JPS62185129A - Light receiving device for measuring temperature - Google Patents

Light receiving device for measuring temperature

Info

Publication number
JPS62185129A
JPS62185129A JP2727986A JP2727986A JPS62185129A JP S62185129 A JPS62185129 A JP S62185129A JP 2727986 A JP2727986 A JP 2727986A JP 2727986 A JP2727986 A JP 2727986A JP S62185129 A JPS62185129 A JP S62185129A
Authority
JP
Japan
Prior art keywords
molten metal
temperature
tip
receiving device
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2727986A
Other languages
Japanese (ja)
Inventor
Seiichi Okuhara
奥原 精一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2727986A priority Critical patent/JPS62185129A/en
Publication of JPS62185129A publication Critical patent/JPS62185129A/en
Pending legal-status Critical Current

Links

Landscapes

  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To reduce necessary expensive significantly on temperature measurement of a molten metal and for obtaining cooling curve, by forcing the tip of a heat resistant transparent photoconducting bar into a basin. CONSTITUTION:An insert bar 8 is inserted into a light receiving device for measuring temperature to force the device into a molten metal. As the tip of thereof arrives into the molten metal after passing through a slag, an aluminum cover 7 is broken melting and the molten metal flows into a basin 2 at a port 3. A part of energy radiated from the molten metal enters the tip of a photoconducting rod 5 and introduced into an optical thermometer 10 through a pipe 1 and via an optical fiber 9 to measure the temperature thereof optically. Then, as the light receiving device for measuring temperature is pulled up from the molten metal, the molten metal is drawn from the basin 2 and changes in the temperature, namely a cooling curve in the cooling process of the molten metal drawn can be obtained with the thermometer 10. This can simplified the assembling process to reduce necessary expensive required for a consuming part.

Description

【発明の詳細な説明】 溶解しているものが凝固する場合には、凝固開始点(初
品点または初晶温度)と凝固終了点(J12品点または
共晶凝固温度)があり、鋳鉄においては、その化学組成
によって凝固開始点や凝固終了点が異なっている。
Detailed Description of the Invention When a molten substance solidifies, there is a solidification start point (initial point or primary crystal temperature) and a solidification end point (J12 point or eutectic solidification temperature). The solidification start point and solidification end point differ depending on their chemical composition.

すなわち、第3図に鋳鉄の冷却曲線の一例を示すように
、温度aの溶湯が凝固する場合、初晶温度すにおいて凝
固が始まり、その初晶温度すがしばらく持続し、しかる
のち、共晶凝固温度dで凝固するのであるが、初晶から
共晶までの間に、温度Cに至る過冷却の現象を生じる。
In other words, as shown in Fig. 3, which shows an example of the cooling curve of cast iron, when molten metal at temperature a solidifies, solidification begins at the primary crystal temperature, which lasts for a while, and then becomes eutectic. It solidifies at the solidification temperature d, but a phenomenon of supercooling that reaches the temperature C occurs between the primary crystal and the eutectic crystal.

そして、初晶温度すより鋳鉄の炭素当量を知ることがで
き、初品から共晶までの温度差gより溶湯の炭素の比率
がわかり、また、過冷却の程度によりチルの度合を知る
ことができ、これらのことが、冷却曲線に対する基本的
な考え方として従来より知られている。
The carbon equivalent of cast iron can be determined from the primary crystal temperature, the carbon ratio of the molten metal can be determined from the temperature difference g from the initial crystal to the eutectic, and the degree of chill can be determined from the degree of supercooling. This has been known as the basic concept regarding the cooling curve.

このような冷却曲線の変曲点を検出するために従来より
第2図に示すような測温用サンプラが用いられている。
In order to detect such an inflection point of a cooling curve, a temperature measuring sampler as shown in FIG. 2 has conventionally been used.

従来の測温用サンプ、うは、先端部に湯溜め2を設け、
この・7vJll’ffめ2の直り側部に窓3を有する
1耐熱材料で作ったパイプlと、窓3内に設けられた第
1の熱電対11と、湯溜め2内に設けられた第2の熱電
対12とから構成されている。
A conventional temperature measurement sump, with a water reservoir 2 at the tip,
A pipe l made of a heat-resistant material having a window 3 on the straight side of the pipe 2, a first thermocouple 11 provided in the window 3, and a first thermocouple 11 provided in the hot water reservoir 2. 2 thermocouples 12.

測温時に、測温用サンプラを溶融金属の中へ挿込むと窓
3より溶融金属が流入するので、このとき、第1の熱電
対11によって溶融金属の温度を測定することができ、
測温用サンプラを溶融金属より引」二げると湯溜め2に
溶融金属を採取することができる。
During temperature measurement, when the temperature measurement sampler is inserted into the molten metal, the molten metal flows in through the window 3, so at this time, the temperature of the molten metal can be measured by the first thermocouple 11,
When the temperature measuring sampler is pulled out from the molten metal, the molten metal can be collected in the sump 2.

このようにして採取した溶融金属の冷却曲線は第2の熱
゛重列12によって得ることができる。
The cooling curve of the molten metal sampled in this way can be obtained by the second thermal overlay 12.

しかし、このような従来の測温用サンプラは、1回しか
使用できないのにもかかわらず、2つの熱電対11.1
2を用いており、また、製造に際してリード1J13の
耐熱保護を必要とするなどの多くの工程を経なければな
らないので高価なものであった。
However, although such conventional temperature samplers can only be used once, they only have two thermocouples (11.1).
In addition, the lead 1J13 required heat-resistant protection during manufacture, and many steps had to be carried out, making it expensive.

そこで、この発明は、このような従来のi!I−湿田サ
ンプラが有する問題点を解決するために考えられたもの
であって、溶融金属の温度および採取した溶融金属の温
度変化を、熱電対を用いることなく光学的に測定するよ
うに構成したものであるから、 11111温ごとに消
耗される部分の費用を低減することができる。
Therefore, the present invention is applicable to such conventional i! I-It was designed to solve the problems of the wet field sampler, and was configured to optically measure the temperature of the molten metal and the temperature change of the sampled molten metal without using a thermocouple. Since it is a 11111 temperature unit, the cost of parts that are consumed every 11111 temperatures can be reduced.

この発明の11111温田受光具は、第1図に示すよう
に、パイプ1の先端に設けられた溶融金属を汲取る湯溜
め2と、この湯溜めz内に溶融金属を流入させる窓3と
、この窓3を仮に覆うアルミのカバー7と、硅;(一杯
のような耐熱透明光導体棒5を貫通せしめた若4とを具
備し、この光導体棒5の先端部は、勘溜めz内に突出し
ており、後端はバイブl内に指向しており、さらに、光
導体棒5の側面は炭化硅素、窒化硅素のような黒色耐火
物の層6で覆われている。
As shown in FIG. 1, the 11111 Onta light receiving device of the present invention includes a sump 2 provided at the tip of a pipe 1 for sucking up molten metal, and a window 3 for allowing the molten metal to flow into the sump z. The window 3 is provided with an aluminum cover 7 that temporarily covers the window 3, and a cover 4 through which a heat-resistant transparent light conductor rod 5 is passed through. The light guide rod 5 protrudes into the vibrator 1 with its rear end pointing into the vibrator 1, and the sides of the light guide rod 5 are covered with a layer 6 of a black refractory material, such as silicon carbide or silicon nitride.

そして、バイブ1の内面および44の内面は黒色に着色
されており、各内面における入射光線の反射や吸収に分
光特性を付pしないように構成されている。
The inner surface of the vibrator 1 and the inner surface of the vibrator 44 are colored black, and are configured so as not to impart spectral characteristics to the reflection or absorption of incident light on each inner surface.

このように構成された測温用受光具は、その後端に、光
学縁!lI9の先端部が挿通された挿入棒8が挿込まれ
るものであって、この光学繊維9の先端は、光導体棒5
に指向しており、後端は、2色部度工1のような光学的
温度計lOの受光部に指向している。
The light receiving device for temperature measurement configured in this way has an optical edge at the rear end! The insertion rod 8 into which the tip of the optical fiber 9 is inserted is inserted, and the tip of the optical fiber 9 is inserted into the light guide rod 5.
The rear end is oriented toward the light receiving part of an optical thermometer 10 such as the two-color section 1.

溶融金属の温度測定を行ない、その冷却曲線を得て溶融
金属を採取したい場合には、挿入棒8を測温用受光具に
挿込んで、溶融金属の中に突っ込むと、溶融金属の表面
に浮んでいるスラグを通過した後、溶融金属の中に先端
部が到達すると、アルミのカバー7が溶けて破れ、溶融
金属が孔3から湯溜めz内へ流入する。
If you want to measure the temperature of molten metal, obtain its cooling curve, and collect the molten metal, insert the insertion rod 8 into the temperature measuring light receiver and plunge it into the molten metal. When the tip reaches the molten metal after passing through the floating slag, the aluminum cover 7 is melted and torn, and the molten metal flows into the sump z through the hole 3.

この流入した溶融金属から輻射されるエネルギーの一部
は、光導体棒5の先端から入射し、バイブ1の1セおよ
び光学縁m9を経て光学的温度計10へ導かれ、光学的
に測温される。
A part of the energy radiated from the inflowing molten metal enters from the tip of the light guide rod 5, and is guided to the optical thermometer 10 through the first section of the vibrator 1 and the optical rim m9, and optically measures the temperature. be done.

測温用受光具を溶融金属の中から引上げると、湯溜め2
の中に溶融金属を汲取ることができ、汲取られた溶融金
属の冷却過程における温度変化、すなわち、冷却曲線を
、光学的温度計lOにおいて得ることができる。
When the temperature sensor is pulled up from the molten metal, the water tank 2
The molten metal can be pumped into the molten metal, and the temperature change during the cooling process of the molten metal, that is, the cooling curve, can be obtained with an optical thermometer IO.

以上で説明したように、この発明の測温用受光具による
と、測温用サンプラに高価な貴金属よりなる熱電対を使
用しておらず、また、組立工程も簡素化されるので廉価
であり、消耗部分に要する費用が少ないから、溶融金属
の温度測定および冷却曲線を得るための費用を大幅に減
らすことができる。
As explained above, the temperature measurement light receiving device of the present invention does not use an expensive thermocouple made of precious metal in the temperature measurement sampler, and the assembly process is simplified, so it is inexpensive. , the cost of temperature measurements and cooling curves of molten metal can be significantly reduced due to the low cost of consumable parts.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の測温用受光几の一実施例を示す縦
断面図、第2図は、従来の装置を示す縦断面図、第3図
は、溶融している鋳鉄が凝固する過程における温度変化
を示す冷却曲線図である。 l・・・パイプ 2・・・湯溜め 3・・・孔 4・・・蓋 5・・・透明光導体棒 9・・・光学繊維 lO・・・光学的温度計
Fig. 1 is a vertical cross-sectional view showing an embodiment of the temperature measuring light receiving box of the present invention, Fig. 2 is a longitudinal cross-sectional view showing a conventional device, and Fig. 3 is a vertical cross-sectional view showing an embodiment of the temperature measuring light receiving box of the present invention. It is a cooling curve diagram showing temperature changes in the process. l... Pipe 2... Water reservoir 3... Hole 4... Lid 5... Transparent light guide rod 9... Optical fiber lO... Optical thermometer

Claims (1)

【特許請求の範囲】[Claims] 溶融金属を汲取る湯溜めを先端に支持する支持パイプと
、該支持パイプの先端近傍に設けられ、耐熱透明光導体
棒を貫通せしめた蓋とを具備し、上記耐熱透明光導体棒
の先端部を上記湯溜め内に突出せしめたことを特徴とす
る溶融金属の温度を光学的の測定するための測温用受光
具。
A support pipe that supports a sump for pumping molten metal at its tip, and a lid that is provided near the tip of the support pipe and allows a heat-resistant transparent light guide rod to pass through, the tip of the heat-resistant transparent light guide rod. A temperature-measuring light-receiving device for optically measuring the temperature of molten metal, characterized in that a temperature-measuring light-receiving device is made to protrude into the water reservoir.
JP2727986A 1986-02-10 1986-02-10 Light receiving device for measuring temperature Pending JPS62185129A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2727986A JPS62185129A (en) 1986-02-10 1986-02-10 Light receiving device for measuring temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2727986A JPS62185129A (en) 1986-02-10 1986-02-10 Light receiving device for measuring temperature

Publications (1)

Publication Number Publication Date
JPS62185129A true JPS62185129A (en) 1987-08-13

Family

ID=12216632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2727986A Pending JPS62185129A (en) 1986-02-10 1986-02-10 Light receiving device for measuring temperature

Country Status (1)

Country Link
JP (1) JPS62185129A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05142049A (en) * 1991-11-15 1993-06-08 Nkk Corp Consumable type optical fiber thermometer
US6004031A (en) * 1993-11-30 1999-12-21 Nkk Corporation Temperature measuring device
DE10331124B3 (en) * 2003-07-09 2005-02-17 Heraeus Electro-Nite International N.V. Method and device for measuring the cooling curve of melt samples and / or the heating curve of melt samples and their use

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05142049A (en) * 1991-11-15 1993-06-08 Nkk Corp Consumable type optical fiber thermometer
US6004031A (en) * 1993-11-30 1999-12-21 Nkk Corporation Temperature measuring device
US6227702B1 (en) 1993-11-30 2001-05-08 Nkk Corporation Method and apparatus for measuring a temperature of a molten metal
DE10331124B3 (en) * 2003-07-09 2005-02-17 Heraeus Electro-Nite International N.V. Method and device for measuring the cooling curve of melt samples and / or the heating curve of melt samples and their use
US7384192B2 (en) 2003-07-09 2008-06-10 Heraeus Electro-Nite International N.V. Method for measuring cooling/heating curves of molten masses
US7635220B2 (en) 2003-07-09 2009-12-22 Heraeus Electro-Nite International N.V. Device for measuring cooling/heating curves of molten masses

Similar Documents

Publication Publication Date Title
RU2155948C2 (en) Probe submerged in melt of metal
US7635220B2 (en) Device for measuring cooling/heating curves of molten masses
US3709040A (en) Lances for taking samples of molten metal
RU2502064C2 (en) Submersible probe
US4699014A (en) Molten metal sampler with sand cast mold part
JPS62185129A (en) Light receiving device for measuring temperature
KR19990082256A (en) Method and apparatus for measuring melting temperature in melting vessel
Nagata et al. Measurement of normal spectral emissivity of liquid copper
JP2003075431A (en) Sampling container for thermal analysis in metal molten metal
JPS5536784A (en) Carbon content measuring device of molten steel
JPS62185130A (en) Light receiving device for measuring temperature
US6200520B1 (en) Sampling vessel for obtaining a cooling curve of molten metals
JP2007171112A (en) Method and apparatus for measuring slag temperature in plasma melting furnace
KR100378291B1 (en) Expendable thermocouple
RU2150091C1 (en) Process measuring temperature of melt and gear for its implementation
RU105993U1 (en) DEVICE FOR MEASURING MELT TEMPERATURE
JPS5988629A (en) Light receiving section of optical temperature measuring apparatus
SU537288A1 (en) Method for determining thermal conductivity of solids
SU877367A1 (en) Heat flow pickup
JPS56117134A (en) Temperature measuring device for high heat substance
JPH0114922Y2 (en)
JPH07311098A (en) Controlling method for temperature of steel coming out of steelmaking furnace
JPS56127681A (en) Determination of temperature in combustion chamber of coke oven
JPS6042363Y2 (en) optical saturation thermometer
SU807170A1 (en) Device for measuring optic properties of metal oxides and metalloids