JPS6218338A - Direct current feeding device - Google Patents

Direct current feeding device

Info

Publication number
JPS6218338A
JPS6218338A JP60157656A JP15765685A JPS6218338A JP S6218338 A JPS6218338 A JP S6218338A JP 60157656 A JP60157656 A JP 60157656A JP 15765685 A JP15765685 A JP 15765685A JP S6218338 A JPS6218338 A JP S6218338A
Authority
JP
Japan
Prior art keywords
diodes
power
circuit
diode bridge
power converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60157656A
Other languages
Japanese (ja)
Inventor
Sadaji Noki
能木 貞治
Toyomi Gondo
権藤 豊美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Electric Manufacturing Co Ltd
Priority to JP60157656A priority Critical patent/JPS6218338A/en
Publication of JPS6218338A publication Critical patent/JPS6218338A/en
Pending legal-status Critical Current

Links

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

PURPOSE:To cut off current in trouble instantly by configurating a device in such a way that two sets of diode bridge circuits are combined with a set of breakers, both power running and regenerative current are allowed to flow through the above said breakers, and a diode series circuit is provided. CONSTITUTION:In two sets of diode bridge circuits 21 ad 41 which are connected in series, cathode sides of diodes 22a and 22c, and diodes 42a and 42c are connected with one another to form a power running bus bar 23. And thyristor breaker 24 is provided between the said bus bar 23 and a common connecting line 25 on anode sides of diodes 22b and 22d, and diodes 42b and 42d. In addition, a diode series circuit 30 is connected with the said circuit 21 and 41 in parallel, then a node 31 between diodes 28 and 29 is connected with a regenerative bus bar 32 with which a bi-directional power transducer 33 is connected. Each of following nodes such as one 26 between the diodes 22a and 22b, one 27 between the diodes 22c and 22d, one 46 between the diodes 42a and 42b and one 47 between the diodes 42c and 42d, is connected with each of electric car lines 9a, 9b, 10a, and 10b by way of each of direct current disconnecting switches 8a through 8d respectively.

Description

【発明の詳細な説明】 A、産業上の利用分野 この発明は電気鉄道の給電装置に係り、特に交流電力を
直流電力に変換して電気車の駆動源として供給する直流
式電気鉄道の給電装置に関する。
[Detailed Description of the Invention] A. Field of Industrial Application This invention relates to a power supply device for electric railways, and more particularly to a power supply device for DC type electric railways that converts AC power into DC power and supplies it as a drive source for electric cars. Regarding.

B0発明の概要 この発明は直流式電気鉄道の給電装置において、2組の
ダイオードブリッジ回路と1組の遮断器とを組み合せ、
力行及び回生電流が前記1組の遮断器を通して流れるよ
うにするとともに双方向電力変換器を前記ブリッジ回路
に接続したことにより、 各電車線路側の事故に際しても前記1組の遮断器を遮断
させれば、即座に事故電流を遮断することができるよう
にするとともに双方向電力変換器を順電力動作させて負
荷量の増大にも対応できるようにしたものである。
B0 Summary of the invention This invention is a DC electric railway power supply device that combines two sets of diode bridge circuits and one set of circuit breakers.
By allowing the power running and regenerative currents to flow through the set of circuit breakers and by connecting a bidirectional power converter to the bridge circuit, the set of circuit breakers can be cut off even in the event of an accident on each overhead contact line. For example, it is possible to immediately interrupt a fault current and also to operate a bidirectional power converter with forward power to cope with an increase in load amount.

C1従来の技術 従来、鉄道線路に沿って適当な間隔で設備された直流変
電所には1組ないし数組の変換装置が設けられて構成さ
れている。また、各変換装置の直流出力側は変換装置専
用の直流高速度遮断器に接続されるとともにその装置の
交流入力側は共通の母線導体に接続されている。すなわ
ち、順電力変換器置と直流高速度遮断器とを含めた給電
系は変電所間で並列に接続されて直流変電所の直流電源
を構成している。
C1 Prior Art Conventionally, DC substations installed at appropriate intervals along railway lines are configured with one to several sets of converters. Further, the DC output side of each converter is connected to a DC high-speed circuit breaker dedicated to the converter, and the AC input side of the converter is connected to a common bus conductor. That is, a power supply system including a forward power converter and a DC high-speed circuit breaker is connected in parallel between substations to constitute a DC power source of the DC substation.

一方、電車線路は一般に隣接変電所間および線路別に区
分され、その区分された電車線路は各回線専用の直流高
速度遮断器を介して各変電所で、それぞれの正極母線に
接続され、レールは負極母線に接続される。
On the other hand, tram tracks are generally divided between adjacent substations and by track, and the tram tracks are connected to their respective positive bus bars at each substation via DC high-speed circuit breakers dedicated to each line. Connected to the negative bus.

一般に前記区分された電車線路には隣接する変電所が並
列に電力を供給する給電回路として構成されている。
Generally, adjacent substations are configured as a power supply circuit that supplies power in parallel to the divided electric train tracks.

第2図は従来の給電装置で、lは交流電力を直流電力に
変換するサイリスク制御素子からなる順電力変換器、2
は直流電力を交流電力に変換するサイリスク制御素子か
らなる逆電力変換器である。
Figure 2 shows a conventional power supply device, where 1 is a forward power converter consisting of a cyrisk control element that converts AC power into DC power, and 2
is an inverse power converter consisting of a cyrisk control element that converts DC power to AC power.

3は直流母線、4a〜4dは力行用サイリスタ遮断器C
以下刃行用遮断器と称す)、5a〜5dは回虫用ダイオ
ードで、これらダイオード5a〜5dのアノード側は力
行用遮断i4a〜4dのカソードに接続されるとともに
ダイオード5a=5dのカソード側は一括接続されて回
生用サイリスタ遮断器6(以下回生用遮断器と称V)の
アノードに接続される。回虫用遮断器6のカソードは直
流母線3に接続される。直流母線3には逆電力変換器2
が接続される。8a〜8dは直流断路器、9a、 9b
及び10a、 fobはデッドセクション11.12で
区分された上り、下り用の第1第2及び第3.第4電車
線路である。
3 is a DC bus bar, 4a to 4d are power running thyristor circuit breakers C
5a to 5d are roundworm diodes, and the anode sides of these diodes 5a to 5d are connected to the cathodes of the powering circuit breakers i4a to 4d, and the cathodes of the diodes 5a and 5d are connected together. It is connected to the anode of a regenerative thyristor circuit breaker 6 (hereinafter referred to as a regenerative circuit breaker V). The cathode of the roundworm circuit breaker 6 is connected to the DC bus 3. A reverse power converter 2 is installed on the DC bus 3.
is connected. 8a to 8d are DC disconnectors, 9a, 9b
and 10a, the fob is divided by a dead section 11.12 into a first, second and third . This is the 4th train track.

次に第2図の動作を述べる。まず、電気車の力行運転用
電力は変電所において図示しない商用周波電源母線より
交流遮断器(図示省略)を通して受電された3相交流電
圧を変圧器(図示省略)で適当な電圧に変換し、順電力
変換器lにより直流電力に変換して、区分された第1.
第2電車線路9a。
Next, the operation shown in FIG. 2 will be described. First, power for powering an electric vehicle is obtained by converting the three-phase AC voltage received from a commercial frequency power bus (not shown) through an AC breaker (not shown) into an appropriate voltage using a transformer (not shown) at a substation. A forward power converter l converts the divided first .
Second train track 9a.

9b及び第3.第4電車線路10a、 1(lbに供給
される。
9b and 3rd. The fourth electric train line 10a, 1 (lb) is supplied.

第4電車線路tabの電気車13は上記のように供給さ
れる直流電力で力行運転される。
The electric car 13 on the fourth overhead contact line tab is powered by the DC power supplied as described above.

次に電気車13が回生運転時にあるとき、回生電力は第
4電車線路10bから回生用ダイオード5d及び回生用
遮断器6を経て直流母線3に供給される。
Next, when the electric car 13 is in regenerative operation, regenerative power is supplied to the DC bus 3 from the fourth overhead contact line 10b via the regenerative diode 5d and the regenerative circuit breaker 6.

この母線3に供給された回生電力は力行電気車(図示省
略)が運転されている例えば第1電車線路9a〜第3電
車線路10aに回虫されるか、逆電力変換器2を介して
電源母線に回生される。
The regenerative power supplied to the bus 3 is transferred to, for example, the first to third train tracks 9a to 10a on which power running electric cars (not shown) are operated, or is passed through the inverse power converter 2 to the power supply bus. will be regenerated.

D0発明が解決しようとする問題点 (1)第2図のように構成された従来例において、順電
力変換器lと逆電力変換器2とが直流母線3を介して直
接逆並列接続しであるので、逆電力変換器2の転流失敗
に際して、順電力変換器1側より事故電流が供給され、
事故が拡大される問題がある。
D0 Problems to be Solved by the Invention (1) In the conventional example configured as shown in FIG. Therefore, when the reverse power converter 2 fails to commutate, the fault current is supplied from the forward power converter 1 side,
There is a problem of the accident becoming more widespread.

(2)電車線路が複線構成の場合、直流電路は4電路と
なり、各電路に各力行用遮断器4a〜4dが挿入されで
あるので、高価な遮断器を多数必要とする変電所設備が
非常に不経済となる問題がある。
(2) When the electric train line has a double-track configuration, there are four DC circuits, and each power running circuit breaker 4a to 4d is inserted in each circuit, so the substation equipment that requires a large number of expensive circuit breakers is extremely expensive. There is a problem that it becomes uneconomical.

(3)上記のように遮断器を多数必要とすると変電所設
備が大きくなるので、建設に対する設備費が尾大になる
問題がある。
(3) As mentioned above, if a large number of circuit breakers are required, the substation equipment will become large, and there is a problem that the equipment cost for construction will be enormous.

(4)負荷量が増大したとき、新たに順電力変換器の電
力容量を大きくしなければならないので、建設時に変電
所を停電しなければならず、運行面で問題がある。
(4) When the amount of load increases, the power capacity of the forward power converter must be newly increased, so the substation must be shut off during construction, which poses a problem in terms of operation.

E3問題点を解決するための手段 この発明は交流電力を直流電力に変換する順電力変換器
と、この順電力変換器に接続された力行用母線と、カソ
ード側及びアノード側が共通接続され、かつ共通接続さ
れたカソード側には前記力行用母線が接続される2組の
ダイオードブリッジ回路と、この2組のダイオードブリ
ッジ回路のカソード側及びアノード側間に接続される1
組の遮断器と、前記2組のダイオードブリッジ回路の各
辺を構成するダイオードのカソードとアノードとの共通
接続点に各別に接続されるデッドセクションで区分され
た複線構成の第1.第2及び第3゜第4電車線路と、前
記2組のダイオードブリッジ回路の共通接続されたカソ
ードとアノード側間に、ブリッジ回路の各辺を構成する
ダイオードの極性と同極性にして接続されるダイオード
の直列回路と、前記ダイオードの直列回路の共通接続点
に接続される回生用母線と、この回生用母線に接続され
る双方向電力変換器とから構成されたものである。
E3 Means for Solving Problems This invention provides a forward power converter for converting AC power into DC power, a power running bus connected to the forward power converter, a cathode side and an anode side commonly connected, and Two sets of diode bridge circuits to which the power running bus is connected to the commonly connected cathode sides, and one set of diode bridge circuits connected between the cathode side and anode side of these two sets of diode bridge circuits.
The first circuit breaker has a double-wire configuration divided by a dead section that is separately connected to a common connection point between the cathode and anode of the diodes constituting each side of the two sets of diode bridge circuits. 2nd and 3rd゜4th overhead contact line and the commonly connected cathodes and anodes of the two sets of diode bridge circuits are connected with the same polarity as the diodes constituting each side of the bridge circuit. It is composed of a series circuit of diodes, a regeneration bus bar connected to a common connection point of the series diode circuit, and a bidirectional power converter connected to this regeneration bus bar.

F0作用 上記のように構成すると複線構成の電車線路側に地絡事
故が発生した場合、1組の遮断器を遮断すれば即座に事
故電流を遮断できるようになり、事故時の対応策が非常
にとりやすくなる。また、力行用母線と回虫用母線間に
はダイオードが挿入されているため、逆電力変換器の転
流失敗時に逆電力変換器側へ流入する順電力変換器より
の事故電流は遮断器で遮断できるので、逆電力変換器の
事故の拡大を未然に防止できるようになる。さらに、双
方向電力変換器とダイオードブリッジ回路の共通接続さ
れたアノード側間にもダイオードが接続されているので
、双方向電力変換器が順電力変換動作中に地絡事故が発
生しても力行電流は前記ダイオードで阻止されるととも
にその力行電流は遮断器を通ることになるから、事故時
の保護動作が容易になる。
F0 action If configured as described above, if a ground fault occurs on the side of the electric train line in a double-track configuration, the fault current can be immediately interrupted by interrupting one set of circuit breakers, making it possible to immediately interrupt the fault current. It becomes easier to take. In addition, since a diode is inserted between the power running bus and the roundworm bus, the fault current from the forward power converter that flows into the reverse power converter side when commutation of the reverse power converter fails is interrupted by a circuit breaker. This makes it possible to prevent the spread of accidents involving reverse power converters. Furthermore, a diode is also connected between the commonly connected anode sides of the bidirectional power converter and the diode bridge circuit, so even if a ground fault occurs while the bidirectional power converter is in forward power conversion operation, power will not continue. Since the current is blocked by the diode and the powering current passes through the circuit breaker, protective operation in the event of an accident becomes easy.

G、実施例 第1図はこの発明の一実施例を示す回路図で、第2図と
同一部分は同一符号を付して説明する。
G. Embodiment FIG. 1 is a circuit diagram showing an embodiment of the present invention, and the same parts as in FIG. 2 will be described with the same reference numerals.

第1図において、21.41は図示極性のよう接続され
た4個のダイオード22a〜22dと42a〜42dか
ら構成される第1.第2ダイオードブリッジ回路で、こ
れら第1.第2ダイオードブリツジ回路21.41のダ
イオード22a、 22cと42a、 42cのカソー
ド側同志及びダイオード22b、 22dと42b、 
42dのアノード側同志は各々共通接続される。即ち両
ブリッジ回路21.41は並列接続される。前記ダイオ
ード22a。
In FIG. 1, the first diodes 21.41 are composed of four diodes 22a to 22d and 42a to 42d connected as shown in the polarity. In the second diode bridge circuit, these first . Diodes 22a, 22c and 42a of the second diode bridge circuit 21.41, cathode side comrades of 42c and diodes 22b, 22d and 42b,
The anode side comrades of 42d are connected in common. That is, both bridge circuits 21 and 41 are connected in parallel. The diode 22a.

22cと42a、 42cのカソード側の共通接続線は
力行用母線23となる。24は1組のサイリスタ遮断器
(この遮断器は直流高速度遮断器でもよい)で、このサ
イリスタ遮断器24のアノード側は力行用母線23に接
続され、カソード側は第1.第2ダイオードブリツジ回
路21.41のダイオード22b、 22dと42b。
A common connection line on the cathode side of 22c, 42a, and 42c becomes a power running bus bar 23. 24 is a set of thyristor circuit breakers (this circuit breaker may be a DC high speed circuit breaker), the anode side of this thyristor circuit breaker 24 is connected to the power running bus 23, and the cathode side is connected to the first thyristor circuit breaker 24. Diodes 22b, 22d and 42b of the second diode bridge circuit 21.41.

42dのアノード側同志を共通接続した接続線25に接
続される。前ii22組のダイオードブリッジ回路21
 、4.1には図示極性のように直列接続されたダイオ
ード28.29からなるダイオードの直列回路30が並
列接続される。ダイオード28.29の共通接続点31
には回生用母線32が接続される。この回生用母線32
には双方向電力変換器33が接続される。
It is connected to a connection line 25 that commonly connects the anode sides of the electrodes 42d. Previous ii22 sets of diode bridge circuits 21
, 4.1 are connected in parallel with a diode series circuit 30 consisting of diodes 28 and 29 connected in series according to the illustrated polarity. Common connection point 31 of diodes 28, 29
A regeneration bus 32 is connected to the regeneration bus 32 . This regeneration bus bar 32
A bidirectional power converter 33 is connected to.

前記第1.第2ダイオードブリツジ回路21.41のダ
イオード22a、 22bと42a、 42bの共通接
続点26と46は直流断路器8aと8Cを介して第1.
第3電車線路9a、!= 10aに各別に接続される。
Said 1st. The common connection points 26 and 46 of the diodes 22a, 22b and 42a, 42b of the second diode bridge circuit 21.41 are connected to the first diode bridge circuit 21.41 through the DC disconnectors 8a and 8C.
Third train track 9a! = connected to 10a separately.

また、同様ダイオード22c、 22dと42c、 4
2dの共通接続点27と47は直流断路器8bと8dを
介して第2.第4電車線路9bと10bに各別に接続さ
れる。
Also, similar diodes 22c, 22d and 42c, 4
2d common connection points 27 and 47 are connected to the second.2d through DC disconnectors 8b and 8d. It is connected to the fourth electric train tracks 9b and 10b separately.

次に上記実施例の動作を述べる サイリスタ遮断器24は通常閉成状態にしておくと、順
電力変換器1からの力行電流はサイリスタ遮断器24−
◆接続線25→ダイオード22b、22d及び42b。
Next, the operation of the above embodiment will be described. When the thyristor breaker 24 is kept in the normally closed state, the powering current from the forward power converter 1 is transferred to the thyristor breaker 24 -
◆Connection line 25 → diodes 22b, 22d and 42b.

42d→直流断路器8a〜8dを介して第1〜第4電車
線路9a、9b及び10a、 lObに供給される。ま
た、双方向電力変換器33の順電力変換動作時の力行電
流はダイオード29から力行用母線23に流れた後、上
記と同様の電路を流れる。
42d→It is supplied to the first to fourth overhead contact lines 9a, 9b, 10a, and 1Ob via DC disconnectors 8a to 8d. Further, the powering current during the forward power conversion operation of the bidirectional power converter 33 flows from the diode 29 to the powering bus 23, and then flows through the same electric path as described above.

一方、第3電車線路9aに発生した回生電流は直流断路
器8a→ダイオード22a→サイリスタ遮断器24−接
続線25−ダイオード22dと42b、 42d→直流
断路器8bと8c、 8dを介して第2と第3、第4電
車線路9bとloa、 fobに供給されるか、ダイオ
ード28から回生用母線32に供給される。なお、第2
.第3及び第4電車線路9b、 10a及び10bに発
生した回生電流も同様に第1.第2ダイオードブリツジ
回路21.41とサイリスタ遮断器24を介して各電車
線路に供給されるか、ダイオード28から回生用母線3
2に供給される。
On the other hand, the regenerative current generated in the third overhead contact line 9a is transferred via the DC disconnector 8a -> diode 22a -> thyristor circuit breaker 24 - connection line 25 - diodes 22d and 42b, 42d -> DC disconnector 8b, 8c, 8d. and is supplied to the third and fourth overhead contact lines 9b, loa, and fob, or is supplied from the diode 28 to the regeneration bus 32. In addition, the second
.. Similarly, the regenerative currents generated in the third and fourth electric contact lines 9b, 10a and 10b are also generated in the first. It is supplied to each train line via the second diode bridge circuit 21.41 and the thyristor circuit breaker 24, or from the diode 28 to the regeneration bus 3.
2.

上記のように力行電流波び回生電流を各電車線路9a、
 9b及びlOa、 lObに供給するとき、1組のサ
イリスタ遮断器24が電路に介挿されるだけで制御でき
るから、高価なサイリスク遮断器の個数が第2図に示す
従来例のものより3組も不要とすることができるととも
に回生用遮断器も不要にできる。
As described above, the power running current wave and the regenerative current are transmitted to each electric train line 9a,
9b, lOa, and lOb can be controlled by simply inserting one set of thyristor circuit breakers 24 into the electrical circuit, so the number of expensive thyristor circuit breakers is three compared to the conventional example shown in FIG. This can be made unnecessary, and a regenerative circuit breaker can also be made unnecessary.

このため給電装置を構成する設備費は非常に経済的に有
利となる。また、給電装置の保護シーケンスも簡単とな
るので信頼性が向上する。
Therefore, the cost of equipment constituting the power supply device is very economically advantageous. Furthermore, the protection sequence for the power supply device is simplified, which improves reliability.

さらに、上記のように構成することにより、各電車線路
側に、例えば第1図のF点に地絡事故が発生したとき、
サイリスタ遮断器24を遮断すれば即座に事故電流が遮
断できるため、事故時の対応策がとりやすくなる。
Furthermore, by configuring as described above, when a ground fault occurs on each train track side, for example at point F in Figure 1,
By interrupting the thyristor circuit breaker 24, the fault current can be immediately interrupted, making it easier to take countermeasures in the event of an accident.

上記回生用母線32と力行用母線23の間には図示極性
のダイオード29が接続されているので、双方向電力変
換器33の逆電力変換動作時の転流失敗時に双方向電力
変換器33に流入される順電力変換器1からの事故電流
はサイリスク遮断器24で遮断できるので、双方向電力
変換器2の事故の拡大を未然に防止できる。
A diode 29 of the polarity shown is connected between the regeneration bus 32 and the power running bus 23, so that when commutation fails during reverse power conversion operation of the bidirectional power converter 33, a diode 29 is connected between the regeneration bus 32 and the power running bus 23. Since the incoming fault current from the forward power converter 1 can be cut off by the SIRISK circuit breaker 24, the spread of the fault in the bidirectional power converter 2 can be prevented.

さらにまた、双方向電力変換器33の順電力変換動作中
に電車線路側に地絡事故が発生しても、サイリスタ遮断
器24を遮断すれば、前記と同様に即座に事故電流を遮
断できる。
Furthermore, even if a ground fault occurs on the overhead contact line side during the forward power conversion operation of the bidirectional power converter 33, if the thyristor circuit breaker 24 is shut off, the fault current can be immediately shut off in the same way as described above.

H9発明の効果 以上述べたように、この発明によれば次のような効果が
得られる。
Effects of H9 Invention As described above, according to this invention, the following effects can be obtained.

a、各電車線路側の地絡事故時に際して遮断器を遮断す
れば即座に事故電流を遮断でき、事故時の対応策が非常
にとりやすくなる。
a. If a circuit breaker is shut off in the event of a ground fault on each train track, the fault current can be immediately interrupted, making it much easier to take countermeasures in the event of an accident.

b0回生用母線と力行用母線間にはダイオードが接続さ
れているので、双方向電力変換器の逆電力変換動作中に
転流失敗しても、事故電流を遮断器で遮断できるので、
双方向電力変換器の事故の拡大を未然に防止できる。
Since a diode is connected between the b0 regeneration bus and the power running bus, even if commutation fails during the reverse power conversion operation of the bidirectional power converter, the fault current can be interrupted by the circuit breaker.
The expansion of bidirectional power converter accidents can be prevented.

c、  1組の回生用遮断器と3組の力行用遮断器を複
線構成の電車線路の場合に不要とすることができるので
、それらに要する設備費を大幅に低減でき、非常に経済
的になる。
c. Since one set of regenerative circuit breakers and three sets of power running circuit breakers can be omitted in the case of double-track contact lines, the equipment costs required for them can be significantly reduced, making it extremely economical. Become.

d、双方向電力変換器の順電力変換器作のとき、ダイオ
ードの直列回路を介して力行電流を電車線路に供給する
ようにして、且つ前記力行電流も遮断器を介して供給す
るようにし、直接電車線路に力行電流を供給できないよ
うにしているので、地絡事故が発生しても遮断器で事故
電流を遮断できる。また、双方向電力変換器より負荷量
に対応した電力を供給できるので、円滑な電車運行を行
なえる利点がある。
d. When the bidirectional power converter operates as a forward power converter, the power running current is supplied to the overhead contact line through a series circuit of diodes, and the power running current is also supplied through a circuit breaker; Since power running current cannot be supplied directly to the electric train tracks, even if a ground fault occurs, the fault current can be interrupted by a circuit breaker. Furthermore, since the bidirectional power converter can supply power corresponding to the amount of load, there is an advantage that smooth train operation can be performed.

e、遮断器の個数を大幅に低減できるために、保護シー
ケンスが簡単になり、信頼性が向上する。
e. Since the number of circuit breakers can be significantly reduced, the protection sequence is simplified and reliability is improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を示す回路図、第2図は従
来例を示す回路図である。 1 ・・・順電力変換器、9a、 9b、 LOa、 
10.b・−・第1から第4電車線路、21.41・・
・第1.第2ダイオードブリッジ回路、23・・・力行
用母線、24・・・サイリスタ遮断器、28.29・・
・ダイオード、30・・・ダイオードの直列回路、32
・・・回生用母線、33・・・双方向電力変換器。
FIG. 1 is a circuit diagram showing an embodiment of the present invention, and FIG. 2 is a circuit diagram showing a conventional example. 1...Forward power converter, 9a, 9b, LOa,
10. b.--1st to 4th train tracks, 21.41...
・First. Second diode bridge circuit, 23... Bus bar for power running, 24... Thyristor breaker, 28.29...
・Diode, 30... Diode series circuit, 32
... Regeneration bus, 33... Bidirectional power converter.

Claims (1)

【特許請求の範囲】[Claims] (1)交流電力を直流電力に変換する順電力変換器と、
この順電力変換器に接続された力行用母線と、カソード
側及びアノード側が共通接続され、かつ共通接続された
カソード側には前記力行用母線が接続される2組のダイ
オードブリッジ回路と、この2組のダイオードブリッジ
回路のカソード側及びアノード側間に接続される1組の
遮断器と、前記2組のダイオードブリッジ回路の各辺を
構成するダイオードのカソードとアノードとの共通接続
点に各別に接続されるデッドセクションで区分された複
線構成の第1、第2及び第3、第4電車線路と、前記2
組のダイオードブリッジ回路の共通接続されたカソード
とアノード側間に、ブリッジ回路の各辺を構成するダイ
オードの極性と同極性にして接続されるダイオードの直
列回路と、前記ダイオードの直列回路の共通接続点に接
続される回生用母線と、この回生用母線に接続される双
方向電力変換器とを備えてなる直流給電装置。
(1) A forward power converter that converts AC power to DC power,
A power running bus connected to the forward power converter, two sets of diode bridge circuits whose cathode sides and anode sides are commonly connected, and the power running bus is connected to the commonly connected cathode sides; A set of circuit breakers connected between the cathode side and the anode side of the two sets of diode bridge circuits, and each separately connected to a common connection point between the cathodes and anodes of the diodes constituting each side of the two sets of diode bridge circuits. the first, second, third, and fourth overhead contact lines each having a double-track configuration separated by dead sections;
A series circuit of diodes connected with the same polarity as the diodes constituting each side of the bridge circuit between the commonly connected cathode and anode sides of the diode bridge circuit of the set, and a common connection of the series circuit of diodes. A DC power supply device comprising a regeneration bus bar connected to a point, and a bidirectional power converter connected to the regeneration bus bar.
JP60157656A 1985-07-17 1985-07-17 Direct current feeding device Pending JPS6218338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60157656A JPS6218338A (en) 1985-07-17 1985-07-17 Direct current feeding device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60157656A JPS6218338A (en) 1985-07-17 1985-07-17 Direct current feeding device

Publications (1)

Publication Number Publication Date
JPS6218338A true JPS6218338A (en) 1987-01-27

Family

ID=15654495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60157656A Pending JPS6218338A (en) 1985-07-17 1985-07-17 Direct current feeding device

Country Status (1)

Country Link
JP (1) JPS6218338A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5100204A (en) * 1989-11-15 1992-03-31 Toyo Seat Co., Ltd. Blow molded seat frame having embedded mounting member
US5454997A (en) * 1992-06-12 1995-10-03 Karlin; James Method of manufacture improved appliance doors and panels

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5100204A (en) * 1989-11-15 1992-03-31 Toyo Seat Co., Ltd. Blow molded seat frame having embedded mounting member
US5454997A (en) * 1992-06-12 1995-10-03 Karlin; James Method of manufacture improved appliance doors and panels

Similar Documents

Publication Publication Date Title
EP0209087B1 (en) Power supply installation for dc electric railroad
JPS6218338A (en) Direct current feeding device
JPS6220735A (en) Dc power feeding device
JPH0688513B2 (en) DC power supply
JPH0688510B2 (en) DC power supply
JPS62205837A (en) Direct current load dispatching device
JPS6218340A (en) Direct current feeding device
JPS6218343A (en) Direct current feeding device
JPS62205833A (en) Direct current load dispatching device
JPS6215139A (en) Direct current supply system
JPH0688512B2 (en) DC power supply
JPH046567B2 (en)
JPS6220733A (en) Dc power feeding device
JPS62205835A (en) Direct current load dispatching device
JPS6215140A (en) Direct current feeding device
JPS62214028A (en) D.c. feeder
JPS6220729A (en) Dc power feeding device
JPS62214030A (en) D.c. feeder
JPH0688507B2 (en) DC power supply
JPH046568B2 (en)
JPS62216843A (en) Dc power feeder
JPS62210141A (en) Dc feeding system
JPS6218342A (en) Direct current feeding device
JPS6215138A (en) Direct current supply system
JPS62225434A (en) D.c. power supply device