JPS62185843A - Manufacture of tungsten alloy - Google Patents

Manufacture of tungsten alloy

Info

Publication number
JPS62185843A
JPS62185843A JP2686986A JP2686986A JPS62185843A JP S62185843 A JPS62185843 A JP S62185843A JP 2686986 A JP2686986 A JP 2686986A JP 2686986 A JP2686986 A JP 2686986A JP S62185843 A JPS62185843 A JP S62185843A
Authority
JP
Japan
Prior art keywords
hydrogen
powder
ductility
vacuum
dew point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2686986A
Other languages
Japanese (ja)
Other versions
JP2552264B2 (en
Inventor
Yasuo Imai
今井 保穂
Akio Izumi
泉 昭雄
Shigemichi Kashiwagi
柏木 重道
Osamu Mayama
間山 治
Shoichi Mizuno
水野 正一
Toru Kono
河野 通
Tadateru Takahashi
高橋 忠輝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Mitsubishi Metal Corp
Nippon Koki Co Ltd
Technical Research and Development Institute of Japan Defence Agency
Original Assignee
Japan Steel Works Ltd
Mitsubishi Metal Corp
Nippon Koki Co Ltd
Technical Research and Development Institute of Japan Defence Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd, Mitsubishi Metal Corp, Nippon Koki Co Ltd, Technical Research and Development Institute of Japan Defence Agency filed Critical Japan Steel Works Ltd
Priority to JP61026869A priority Critical patent/JP2552264B2/en
Publication of JPS62185843A publication Critical patent/JPS62185843A/en
Application granted granted Critical
Publication of JP2552264B2 publication Critical patent/JP2552264B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a high-ductility W alloy by compacting a powder mixture of prescribed amounts of W, Ni, and Fe under hydrostatic pressure of a specific pressure, by subjecting the resulting green compact to liquid-phase sintering in a hydrogen air flow with a specific dew point of hydrogen, and by subjecting the sintered compact to heating in vacuum and then to rapid cooling. CONSTITUTION:The powder mixture consisting of 85-97% W powder and the balance powder of Ni and Fe is compacted under a hydrostatic pressure of 1-4 ton/cm<2>. Then the obtained green compact is placed in a hydrogen atmosphere with an extremely low dew point of 0--60 deg.C to undergo sufficient reduction and impurity removal during the process including a temp.-raise stage, by which the material can be increased in toughness. Subsequently, the resulting sintered compact is heated and held in vacuum at about 700-1,400 deg.C for about 2-10hr, followed by rapid cooling. In this way, the amount of hydrogen existing in the form of solid solution in the sintered compact is reduced, the formation of trace amounts of precipitates in a grain boundary or in a grain is prevented, and also precipitation of W entering into solid solution to supersaturation in a binding phase is prevented, so that ductility can be increased.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は特に高速飛翔体に適した高延性を有するタング
ステン合金の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing a tungsten alloy having high ductility, which is particularly suitable for high-speed flying vehicles.

[従来の技術] 従来ニッケルや鉄を結合材としたタングステン合金は、
その高比重を利用して自動も時計用リング、X!!蔽材
、バランサー等に使用されていたが、近年この材料の高
比重、高強度に着目して高速飛翔体(以下飛翔体と称す
る)として用いる試みがなされた。
[Conventional technology] Conventionally, tungsten alloys using nickel or iron as binders were
Using its high specific gravity, the automatic watch ring, X! ! It was used for shielding materials, balancers, etc., but in recent years, attention has been paid to the high specific gravity and high strength of this material, and attempts have been made to use it as a high-speed flying object (hereinafter referred to as a flying object).

[発明が解決しようとする問題点1 飛翔体の高比重化によりその運動エネルギーを高め、鋼
板の貫11能力を高めようとするものであるがこの場合
、飛翔体が鋼板に衝突した瞬fl11に飛翔体自身が破
壊してしまい、運動エネルギーの大きさからa待される
程の貫徹力が得られないという問題点があった。
[Problem to be solved by the invention 1 The purpose is to increase the kinetic energy of the projectile by increasing the specific gravity of the projectile, thereby increasing the penetrating ability of the steel plate.In this case, when the projectile collides with the steel plate, The problem was that the flying object itself would be destroyed, and due to the large kinetic energy, it would not be possible to obtain the desired penetration power.

[問題点を解決するための手段1 そこで発明者らは上記の問題を解決すべく種種検討した
結果、飛翔体であるタングステン合金の延性を改良する
ことにより飛翔体自身の破壊を防ぎ、貫徹力の優れた飛
翔体を得られることを見出し、本発明に到達したのであ
る。即ち、タングステン粉末85〜97%および残部が
ニレケルと鉄の粉末からなる混合粉末を、1〜4ton
/am’の静水圧下で圧粉し、ついで該圧粉体を0〜−
60℃の水素気流中で液相焼結し、つぎに該焼結体を真
空中において加熱後急冷する熱処理を施すことにより、
従来得られなかった高延性のタングステン合金を製造す
ることが可能であるという知見に基き発明されたもので
ある。
[Means for Solving the Problem 1] Therefore, the inventors investigated various methods to solve the above problem, and found that by improving the ductility of the tungsten alloy that is the projectile, the projectile itself could be prevented from being destroyed, and the penetration force could be improved. They discovered that it was possible to obtain an excellent flying object, and arrived at the present invention. That is, 1 to 4 tons of mixed powder consisting of 85 to 97% tungsten powder and the balance being Nilekel and iron powder
/am' hydrostatic pressure, and then the green compact is compressed under a hydrostatic pressure of 0 to -
By performing liquid phase sintering in a hydrogen stream at 60°C, and then performing heat treatment in which the sintered body is heated in a vacuum and then rapidly cooled,
This invention was based on the knowledge that it is possible to produce a highly ductile tungsten alloy that has not been previously available.

次に本発明の構成と効果については以下のとおりである
Next, the structure and effects of the present invention are as follows.

原料粉末としては、タングステン、ニッケル、鉄の各粉
末を使用rるが、比重を高く保つためにタングステンの
量は85%以上であることが必要であり、かつ97%以
上では液相を発生する結合相の量が少なく、高密度化が
困難となるうえ材料の延性を確保するためにも97%以
下であることが必要である。ニッケルと鉄は焼結時液相
を発生し、高密度化を促進し、かつ材料の延性を高める
目的で添加され、その量は3%以下では上記の効果が発
揮できず、15%以上では材料の比重が確保できないの
で3〜15%とした。また、ニッケルと鉄の量的な関係
としては鉄が結合相全体に対して20〜50%程度が望
ましく、この理由はこの範囲でニッケルおよび鉄単体よ
り融点が十分に低下し、効果的な液相焼結が可能となる
からである。
Tungsten, nickel, and iron powders are used as raw material powders, but in order to keep the specific gravity high, the amount of tungsten must be 85% or more, and if it is 97% or more, a liquid phase will occur. The amount of the binder phase is small, which makes it difficult to increase the density, and it needs to be 97% or less in order to ensure the ductility of the material. Nickel and iron are added for the purpose of generating a liquid phase during sintering, promoting densification, and increasing the ductility of the material. If the amount is less than 3%, the above effects cannot be achieved, and if the amount is more than 15%, it will not be effective. Since the specific gravity of the material could not be ensured, it was set at 3 to 15%. Furthermore, regarding the quantitative relationship between nickel and iron, it is desirable for iron to account for 20 to 50% of the entire binder phase. This is because phase sintering becomes possible.

各粉末の粒度は成形性、焼結性および材料の延性の観点
から1〜10μ程度が望ましい。
The particle size of each powder is preferably about 1 to 10 μm from the viewpoint of formability, sinterability, and material ductility.

また、ニッケルと鉄の合金粉末を使用しても液相焼結が
可能なので、単体の粉末を使用する場合と同様の効果が
ある。
Further, since liquid phase sintering is possible even when using an alloy powder of nickel and iron, the same effect as when using a single powder is obtained.

つぎに上記粉末を混合した後、1〜4 t o n /
 c +a 2の潜水圧下で圧縮する。1ton/c+
a2以下の圧力では、液相焼結を行なっても2〜3%の
気孔が残留するので、延性が落ちる。 4L/am2以
上の圧力では成形体の密度が高過ぎて、焼結時の昇温過
程で気孔はほとんど、いわゆるクローズドボアとなるた
め、水素による還元や不純物除去が効果的に行えなくな
る。また、材料の均質性を高め、従って延性を高めるた
めに通常の一輸圧縮ではなく静水圧圧縮を行なう必要が
ある。以上の理由により圧粉は1〜4ton/c+s2
の静水圧圧縮によることとした。
Next, after mixing the above powder, 1 to 4 tons/
Compress under submerged pressure of c + a 2. 1ton/c+
At pressures below a2, 2 to 3% of pores remain even after liquid phase sintering, resulting in decreased ductility. At a pressure of 4 L/am2 or more, the density of the compact becomes too high and most of the pores become so-called closed pores during the temperature raising process during sintering, making it impossible to effectively reduce hydrogen and remove impurities. Also, it is necessary to perform isostatic compression instead of the usual single-transfer compression in order to increase the homogeneity of the material and thus increase its ductility. Due to the above reasons, the compacted powder is 1 to 4 tons/c+s2
This was done by hydrostatic compression.

つぎに圧粉体を水素気流中で焼結するが、この際景も重
要な点は水素の露点を0℃〜−60℃の間に保つことで
ある。これは圧粉体のタングX?7−Pングステン粒界
やタングステン−マトリックス粒界に酸化物その他の不
純物が存在すると、液相焼結後の延性を著しく損なうた
めであり、通常使用されている5〜20℃程度の露点の
水素雰囲気ではなく、0〜−60℃の極めて低い露点の
水素雰囲気中に圧粉体を置さ、昇温過程を含む焼結工程
中に、十分な還元と不純物除去とを行なうことにより、
材料の靭性を高めることができるのである。0℃より高
い露点の雰囲気では上記の効果が充分でなく、また−6
0℃以下に炉内雰囲気を維持しても効果の程度は向上し
ないので焼結炉内の水素の露点は0〜−60℃とした。
Next, the green compact is sintered in a hydrogen stream, and it is important to maintain the hydrogen dew point between 0°C and -60°C. Is this a compacted powder tongue X? This is because the presence of oxides and other impurities at the 7-P ungsten grain boundaries and tungsten-matrix grain boundaries will significantly impair ductility after liquid phase sintering. By placing the green compact in a hydrogen atmosphere with an extremely low dew point of 0 to -60°C instead of in an atmosphere, and performing sufficient reduction and impurity removal during the sintering process including the temperature raising process,
This makes it possible to improve the toughness of the material. In an atmosphere with a dew point higher than 0℃, the above effect is not sufficient, and -6
The dew point of hydrogen in the sintering furnace was set at 0 to -60°C since the effect was not improved even if the atmosphere in the furnace was maintained below 0°C.

焼結炉の出口側の水素の露点をこの範囲に保つためには
、勿論、入口側の水素の露点はさらに低く、たとえば−
70℃以下に保つ必要があり、さらに炉材、圧粉体の皿
、炉の形状等を考慮して流入水素量も適宜選択する必要
のあることは当然である。焼結はニッケルや鉄が少なく
とも液相を生じる温度で、かつ十分な合金化と緻密化が
進行するに必要な時間加熱することが強靭な材料を得る
ために必要であり、具体的には少(とも1450℃以上
の温度、30分間以上の時間を必要とする。
In order to maintain the hydrogen dew point on the exit side of the sintering furnace within this range, the hydrogen dew point on the inlet side must of course be lower, for example -
It goes without saying that it is necessary to maintain the temperature at 70° C. or lower, and that the amount of inflowing hydrogen also needs to be appropriately selected in consideration of the furnace material, the plate for the powder compact, the shape of the furnace, etc. Sintering is necessary to obtain a strong material by heating at a temperature at which nickel or iron at least becomes liquid phase, and for a time necessary for sufficient alloying and densification to occur. (Both require a temperature of 1450°C or more and a time of 30 minutes or more.

つぎに所望の延性をふ与するために、得られた焼結体に
さらに熱処理を施すことが必要である。焼結体中に固溶
した水素量が多いと材料の延性を低下させるので、これ
を除去するために焼結体を真空中において700〜14
00℃の温度で2〜10IIi!間加熱保持し、かつそ
の後急冷することが必要なのである。冷却速度は、少く
とも300℃まで40℃/分以上にする必要がある。こ
のような熱処理を施すことによって、上記のような材料
中の水素量の低減化のほかに、粒界や粒内への微量の析
出物の生成を防止することや、結合相中に過飽和に固溶
したタングステンの析出を防止することにより延性を高
めることが可能となるものであると考えられる。
Next, it is necessary to further heat treat the obtained sintered body in order to impart the desired ductility. If there is a large amount of dissolved hydrogen in the sintered body, it will reduce the ductility of the material, so in order to remove this, the sintered body is placed in a vacuum at a temperature of 700 to 14
2-10IIi at a temperature of 00℃! It is necessary to hold the temperature for a while and then rapidly cool it. The cooling rate must be at least 40°C/min up to at least 300°C. By performing such heat treatment, in addition to reducing the amount of hydrogen in the material as described above, it also prevents the formation of trace amounts of precipitates at grain boundaries and inside grains, and prevents supersaturation in the binder phase. It is thought that ductility can be increased by preventing the precipitation of solid-solved tungsten.

[発明の効果】 以上述べたとおり、原料、成形、焼結、熱処理等の工程
を本発明の如く組合せることによって従来のタングステ
ン合金に比べて若しν%延性の改良が得られ、特に貝微
力の優れた飛翔体として適した材料を製造することが可
能となるのである。
[Effects of the Invention] As described above, by combining raw materials, forming, sintering, heat treatment, and other processes as in the present invention, an improvement in ductility of ν% compared to conventional tungsten alloys can be obtained, especially for shellfish. This makes it possible to manufacture materials suitable for use as flying objects with excellent micro-force.

以下、本発明の効果を実施例により示す。Hereinafter, the effects of the present invention will be illustrated by examples.

[実施例] 実施例1 平均粒径がそれぞれ、5,4.5.2および6.0ミク
ロンのW1ニッケルおよび鉄粉を95%賀−3,5%N
i−1,5%Fe組成になるように配合し、アセトンを
適当量添加して72時間ボットミル中で混合した混合粉
をラバープレスで成形し、水素〃ス中で14フO℃で9
0分間焼結し、さC)に真空中において1250℃で6
時間熱処理を行ない、冷却後、その材料の引張IAさお
よび伸びを測定した。
[Examples] Example 1 W1 nickel and iron powders with average particle sizes of 5, 4, 5.2 and 6.0 microns, respectively, were mixed with 95% and 3,5% N.
i-1.5% Fe composition was added, an appropriate amount of acetone was added, and the mixed powder was mixed in a bot mill for 72 hours. The mixed powder was molded with a rubber press, and heated at 90°C for 14 degrees in hydrogen gas.
Sintered for 0 minutes and then sintered at 1250 °C in vacuum for 6
After a time heat treatment and cooling, the tensile IA and elongation of the material were measured.

その結果を表1に示す。The results are shown in Table 1.

実験No、 1〜4は特許請求の範囲内の条件で製造し
たものであり、延性の優れた材料が得られたことが分か
る。
Experiment Nos. 1 to 4 were manufactured under conditions within the claimed range, and it can be seen that materials with excellent ductility were obtained.

実験No5〜9派、特許請求の範囲外の条件で製造した
物であり、以下に示すような理由で機械的性質(特に伸
び)が低下したものである。
Test Nos. 5 to 9 were produced under conditions outside the scope of the claims, and the mechanical properties (especially elongation) were degraded for the following reasons.

すなわち、NOo・1は成形圧力が低すぎ、焼結によっ
て充分に緻密化した材料゛が得られなかった。N006
は成形圧力が高すぎ、焼結の昇Q過程ですでに大部分の
気孔がクローズドボアとなり、水素〃スによるタングス
テン粉末表面の還元・不純物の除去が充分に行なわれな
かった。
In other words, the molding pressure for NOo-1 was too low, and a sufficiently densified material could not be obtained by sintering. N006
The compacting pressure was too high, and most of the pores had already become closed bores during the sintering process, and the reduction of the tungsten powder surface and the removal of impurities by hydrogen were not sufficiently carried out.

No7お上り8では焼結時の露点が高すぎ、タングステ
ン粉末表面の還元・不純物の除去が充分でなかった。N
o9に於ては、真空熱処理後の冷却速度が遅いために、
バインダー相に過飽和に固溶したW原子がNiやFeと
の化合物となり、バインダー相とW粒子の界面に析出し
て伸びが充分に出なかった。
In No. 7 and No. 8, the dew point during sintering was too high, and the reduction and removal of impurities on the tungsten powder surface was not sufficient. N
In o9, because the cooling rate after vacuum heat treatment is slow,
W atoms dissolved in a supersaturated solid solution in the binder phase became a compound with Ni and Fe, precipitated at the interface between the binder phase and the W particles, and insufficient elongation was obtained.

実施例2 実施例1に同じ粉末を用い、90%N−5%Ni−5%
Fe1l成によるように、これも実施例1と同様に、配
合・混合・成形して水素〃ス中1500℃で60分焼結
し、さらに真空中tooo℃で8時間熱処理を9テない
、冷却後、その材料の引張強さおよび伸びを測定した。
Example 2 Using the same powder as in Example 1, 90%N-5%Ni-5%
As in Example 1, this was compounded, mixed, molded, sintered in hydrogen gas at 1500°C for 60 minutes, further heat treated in vacuum at too much°C for 8 hours, and then cooled. Afterwards, the tensile strength and elongation of the material were measured.

その結果を表2に示す。The results are shown in Table 2.

実施例1と同様、特許請求範囲の条件を組み合セタ工程
テst造@ レタNo1−No4(No5−No91!
請求範囲外)に於て、者しく延性の優れた材料が得られ
ることが明らかである。
As in Example 1, the conditions of the claims were combined to create a seta process test @Reta No. 1-No. 4 (No. 5-No. 91!).
It is clear that a material with excellent ductility can be obtained even outside the scope of claims.

手続補正書(自制 昭和61年 6月25日Procedural amendment (self-restraint) June 25, 1986

Claims (1)

【特許請求の範囲】[Claims] タングステン粉末85〜97%および残部がニッケルと
鉄の粉末からなる混合粉末を1〜4ton/cm^2の
静水圧下で圧粉し、ついで該圧粉体を0〜−60℃の水
素気流中で液相焼結し、つぎに該焼結体を真空中におい
て加熱後急冷する熱処理を施すことを特徴とする高延性
を有するタングステン合金の製造方法。
A mixed powder consisting of 85 to 97% tungsten powder and the balance of nickel and iron powder is compacted under hydrostatic pressure of 1 to 4 tons/cm^2, and then the compact is placed in a hydrogen stream at 0 to -60°C. 1. A method for producing a tungsten alloy having high ductility, the method comprising performing liquid phase sintering in a sintered body, followed by heat treatment of heating the sintered body in a vacuum and then rapidly cooling it.
JP61026869A 1986-02-12 1986-02-12 Method for producing W-based alloy sintered body having high toughness Expired - Lifetime JP2552264B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61026869A JP2552264B2 (en) 1986-02-12 1986-02-12 Method for producing W-based alloy sintered body having high toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61026869A JP2552264B2 (en) 1986-02-12 1986-02-12 Method for producing W-based alloy sintered body having high toughness

Publications (2)

Publication Number Publication Date
JPS62185843A true JPS62185843A (en) 1987-08-14
JP2552264B2 JP2552264B2 (en) 1996-11-06

Family

ID=12205298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61026869A Expired - Lifetime JP2552264B2 (en) 1986-02-12 1986-02-12 Method for producing W-based alloy sintered body having high toughness

Country Status (1)

Country Link
JP (1) JP2552264B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH042736A (en) * 1990-04-18 1992-01-07 Japan Steel Works Ltd:The Manufacture of high toughness w-ni-fe sintered alloy
JPH07150285A (en) * 1993-10-08 1995-06-13 Sumitomo Electric Ind Ltd Corrosion resisting tungsten-base sintered alloy and its production
US6533996B2 (en) 2001-02-02 2003-03-18 The Boc Group, Inc. Method and apparatus for metal processing

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5237503A (en) * 1975-09-18 1977-03-23 Us Government Method of producing articles made of tungstennnickell iron alloy
JPS5867802A (en) * 1981-10-15 1983-04-22 Kawasaki Steel Corp Preparation of sintered parts
JPS5913037A (en) * 1982-07-09 1984-01-23 Sumitomo Electric Ind Ltd Production of w-ni-fe sintered alloy
JPS59162202A (en) * 1983-03-04 1984-09-13 Kawasaki Steel Corp Manufacture of sintered soft magnetic material
JPS61104002A (en) * 1984-10-20 1986-05-22 ドルニエ、ジステム、ゲゼルシヤフト、ミツト、ベシユレンクテル、ハフツング Sintering method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5237503A (en) * 1975-09-18 1977-03-23 Us Government Method of producing articles made of tungstennnickell iron alloy
JPS5867802A (en) * 1981-10-15 1983-04-22 Kawasaki Steel Corp Preparation of sintered parts
JPS5913037A (en) * 1982-07-09 1984-01-23 Sumitomo Electric Ind Ltd Production of w-ni-fe sintered alloy
JPS59162202A (en) * 1983-03-04 1984-09-13 Kawasaki Steel Corp Manufacture of sintered soft magnetic material
JPS61104002A (en) * 1984-10-20 1986-05-22 ドルニエ、ジステム、ゲゼルシヤフト、ミツト、ベシユレンクテル、ハフツング Sintering method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH042736A (en) * 1990-04-18 1992-01-07 Japan Steel Works Ltd:The Manufacture of high toughness w-ni-fe sintered alloy
JPH07150285A (en) * 1993-10-08 1995-06-13 Sumitomo Electric Ind Ltd Corrosion resisting tungsten-base sintered alloy and its production
US6533996B2 (en) 2001-02-02 2003-03-18 The Boc Group, Inc. Method and apparatus for metal processing
US7018584B2 (en) 2001-02-02 2006-03-28 The Boc Group, Inc. Method and apparatus for metal processing

Also Published As

Publication number Publication date
JP2552264B2 (en) 1996-11-06

Similar Documents

Publication Publication Date Title
CN110523997B (en) High-entropy alloy particle reinforced subzero treatment aluminum-based composite material and preparation method thereof
CN112391556B (en) High-strength high-conductivity Cu-Cr-Nb alloy reinforced by double-peak grain size and double-scale nanophase
JPH01272742A (en) Low density aluminum alloy solidified article and its production
CN110093548B (en) Ultrafine-grained high-toughness high-entropy alloy containing rare earth Gd and preparation method thereof
JP2013519792A5 (en)
Zuo et al. Complex modification of hypereutectic Al-Si alloy by a new Al-YP master alloy
JPS63274763A (en) Alloy target for magneto-optical recording
JPS62185843A (en) Manufacture of tungsten alloy
JPS62185805A (en) Production of high-speed flying body made of tungsten alloy
JPS62196306A (en) Production of double layer tungsten alloy
CN108315625A (en) The preparation method of armor-piercing bullet tungsten alloy
Xie et al. Effect of ball milling time on the microstructure and compressive properties of the Fe-Mn-Al porous steel
US20180021857A1 (en) Method of preparing tungsten metal material and tungsten target with high purity
JPH083601A (en) Aluminum-aluminum nitride composite material and its production
JPS6046170B2 (en) Copper alloy used for liquid phase sintering of iron powder
JP2856251B2 (en) High-strength wear-resistant Al-Si alloy forged member having low coefficient of thermal expansion and method for producing the same
CN112342418B (en) Face-centered cubic boron-containing high-entropy alloy prepared by microwave sintering and preparation method thereof
KR100262488B1 (en) Method of manufacturing sintered fe-si type soft magnets
CN114420432B (en) Preparation method for improving magnetic performance of samarium cobalt permanent magnet material
CN112893851B (en) Method for directly preparing copper-aluminum intermetallic compound powder by mechanical alloying
WO2022170862A1 (en) High-strength r-t-b rare earth permanent magnet and preparation method therefor
JP4140176B2 (en) Low thermal expansion heat resistant alloy and method for producing the same
JPH0723516B2 (en) Method for producing tungsten sintered alloy
CN117587313A (en) FeCrNiAl series high-entropy alloy with low density and high plasticity and preparation method thereof
Baker et al. Production and properties of two-phase nanocrystalline FeCu compacts

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term