JPS62178702A - Turbine blade - Google Patents

Turbine blade

Info

Publication number
JPS62178702A
JPS62178702A JP1854886A JP1854886A JPS62178702A JP S62178702 A JPS62178702 A JP S62178702A JP 1854886 A JP1854886 A JP 1854886A JP 1854886 A JP1854886 A JP 1854886A JP S62178702 A JPS62178702 A JP S62178702A
Authority
JP
Japan
Prior art keywords
short fiber
turbine blade
root portion
blade
blade root
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1854886A
Other languages
Japanese (ja)
Inventor
Tatsuo Morimoto
森本 立男
Nozomi Kawasetsu
望 川節
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP1854886A priority Critical patent/JPS62178702A/en
Publication of JPS62178702A publication Critical patent/JPS62178702A/en
Pending legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE:To improve fretting abrasion resistance by coating the blade root portion of a turbine blade with short fiber reinforced composite material. CONSTITUTION:Metallic powder 2 as a matrix and short fiber 1 as a reinforcement are mixed. The mixture is fed in focused laser beams 5 by a feeder 3 and supplied to a blade root portion 4a of a turbine blade 4 to be fused and solidified. Thus, a coating layer is formed on the blade root portion to improve fretting abrasion resistance.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は内燃機関のピストンやシリンダおよびジェット
エンジンや蒸気、ガスタービンの動翼などに被覆層とし
て適用される複合材料に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a composite material that is applied as a coating layer to pistons and cylinders of internal combustion engines, and rotor blades of jet engines, steam, and gas turbines.

〔従来の技術〕[Conventional technology]

従来タービン翼の付け根は、翼の回転にょうて発生する
遠心力と微少な応力変動によって7レツテイング摩耗が
発生し、これを防止するために焼入れ等による表面硬化
処理が採られてきた。
Conventionally, at the root of a turbine blade, retting wear occurs due to centrifugal force and minute stress fluctuations generated as the blade rotates, and to prevent this, surface hardening treatment such as quenching has been adopted.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが、焼入れによる表面硬化を行うと。 However, when the surface is hardened by quenching.

靭性が損なわれ、また母材の材料によっては。Toughness is compromised and also depends on the base material.

充分に焼入れによる効果が得られないもの、あるいは熱
処理による硬化が難しいものもあって非常に不具合であ
った。
There were some cases in which the effect of hardening could not be obtained sufficiently, or in some cases it was difficult to harden by heat treatment, which was very inconvenient.

〔問題点を解決するための手段〕[Means for solving problems]

タービン翼々根部の耐摩耗性を向上させしかも、靭性そ
の他の必要特性を損なわない方法として本発明では、タ
ービン翼々根部分表面と。
In the present invention, as a method for improving the wear resistance of the roots of turbine blades without impairing toughness and other necessary properties, the present invention provides a method for improving the wear resistance of the roots of turbine blades without impairing toughness and other necessary properties.

同翼根部分が嵌挿されるディスクの翼取り付け部分台0
俵面との双方もしくはいずれか一方に。
The blade attachment part base 0 of the disk into which the blade root part is inserted
Either or both sides of the bale surface.

マド17ツクスとなる金属粉末と、短繊維強化材料とを
混合してレーザービームを用いて溶融凝固;−で短繊維
強化複合材料を被覆したことてある。
A short fiber-reinforced composite material has been coated with a mixture of metal powder to be made of mud and a short fiber-reinforced material and melted and solidified using a laser beam.

〔作用〕[Effect]

短繊維強化複合材料は靭性が犬きく、耐摩耗性に優れて
いる。「さらに、複合材料を製造するためにマトリック
スとなる金属粉末と短繊維強化材との混合物をレーザー
ビームを用いて溶融凝固したので、均質な複合材料の被
覆層を複雑な形状の表面に形成することが可能である。
Short fiber reinforced composite materials have excellent toughness and wear resistance. "Furthermore, in order to manufacture the composite material, we melted and solidified the mixture of matrix metal powder and short fiber reinforcement using a laser beam, which enabled us to form a homogeneous composite coating layer on the complex-shaped surface. Is possible.

」〔実施例〕 第1図は本発明に係る一実施例として、蒸気タービン動
翼々根部分に複合材料の被覆層を形成させた例を示す概
略説明図である。複合材料の強化材となる短繊維1は、
予めマトリックスとなる粉末状の合金2と混合させ、こ
れらの混給し溶融凝固させた。複合材料の被覆層は凝固
後、研磨等によって仕上げ加工後2図示省略のディスク
に取り付けた。
[Embodiment] FIG. 1 is a schematic explanatory diagram showing an example in which a coating layer of a composite material is formed on the roots of steam turbine rotor blades as an embodiment of the present invention. The short fiber 1 that serves as a reinforcing material for the composite material is
It was mixed in advance with powdered Alloy 2, which would serve as a matrix, and the mixture was mixed and melted and solidified. After the coating layer of the composite material was solidified, it was finished by polishing or the like and then attached to two disks (not shown).

なお、レーザー照射条件は出力3 KW照射速度3m/
頗としだ。
The laser irradiation conditions are output 3, KW irradiation speed 3m/
Chestnut and toshida.

また、短繊維には炭化けい素、窒化けい素。In addition, short fibers include silicon carbide and silicon nitride.

酸化アルミニウム、チタン酸カリウムなどのセラミック
ス繊維やタングステン、モリブデンなどの金属繊維もし
くはこれらのウィスカーを用い、マトリックスとなる金
属には、タービン翼材として用いられる低合金鋼、Ti
 合金のほか耐摩性の良好なCO基耐摩耗合金の粉末を
用いる。朦維含有量は素材の材質に応じて最適量が決定
されるが、少なくとも5%以上必要であり40%を越え
ると脆化などが生じるためこの間とする。
Ceramic fibers such as aluminum oxide and potassium titanate, metal fibers such as tungsten and molybdenum, or their whiskers are used, and the matrix metal is low alloy steel, Ti, which is used as a turbine blade material.
In addition to the alloy, powder of a CO-based wear-resistant alloy with good wear resistance is used. The optimal amount of fiber content is determined depending on the material of the material, but it is necessary to be at least 5%, and if it exceeds 40%, embrittlement will occur, so it should be within this range.

本発明になる素材のすベシ摩耗試験結果を第1表に示す
が未処理材に対し2本発明材の摩耗とが確認できた。
Table 1 shows the results of the overall abrasion test for the material of the present invention, and it was confirmed that two of the materials of the present invention were worn out compared to the untreated material.

第1表 すべり摩耗試験結果 試験条件 摩擦速度 0.24m/sec摩擦距離 5
000m 相手材  t3Cr−Mo鋼 無潤滑 水冷 〔発明の効果〕 タービン動翼々根部の嵌挿部に複合材料被覆一層を形成
することにより、耐フレツテイング摩耗性が著しく改善
される等本発明は産業の発達に寄与するところが大きい
Table 1 Sliding wear test results Test conditions Friction speed 0.24m/sec Friction distance 5
000m Compatible material: t3Cr-Mo steel, non-lubricated, water-cooled [Effects of the invention] By forming a single layer of composite material coating on the fitting portion of the roots of the turbine rotor blades, the fretting wear resistance is significantly improved, etc. The present invention is a development of industry. It has a large contribution to make.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る一実施例としての概略を示すター
ビン動翼の製作手順を示す説明図である。 1・・・短繊維、2・・・マトリックスとなる粉末状の
合金、3・・・フィーダ、4・・・タービン動翼。 5・・・レーザービーム。
FIG. 1 is an explanatory diagram showing an outline of a manufacturing procedure of a turbine rotor blade as an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Short fiber, 2... Powdered alloy serving as a matrix, 3... Feeder, 4... Turbine rotor blade. 5... Laser beam.

Claims (1)

【特許請求の範囲】[Claims] タービン翼々根部分表面と、同翼々根部分が嵌挿される
ディスクの翼取り付け部分表面との双方もしくはいずれ
か一方にマトリックスとなる金属粉末と、短繊維強化材
料とを混合して、レーザービームを用いて溶融凝固した
短繊維強化複合材が被覆されてなることを特徴とするタ
ービン翼。
A metal powder serving as a matrix and a short fiber reinforcing material are mixed on the surface of the turbine blade root portion and/or the surface of the blade attachment portion of the disk into which the blade root portion is inserted, and a laser beam is used to mix the mixture with a short fiber reinforced material. A turbine blade characterized by being coated with a short fiber-reinforced composite material melted and solidified.
JP1854886A 1986-01-30 1986-01-30 Turbine blade Pending JPS62178702A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1854886A JPS62178702A (en) 1986-01-30 1986-01-30 Turbine blade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1854886A JPS62178702A (en) 1986-01-30 1986-01-30 Turbine blade

Publications (1)

Publication Number Publication Date
JPS62178702A true JPS62178702A (en) 1987-08-05

Family

ID=11974682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1854886A Pending JPS62178702A (en) 1986-01-30 1986-01-30 Turbine blade

Country Status (1)

Country Link
JP (1) JPS62178702A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0578999U (en) * 1992-04-02 1993-10-26 石川島播磨重工業株式会社 Moving wings
JP2011033037A (en) * 2009-08-04 2011-02-17 Siemens Ag Thermoplastic final stage blade

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0578999U (en) * 1992-04-02 1993-10-26 石川島播磨重工業株式会社 Moving wings
JP2011033037A (en) * 2009-08-04 2011-02-17 Siemens Ag Thermoplastic final stage blade

Similar Documents

Publication Publication Date Title
US5064112A (en) Jointing ti-a1 alloy member and structural steel member
CN101484611B (en) Method of hardening surface of metallic part, piston, cylinder head, and cylinder block each produced using the surface-hardening method, and process for producing the same
Adaskin et al. Study of wear mechanism of hard-alloy tools during machining of refractory alloys
US20070099011A1 (en) Method for the treatment of the tip of a turbine blade and a turbine blade treated with a method such as this
UA62944C2 (en) A component of superalloy with coating, a system of thermobarrier coating for the component of superalloy and a method for producing thereof
US5503798A (en) High-temperature creep-resistant material
US2381459A (en) Turbine bucket for exhaust turbine superchargers
JPS62178702A (en) Turbine blade
JPS62174377A (en) Turbine vane
US20130216389A1 (en) Interlaminar stress reducing configuration for composite turbine components
RU2751039C1 (en) Alloy with high oxidation resistance and gas turbine applications using this alloy
JPH10182256A (en) Fiber reinforced ceramic base composite material and its production
JPS60224790A (en) Wear resistant al alloy member and its production
Mordike State of the art of surface engineering with high energy beams
RU2772481C1 (en) Method for restoring the working valve face of the gas distribution mechanism of an internal combustion engine
JPS5827862A (en) Piston ring
JPS6079102A (en) Ceramic turbine rotor
Gorunov Fabrication of coatings and bulk products made of a nickel-based material by additive technology laser metal deposition
JPH01290781A (en) Ceramic fiber reinforced material
EP3623591B1 (en) Valve for internal-combustion engines
JPH01154861A (en) Production of gear
JPS6394001A (en) Turbine movable vane made of ti alloy
JP2001152865A (en) Ceramic turbo rotor
JPH0227149A (en) Piston made of al alloy
JPS62180045A (en) Moving blade for low pressure turbine