ることかでき
ない。
(2) Optical path length should be at least 14 mm due to lens usage.
m, and if the optical path length is shortened (14sn-2
0,) Chromatic aberration is large and only a monochromatic light source can be used.

(3)  密着型の固体撮は装置は光源101.レンズ
102、固体撮は素子103.外枠105がすべて原稿
長と同寸か、それ以上大きく、低コスト化が離しい、¥
iに、該レンズ102が高コストである。
(3) For close-contact solid-state imaging, the device uses a light source 101. Lens 102, solid-state imaging element 103. All the outer frames 105 are the same size as the document length or larger, and the cost is much lower.
i. The lens 102 is expensive.

本発明はかかる問題点を除去するもOで、その目的は光
学調整が不要で、光路長■甑めて短i1低コストな固体
機縁装#を提供することにある。
The purpose of the present invention is to eliminate such problems, and to provide a solid-state device that does not require optical adjustment, has a short optical path length, and is low in cost.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は一次元に配列したyt、電変換素子を有する固
体撮像素子と、該固体撮は素子と密接した光導波路から
成り、該光導波路を通して、光情報を該固体撮は素子へ
送る。レンズ不要の固体機縁装置である。
The present invention comprises a solid-state imaging device having electric conversion elements arranged in one dimension, and an optical waveguide in close contact with the solid-state imaging device, through which optical information is sent to the solid-state imaging device. It is a solid-state device that does not require a lens.

〔作用〕[Effect]

第1図は本発明の固体撮像装置の断面溝部を示したもの
で、以下、第1図を用いて本発明の原理を示す、200
は光源、201,201’はそれぞれ読み取り原稿で、
白及び黒の状態である。202は光導波路で、該光導波
路は光が不透過な部分(斜線部)と光透過性の部分(白
い部分)から成る。204は固体撮像素子、203は該
固体撮像素子内の光電変換索子、矢印は紙送り方向を示
す。
FIG. 1 shows the cross-sectional groove of the solid-state imaging device of the present invention, and hereinafter, the principle of the present invention will be explained using FIG.
is the light source, 201 and 201' are the originals to be read,
The state is white and black. Reference numeral 202 denotes an optical waveguide, which consists of a light-opaque portion (hatched portion) and a light-transmissive portion (white portion). 204 is a solid-state image sensor, 203 is a photoelectric conversion element within the solid-state image sensor, and the arrow indicates the paper feeding direction.

嬉1図(ロ)に示す様に、原稿が白の場合、原稿を透過
した光は光導波路202の光透過性の部分Oみの光が光
電変換索子203に到達する、又、第1図(b) K示
す様に、原稿が黒の場合、黒の原稿で減光された元が光
導波路202によって、同様に光電変換素子203に到
達し、原稿を読み敗ることが可能となる。この時、光導
波路の光透過性の部分ij ffi を変換素子の面積
以下でないと、隣りの光電変換索子元のリークが生じ、
解像度の低下を招く。
As shown in Figure 1 (b), when the original is white, the light that passes through the original reaches the optically transparent portion of the optical waveguide 202 and reaches the photoelectric conversion cable 203; As shown in Figure (b) K, when the original is black, the light attenuated by the black original reaches the photoelectric conversion element 203 through the optical waveguide 202, and the original can be read and lost. . At this time, if the optically transparent portion ij ffi of the optical waveguide is not smaller than the area of the conversion element, leakage from the adjacent photoelectric conversion element will occur.
This results in a decrease in resolution.

すなわち、光4波路の光透過部分が光電変換索子画積よ
り大きい場合は光導波路の光透過部分■大きさで固体機
縁装置の解陳度が決まる。
That is, when the light transmitting portion of the four optical waveguides is larger than the photoelectric conversion module area, the degree of resolution of the solid-state device is determined by the size of the light transmitting portion of the optical waveguide.

〔実施列1〕 帆2図に、本実施飼の固体撮は装置の構成図を示す、3
01はLIDアレイ光源、302は光導波路、303は
原稿、304は紙(原稿)送りローラーである。読み取
り原理は前記〔作用〕で述べた。様に、該先導波路30
2上面を原稿が密着しながら、紙送りローラーで送られ
、その時刻々の原稿303の演淡の光情報が該光導波路
302を通りて、該光導波路に密接した光電変換素子2
03に伝えられ、読み取られる。第3図に実施列1の光
導波路の拡大図を示す、401は光の不透過部分で黒色
の有!!樹脂で形成される。402は該有機樹脂に複数
の貫通穴を開け、透明有機樹脂で埋め、ピンチP 、 
PIは62.5μmで、穴径間μmで光透過部分を形成
した。また%厚みtは3藺と匝めて博い1本実施列の固
体撮像素子は8画素/Uのyt、電変換素子(ピッチ1
25μ??L)でちり、P、P“よりピッチが粗いため
、光導波路と固体撮像素子の位#を会せはほとんど行わ
なくとも41ルーでM T 1!’ 40%以上が得ら
れる上、環境温度の影響による解像度の低下もほとんど
受けな^ことがわかった。また、原稿紙による光導波路
の摩耗による性能劣下も観測されなi、優れた固体機縁
装置が得られた。
[Implementation row 1] Figure 2 shows the configuration of the solid-state imaging equipment used in this experiment, and Figure 3
01 is an LID array light source, 302 is an optical waveguide, 303 is an original, and 304 is a paper (original) feeding roller. The reading principle was described above in [Operation]. Similarly, the leading waveguide 30
While the original 303 is in close contact with the upper surface of the original 303, it is fed by a paper feed roller, and the optical information of the rendering of the original 303 at each moment passes through the optical waveguide 302 and is transferred to the photoelectric conversion element 2 that is in close contact with the optical waveguide.
03 and read. FIG. 3 shows an enlarged view of the optical waveguide of the first row. 401 is a black portion that does not transmit light. ! Made of resin. 402 makes a plurality of through holes in the organic resin, fills them with transparent organic resin, pinches P,
PI was 62.5 μm, and a light transmitting portion was formed with a hole diameter of μm. In addition, the % thickness t is 3 times, and the solid-state image sensor in one implementation row has a yt of 8 pixels/U, and the electric conversion element (pitch 1
25μ? ? Since the pitch is coarser than that of L), P, and P", M T 1!' of 40% or more can be obtained with 41 ru even if the optical waveguide and solid-state image sensor are hardly aligned, and the environmental temperature It was found that there was almost no decrease in resolution due to the influence of paper.Also, no deterioration in performance due to abrasion of the optical waveguide due to the manuscript paper was observed, and an excellent solid-state device was obtained.

〔実施列2〕 透明なガラス繊維やプラスチック繊維を束ね、前記光導
波路を形成しても同様の効果が得られた。
[Run 2] Similar effects were obtained when the optical waveguide was formed by bundling transparent glass fibers or plastic fibers.

〔発明の効果〕〔Effect of the invention〕

本発U!Aを用^れば以下の効果を得ることができる。 Hon U! By using A, you can obtain the following effects.

住)光学調整が不要である。) Optical adjustment is not required.

(2)光路長を従来に比べて殆〜榛以下にできる。(2) The optical path length can be reduced to approximately 1000 to less than that of the conventional method.

C3)m境温度による性能劣下が非常に少なく、又原稿
紙による摩耗の劣下を受けず信頼性が高い。
C3) There is very little performance deterioration due to ambient temperature, and there is no deterioration due to abrasion caused by original paper, and the reliability is high.

(4)光導波路のm造が蘭学で (5)固体撮像素子の凸凹の影rrIを受けにくい。(4) The construction of optical waveguides is a Dutch study. (5) It is less susceptible to the shadow rrI of unevenness of the solid-state image sensor.

非常に安価である。Very cheap.

等、浸れた効果を有し、電子黒板、ファクシミリ、イメ
ージリーダー、OCR、バーコードリーダー等に応用で
きる。
It has a unique effect and can be applied to electronic whiteboards, facsimiles, image readers, OCR, barcode readers, etc.

【図面の簡単な説明】[Brief explanation of drawings]

鎮1図(α) 、 (b)は本発明の固体撮太装固Q髄
面図である。 麻2図は実施列の固体撮像装置■構成図である。 第3図は実施列の5[波路拡大図である。 欲4図は従来の固体撮像装置の構成図である。 光源e・・200 LEDアレイ光源・・・301.101光導波路・・・
202,302 光導波路の不透過部分#0・401 光導波路Q元透過部分・−・402 光町変換素子・・・203 固体撮像素子・拳・204,104 以   上 出願人 セイコーエプソン株式会社 −て一204暑鉗旧桑f製−#−き ■1恥(1木j−釘釦函 11図(久) 1]体操イ&喉11誹菌娼 第  1   図  (トノ 301、LEDアレイ光隠 1鶏IAミコAシイ1辷1に置 、aべ図第2凶
Figures 1 (α) and (b) are solid-state Q medullary views of the present invention. Figure 2 is a configuration diagram of the solid-state imaging device in the actual row. FIG. 3 is an enlarged view of the 5th wave path in the implementation row. Figure 4 is a configuration diagram of a conventional solid-state imaging device. Light source e...200 LED array light source...301.101 Optical waveguide...
202,302 Non-transparent part #0 of optical waveguide 401 Q-transparent part of optical waveguide 402 Optical town conversion element 203 Solid-state image sensor fist 204,104 Applicant Seiko Epson Corporation - 1 204 Hot hammer made of old mulberry f - # - Ki ■ 1 Shame (1 Wood j - Nail button box 11 diagram (Ku) 1] Gymnastics I & Throat 11 Bacteria prostitute Figure 1 (Tonneau 301, LED array light cover 1 Chicken IA Miko A Sea 1 side 1, abe diagram 2nd row

Claims (1)

【特許請求の範囲】 1)一次元に配列した光電変換素子を有する固体撮像素
子と、該固体撮像素子と密接した光導波路から成ること
を特徴とした固体撮像装置。 2)前記光電変換素子の面積より小さい光透過部分(4
02)と、光が不透過な部分(401)から成る光導波
路から成ることを特徴とする特許請求の範囲第1項記載
の固体撮像装置。
[Scope of Claims] 1) A solid-state imaging device comprising a solid-state imaging device having photoelectric conversion elements arranged in one dimension, and an optical waveguide in close contact with the solid-state imaging device. 2) A light transmitting portion (4) smaller than the area of the photoelectric conversion element
02) and a light-impermeable portion (401).
JP61028535A 1986-02-12 1986-02-12 Solid-state image pickup device Pending JPS62186650A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61028535A JPS62186650A (en) 1986-02-12 1986-02-12 Solid-state image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61028535A JPS62186650A (en) 1986-02-12 1986-02-12 Solid-state image pickup device

Publications (1)

Publication Number Publication Date
JPS62186650A true JPS62186650A (en) 1987-08-15

Family

ID=12251360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61028535A Pending JPS62186650A (en) 1986-02-12 1986-02-12 Solid-state image pickup device

Country Status (1)

Country Link
JP (1) JPS62186650A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0235105U (en) * 1988-08-30 1990-03-07

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0235105U (en) * 1988-08-30 1990-03-07

Similar Documents

Publication Publication Date Title
US5101285A (en) Photoelectric conversion device having an improved illuminating system and information processing apparatus mounting the device
US6239421B1 (en) Rod lens array and image read apparatus and system using the same
JP2815130B2 (en) Lens array and contact image sensor using the same
US4509826A (en) Optical image staggering/destaggering arrangement for multiple array scanning system
CN101504482B (en) Method for rotarily adjusting lens unit
JPH06273602A (en) Contact image sensor
JPS62186650A (en) Solid-state image pickup device
TW200526011A (en) Image sensor, and image reader
US6555854B2 (en) Charge coupled device with multi-focus lengths
US20070013971A1 (en) Imaging System Utilizing Illumination and Optical Modules Contained within Rotating Optical Platens
JPS6276357A (en) Solid-state image pickup device
JPS58168379A (en) Picture reader
US20100053700A1 (en) Shared image scanning method and picture scanner thereof
JPH08204899A (en) Image reader
JP2772398B2 (en) Optical document reader
US6542279B2 (en) Image scanner capable of scanning reflective and penetrative documents
TW521517B (en) Optical transmission and sensor of image scanner
JP3029656B2 (en) Image reading device
JPH10294826A (en) Color image sensor
JPH0710088B2 (en) Image reader
JP2586348B2 (en) 2D contact image sensor
JP3018560B2 (en) Image sensor
JPH11122430A (en) Image sensor
JPH0441863B2 (en)
JPS62262563A (en) Contact type image sensor