JPS62177985A - Thin film thermoelectric conversion element - Google Patents

Thin film thermoelectric conversion element

Info

Publication number
JPS62177985A
JPS62177985A JP61017955A JP1795586A JPS62177985A JP S62177985 A JPS62177985 A JP S62177985A JP 61017955 A JP61017955 A JP 61017955A JP 1795586 A JP1795586 A JP 1795586A JP S62177985 A JPS62177985 A JP S62177985A
Authority
JP
Japan
Prior art keywords
type
film
thermoelectric
substrates
conversion element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61017955A
Other languages
Japanese (ja)
Inventor
Kunio Miyazaki
邦夫 宮崎
Shinichi Fukada
晋一 深田
Hitoshi Suzuki
斉 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61017955A priority Critical patent/JPS62177985A/en
Publication of JPS62177985A publication Critical patent/JPS62177985A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/81Structural details of the junction
    • H10N10/817Structural details of the junction the junction being non-separable, e.g. being cemented, sintered or soldered
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device

Abstract

PURPOSE:To enable a thin film thermoelectric conversion element to be available in a high temperature range by laminating a plurality of element substrates in which P-type and N-type thermoelectric substances are electrically connected at an end to become a high temperature side, and connecting in series the P-type and the N-type films of the respective substrates. CONSTITUTION:After an Ni 2 is metallized by a depositing method on the end face of a glass substrate 1 at a high temperature side, an Fe-Si-Mn film 3 of a P-type thermal substance is first formed on the side of the glass by a sputtering method. Further, an Fe-Si-Co film 4 of an N-type thermoelectric substance is sputtered to the other side face of the glass substrate 1 to form an element substrate 5. The substrates 5 are laminated through an inorganic adhesive 6. At this time, since P-type and N-type films between the adjacent substrates are electrically connected in series, conductive paste 7 is buried in the part of the layer 6 at the low temperature side. Further, a Cu plate 8 is bonded through an inorganic adhesive 9, and electrodes 10 are led from the ends of the P-type and N-type thermoelectric film.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は熱電変換素子に係り、特に薄膜を用いた熱電素
子で大きな温度差を確保することにより大きな出力を得
るに好適な熱電変換素子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a thermoelectric conversion element, and particularly to a thermoelectric conversion element using a thin film suitable for obtaining a large output by ensuring a large temperature difference.

〔発明の背景〕[Background of the invention]

薄膜型の熱電変換素子においては膜厚方向に熱を流す構
造と膜の面内方向に熱を流す構造があるが、熱流が膜厚
方向の場合、高温側と低温側の温度差を大きくとれない
欠点がある。そのため熱流が膜の面内方向となる構造の
ものが大きな出力を得る一ヒで有利である。この構造し
こ関する公知例としてフイルムトの片面にP及N型のw
l、膜パターンを形成させる方法が開示されている。(
特開昭53−31985号)。
Thin-film thermoelectric conversion elements have a structure in which heat flows in the film thickness direction and a structure in which heat flows in the in-plane direction of the film, but when heat flows in the film thickness direction, it is difficult to maintain a large temperature difference between the high temperature side and the low temperature side. There are no drawbacks. Therefore, a structure in which the heat flow is in the in-plane direction of the membrane is advantageous in terms of obtaining a large output. As a known example of this structure, P and N type w are formed on one side of the film.
1. A method for forming a film pattern is disclosed. (
JP-A No. 53-31985).

しかし、この公知例においては膜の片面l−で■)とN
型膜の接続を行う方法であるので温度差を有効にとれな
いこと、またフィル11を基板に用いているので高温で
の使用が回能である。
However, in this known example, one side of the membrane is
Since this is a method of connecting mold films, temperature differences cannot be taken effectively, and since the film 11 is used as a substrate, it can be used at high temperatures.

〔発明の目的〕[Purpose of the invention]

本発明の目的はかかる欠点をなくし、薄膜で温度差を有
効に確保でき、かつ高温域で使用できる集積度の高い薄
膜熱電素子を提供することにある。
An object of the present invention is to eliminate such drawbacks, to provide a thin film thermoelectric element with a high degree of integration, which can effectively secure a temperature difference with a thin film, and which can be used in a high temperature range.

〔発明の概要〕[Summary of the invention]

11記目的はまず基板材料として耐熱性を有し、熱及び
電気的絶縁物であるガラスやセラミックスの薄板を用い
、薄板の高温側となる部分にメタライズを施し5片面に
P型熱電物質膜を、他の面にN型熱電物質膜を蒸着、ス
パッタ等により形成しく2) て、P及びN膜の接続を行って要素基板を作成し、次に
要素基板を無機質接着材を用いて積層接着を行うと共に
隣接する基板のP及びN型膜を電気的に接続することに
よって達成される。
The purpose of item 11 is to first use a thin plate of glass or ceramics, which has heat resistance and is a thermal and electrical insulator, as the substrate material, metallizes the high temperature side of the thin plate, and coats one side with a P-type thermoelectric material film. , an N-type thermoelectric material film is formed on the other surface by vapor deposition, sputtering, etc. 2) Then, the P and N films are connected to create an element substrate, and then the element substrate is laminated and bonded using an inorganic adhesive. This is achieved by electrically connecting the P and N type films of adjacent substrates.

〔発明の実施例〕[Embodiments of the invention]

以下1本発明を実施例により詳細に説明する。 The present invention will be explained in detail below using examples.

第1図は本発明による薄膜型熱電素子の製造プロセスを
示す。
FIG. 1 shows a manufacturing process of a thin film type thermoelectric element according to the present invention.

(a)図は要素基板の断面を示す。基板]−はエツジ部
をテーパ状に加工した厚さ0.5mmのパイレックスガ
ラスであり、表面は梨地状にして、金属や熱電物質との
密着性を向上させた。このガラス基板1の高温側端面に
蒸着法によりNiメタライズ2(厚さ1μm)を行った
後、まずP型熱電物質であるF e  S 3.  M
 n 3をスパッタ法でガラスの一方の面に形成(厚さ
2μm)し、さらにガラス基板1のもう一方の面にn型
熱電物質であるFe−8i−Co4をスパッタした。エ
ツジ部がテーパ状になっているのでスパッタしたP型及
びN型膜はNiメタライズ層を介して電気的に接続され
る。
(a) The figure shows a cross section of the element substrate. The substrate] was made of Pyrex glass with a thickness of 0.5 mm with tapered edges and a matte surface to improve adhesion to metals and thermoelectric materials. After performing Ni metallization 2 (thickness 1 μm) on the high-temperature side end face of the glass substrate 1 by vapor deposition, first, F e S 3. which is a P-type thermoelectric material is applied. M
n3 was formed on one surface of the glass (thickness: 2 μm) by sputtering, and Fe-8i-Co4, which is an n-type thermoelectric material, was sputtered on the other surface of the glass substrate 1. Since the edge portion is tapered, the sputtered P-type and N-type films are electrically connected via the Ni metallized layer.

(b)図は要素基板の積層方法を示したものである。2
0X10+nn+角の要素基板5は無機質の接着剤6を
界して50ケ積層した。この時、隣接する基板間のP型
膜とN型膜を電気的に直列に接続するため、接着剤層の
低温側の一部に導電性ペースト7を埋め込んだ。
The figure (b) shows a method of laminating element substrates. 2
Fifty element substrates 5 of 0×10+nn+ angle were laminated with an inorganic adhesive 6 interposed therebetween. At this time, in order to electrically connect the P-type film and the N-type film between adjacent substrates in series, a conductive paste 7 was embedded in a part of the adhesive layer on the low temperature side.

(c)図は完成した薄膜型熱電変換素子の断面を示す。Figure (c) shows a cross section of the completed thin film thermoelectric conversion element.

高温端面と低温端面にCu板8を薄い無機接着剤9を界
して接合し、P型及びN型熱電膜の′ このようにして
得られた素子の高温側と低温側に200″C″、の温度
差を与えたところ端子間に現われた電圧は約3vであっ
た。このように本発明によれば大きさが30X20X1
0mm程度の小さい素子で高い電圧が得られ、また、熱
流を膜の面内方向とし、熱絶縁物と積層することによっ
て、温度差を有効に利用できる。
A Cu plate 8 was bonded to the high-temperature end face and the low-temperature end face with a thin inorganic adhesive 9 interposed therebetween, and the P-type and N-type thermoelectric films were heated at 200°C on the high-temperature side and the low-temperature side of the thus obtained device. When a temperature difference of , was applied, the voltage appearing between the terminals was about 3V. According to the present invention, the size is 30X20X1.
A high voltage can be obtained with an element as small as 0 mm, and temperature differences can be effectively utilized by directing heat flow in the plane of the film and laminating it with a thermal insulator.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の構成図で、(8)は要素基
板の断面図、(b)は同じく積層構造図、(c)は完成
した熱電変換素子の断面図である。 1・・・ガラス基板、2・・・Niメタライズ膜、3・
・・P型熱電膜、4・・・N型熱電膜、5・・・要素基
板、1゜・・・電極。
FIG. 1 is a block diagram of an embodiment of the present invention, in which (8) is a cross-sectional view of an element substrate, (b) is a laminated structure diagram, and (c) is a cross-sectional view of a completed thermoelectric conversion element. 1...Glass substrate, 2...Ni metallized film, 3.
...P type thermoelectric film, 4...N type thermoelectric film, 5...element substrate, 1°...electrode.

Claims (1)

【特許請求の範囲】[Claims] 1、熱を与えて電力を取出す熱電変換素子において、熱
及び電気の不良導体で耐熱性を有する薄い基板の表面及
び裏面にP型熱電物質及びN型熱電物質の薄膜を各々形
成し、高温側となる端部でP型とN型熱電物質が電気的
に接続された要素基板を用意し、これを複数個積層する
と共に、各々の基板のP型膜とN型膜を直列に接続した
ことを特徴とする薄膜熱電変換素子。
1. In a thermoelectric conversion element that generates electricity by applying heat, thin films of P-type thermoelectric material and N-type thermoelectric material are formed on the front and back surfaces of a heat-resistant thin substrate that is a poor conductor of heat and electricity, and Prepared element substrates in which P-type and N-type thermoelectric materials were electrically connected at the ends thereof, stacked a plurality of these, and connected the P-type film and N-type film of each substrate in series. A thin film thermoelectric conversion element characterized by:
JP61017955A 1986-01-31 1986-01-31 Thin film thermoelectric conversion element Pending JPS62177985A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61017955A JPS62177985A (en) 1986-01-31 1986-01-31 Thin film thermoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61017955A JPS62177985A (en) 1986-01-31 1986-01-31 Thin film thermoelectric conversion element

Publications (1)

Publication Number Publication Date
JPS62177985A true JPS62177985A (en) 1987-08-04

Family

ID=11958175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61017955A Pending JPS62177985A (en) 1986-01-31 1986-01-31 Thin film thermoelectric conversion element

Country Status (1)

Country Link
JP (1) JPS62177985A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2664745A1 (en) * 1990-07-12 1992-01-17 Landis & Gyr Betriebs Ag Thermoelectric converter and method for manufacturing it
EP0880184A2 (en) * 1997-05-22 1998-11-25 Ngk Insulators, Ltd. Thermoelectric conversion module and method of manufacturing the same
US6043423A (en) * 1997-04-28 2000-03-28 Sharp Kabushiki Kaisha Thermoelectric device and thermoelectric module
US7351906B2 (en) 2003-11-17 2008-04-01 Matsushita Electric Industrial Co., Ltd. Method of manufacturing crystalline film, method of manufacturing crystalline-film-layered substrate, method of manufacturing thermoelectric conversion element, and thermoelectric conversion element

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2664745A1 (en) * 1990-07-12 1992-01-17 Landis & Gyr Betriebs Ag Thermoelectric converter and method for manufacturing it
US6043423A (en) * 1997-04-28 2000-03-28 Sharp Kabushiki Kaisha Thermoelectric device and thermoelectric module
EP0880184A2 (en) * 1997-05-22 1998-11-25 Ngk Insulators, Ltd. Thermoelectric conversion module and method of manufacturing the same
EP0880184A3 (en) * 1997-05-22 2000-09-13 Ngk Insulators, Ltd. Thermoelectric conversion module and method of manufacturing the same
US7351906B2 (en) 2003-11-17 2008-04-01 Matsushita Electric Industrial Co., Ltd. Method of manufacturing crystalline film, method of manufacturing crystalline-film-layered substrate, method of manufacturing thermoelectric conversion element, and thermoelectric conversion element

Similar Documents

Publication Publication Date Title
JP3115605B2 (en) Manufacturing method of thermoelectric power generation unit
CN102612762A (en) Planar thermoelectric generator
TW432401B (en) Method of producing thermistor chips
WO1989007836A1 (en) Thermogenerator
JPS60123073A (en) Thin-film solar cell
JPH02181475A (en) Solar battery cell and manufacture thereof
US10553773B2 (en) Flexible encapsulation of a flexible thin-film based thermoelectric device with sputter deposited layer of N-type and P-type thermoelectric legs
US3616528A (en) Solid state matrices
US10566515B2 (en) Extended area of sputter deposited N-type and P-type thermoelectric legs in a flexible thin-film based thermoelectric device
JPS61224466A (en) Solar cell and manufacture thereof
JPS62177985A (en) Thin film thermoelectric conversion element
JPH01208876A (en) Thermoelectric device and manufacture thereof
TW200901236A (en) Chip resistor and method for fabricating the same
US20200203592A1 (en) Electric power generation from a thin-film based thermoelectric module placed between each hot plate and cold plate of a number of hot plates and cold plates
US10367131B2 (en) Extended area of sputter deposited n-type and p-type thermoelectric legs in a flexible thin-film based thermoelectric device
JPH04199755A (en) Laminated thermoelectric element
ES2004369A6 (en) Method for achieving the electrical and mechanical interconnection of two bodies, particularly the diaphragm and the support of a thick-film pressure sensor, and devices made by this method
US20200176661A1 (en) Series-parallel cluster configuration of a thin-film based thermoelectric module
JPS63110778A (en) Manufacture of thermoelectric device
JP2002145676A (en) Anodic jointing method
JPS61229342A (en) Connection for bump electrode
US20210249579A1 (en) Flexible encapsulation of a flexible thin-film based thermoelectric device with sputter deposited layer of n-type and p-type thermoelectric legs
US20190103540A1 (en) Double-sided metal clad laminate based flexible thermoelectric device and module
TW200901238A (en) Chip resistor and method for fabricating the same
JPH07169995A (en) Thermoelement array