JPS62177844A - Penta-shaft manipulator - Google Patents

Penta-shaft manipulator

Info

Publication number
JPS62177844A
JPS62177844A JP1791886A JP1791886A JPS62177844A JP S62177844 A JPS62177844 A JP S62177844A JP 1791886 A JP1791886 A JP 1791886A JP 1791886 A JP1791886 A JP 1791886A JP S62177844 A JPS62177844 A JP S62177844A
Authority
JP
Japan
Prior art keywords
rotation
shaft
stage
axis
rotated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1791886A
Other languages
Japanese (ja)
Inventor
Takahisa Doi
土井 隆久
Masakazu Ichikawa
昌和 市川
Sakae Saito
栄 斉藤
Hideo Tanaka
秀夫 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1791886A priority Critical patent/JPS62177844A/en
Publication of JPS62177844A publication Critical patent/JPS62177844A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To realize a manipulator to make it possible to operate five shafts separately in a vacuum, by applying double shafts and rotation delivery devices. CONSTITUTION:On a y stage 3, a z stage 8 is installed, and driven in the direction of z by a linear bearing. When a rotation introducing device 7z at the atmospheric side is rotated, a shaft 6x is rotated through a vacuum sealing. A rotation direction converting mechanism 9 converts the rotation direction by 90 deg. through a bevel gear. The rotation of the rotation introducing device 7z is delivered to rotary motion-linear motion converting devices 4 and 5 to drive the z stage 8. The structures of the shafts 6x and 6y are the same as the shaft 6, and, a theta driving mechanism and a psi driving mechanism are constructed on the y stage 3. In the theta driving mechanism, are furnished the rotation direction converting mechanism 9theta, a shaft 6theta, and rotation direction converting mechanisms 12A and 12B, at the front side of the shaft 6y, and the whole of the structure 14 including 10A, 12A, 10C, 11, and 15 can be rotated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、真空中における試料観察、特に任意の11!
察点及び観察方向を選ぶ際に好適な機能を有し、また荷
電粒子線を扱う装置での使用に適した5軸マニピュレー
タに関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to observation of a sample in vacuum, especially any 11!
The present invention relates to a five-axis manipulator that has a suitable function for selecting observation points and observation directions, and is suitable for use in devices that handle charged particle beams.

〔従来の技術〕[Conventional technology]

従来の装置では、超高真空中でx、y、z、 θ。 In conventional equipment, x, y, z, and θ are measured in ultra-high vacuum.

ψの5つの自由度をそれぞれ独立に与えることが困難で
あった。一般の電子顕微鏡の様に低い真空度でも十分な
装置では、Oリング等を用いて5つの自由度を比較的容
易に与えることが可能であるが、超高真空中ではこの様
なOリングの使用は不可能であった。本発明によるメリ
ットは大である。
It was difficult to provide each of the five degrees of freedom of ψ independently. In devices such as general electron microscopes that require a low degree of vacuum, it is relatively easy to provide five degrees of freedom using O-rings, etc. However, in ultra-high vacuum, it is possible to provide five degrees of freedom using O-rings. It was impossible to use. The advantages of the present invention are significant.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、超高真空中での試料観察の際に分析場所及び
111察方位の選定を容易に実現できるマニピュレータ
を得るためになされたものである。例えば電子回折にお
いて、試料のどこを見ているか、またどの方向から見て
いるかが重要であり、それらは上述したx、y、z、0
.ψの5つのパラメータを与えることにより決まる。本
発明では、これらの5つのパラメータを独立に、また、
再現性良く与えることを可能とするマニピュレータを提
供せんとするものである。
The present invention has been made in order to obtain a manipulator that can easily realize the selection of an analysis location and 111 observation direction when observing a sample in an ultra-high vacuum. For example, in electron diffraction, it is important to know where you are looking at the sample and from what direction.
.. It is determined by giving five parameters of ψ. In the present invention, these five parameters are independently and
It is an object of the present invention to provide a manipulator that makes it possible to apply the effects with good reproducibility.

C問題應を解決するための手段〕 本発明のマニピュレータは内軸と外軸がら成り軸方向に
は相互にすべるが一体となって回転する2重軸を使い、
X方向の駆n+は外部から与える直線運動で行うが、X
方向の駆動はX方向に設置した2重軸のすべりを用いて
外部から与える軸回転で行い、2方向の駆動はX方向、
X方向にそれぞれ2重軸を設置し画軸を回転伝達機構で
結びつけたシステムにより外部から与える軸回転で行い
、0の回転はX+ Y+ Z方向に設置した2重軸と回
転伝達機構を設けたシステムにより行い、ψの回転は、
O回転機構と同様なシステムを設け、さらにその回転運
動をθ軸方向の直線運動に変換後再び回転運動に戻して
行うごとくになしたものである。
Means for Solving Problem C] The manipulator of the present invention uses a double shaft consisting of an inner shaft and an outer shaft, which mutually slide in the axial direction but rotate as one,
The drive n+ in the X direction is performed by linear motion given from the outside, but
Driving in the direction is performed by rotating the shaft from the outside using the sliding of a double shaft installed in the X direction.
A system in which double axes are installed in each direction in the X direction and the drawing axis is connected by a rotation transmission mechanism is used to perform axis rotation given from the outside, and 0 rotation is performed by a double axis installed in the X + Y + Z directions and a rotation transmission mechanism. The rotation of ψ is done by the system, and the rotation of ψ is
A system similar to the O rotation mechanism is provided, and the rotational motion is converted into linear motion in the θ-axis direction and then returned to rotational motion.

〔作用〕[Effect]

以上の如き構成によればX軸方向の移動はy。 According to the above configuration, the movement in the X-axis direction is y.

zrOt<P軸がX軸方向の移動を吸収でき、X軸方向
の自由度が与えられ、y軸方向の移動の際には、z* 
Or ’I’にy軸方向の自由度が、さらに、y、 N
方向に移動の際には、0.ψにZ軸方向の自由度が与え
られる。θとでは回転なので、0はZステージ上で直接
軸を回転させることにより、またrはOの回転軸方向へ
の直I!運動をθ軸と主に直交する軸への回転運動に変
換することで与えられる。この結果、x、y、z、0.
’pの5軸をそれぞれ独立して与えることが可能となる
zrOt<P axis can absorb movement in the X-axis direction, giving freedom in the X-axis direction, and when moving in the y-axis direction, z*
Or 'I' has the degree of freedom in the y-axis direction, and furthermore, y, N
When moving in the direction, 0. A degree of freedom in the Z-axis direction is given to ψ. Since θ is a rotation, 0 can be obtained by rotating the axis directly on the Z stage, and r can be obtained by directly rotating the axis of O in the direction of the rotation axis I! It is given by converting the motion into rotational motion to an axis mainly perpendicular to the θ-axis. As a result, x, y, z, 0.
It becomes possible to provide each of the five axes of 'p independently.

〔発明の実施例〕[Embodiments of the invention]

以下1本発明の一実施例を第1図〜第5図により説明す
る6第1図は全体の構成図である。ベース1の上にXス
テージ2が組み立てである。Xステージ2上にはXステ
ージ3が、また、Xステージ3の上には2ステージ8が
組み立てである。さらに2ステージ8の上にθ及びψの
回転部、14及び15が組み立てである。このメカニズ
ムは真空中(特に、超高真空中)に設置され、回転導入
機、直線導入機等により外部(大気側)から駆動できる
様になっている。
An embodiment of the present invention will be explained below with reference to FIGS. 1 to 5. FIG. 1 is a diagram showing the overall configuration. The X stage 2 is assembled on the base 1. The X stage 3 is assembled on the X stage 2, and the 2 stages 8 are assembled on the X stage 3. Furthermore, the θ and ψ rotating parts 14 and 15 are assembled on the two stages 8. This mechanism is installed in a vacuum (particularly in an ultra-high vacuum) and can be driven from outside (atmospheric side) using a rotary introduction machine, a linear introduction machine, etc.

次に、各部に詳細を説明する。第2図にXステージ2の
動作原理を示す。ベース1の上に、クロスローラガイド
等のリニアベアリングを用いて一方向(X軸方向)の自
由度を与えたステージ2がセットされている。ステージ
2の駆動は大気側から直線導入機構13を通して真空中
に導入される。
Next, each part will be explained in detail. FIG. 2 shows the operating principle of the X stage 2. A stage 2 is set on a base 1 and has a degree of freedom in one direction (X-axis direction) using a linear bearing such as a cross roller guide. The stage 2 is driven by being introduced into the vacuum from the atmosphere side through the linear introduction mechanism 13.

なお、ベース1は固定されており、動かない。第3図に
、Xステージ3の動作原理を示す。ステージ3はステー
ジ2の上にのっており、リニアベアリングによりステー
ジ2の上をステージ2と直交する方向(y軸方向)に動
かすことが可能である。
Note that the base 1 is fixed and does not move. FIG. 3 shows the operating principle of the X stage 3. The stage 3 is placed on the stage 2, and can be moved on the stage 2 in a direction perpendicular to the stage 2 (y-axis direction) using a linear bearing.

大気側にセットした回転導入機構7yを回転させると、
真空シール部を通して軸6が回転する。この回転は、回
転運動−直線運動変換機構によりXステージ3を駆動さ
せる。ここでは回転運動−直線運動変換機構として両市
5とラック4とに使用した。第6図は軸6の断面図であ
る。軸6は2重軸である。ピン23は内軸21に固定さ
れており、内@21と外軸22は一体となって回転する
が、内軸21は外軸22に対して軸方向の自由度を持っ
ているため、ステージ2とステージ3とは独立に駆動さ
せることができる。
When the rotation introduction mechanism 7y set on the atmosphere side is rotated,
The shaft 6 rotates through the vacuum seal. This rotation drives the X stage 3 by a rotational motion-linear motion conversion mechanism. Here, it was used for both the city 5 and the rack 4 as a rotational motion-linear motion conversion mechanism. FIG. 6 is a sectional view of the shaft 6. The shaft 6 is a double shaft. The pin 23 is fixed to the inner shaft 21, and the inner shaft 21 and the outer shaft 22 rotate together, but since the inner shaft 21 has a degree of freedom in the axial direction relative to the outer shaft 22, the stage 2 and stage 3 can be driven independently.

第4図に、2ステージ8の動作原理を示す、Xステージ
3の一ヒに2ステージ8が組み立ててあり、リニアベア
リングにより2方向に駆動する様になっている。大気側
にセットした回転導入機構7zを回転す乞と、真空シー
ル部を通して、@6xが回転する。9は回転の方向を変
える機構で、ここではかさ両歯車を用い、回転方向を9
0°変えた。
FIG. 4 shows the principle of operation of the two stages 8. The two stages 8 are assembled on one side of the X stage 3, and are driven in two directions by linear bearings. When the rotation introducing mechanism 7z set on the atmosphere side is rotated, @6x rotates through the vacuum seal section. 9 is a mechanism that changes the direction of rotation; here, a double bevel gear is used to change the direction of rotation to 9.
Changed 0°.

7zの回転は軸6yを通して回転運転−直線運動変換機
構4,5に伝達され、2ステージ8を駆動される。軸B
x、6yの構造は軸6と同じである。
The rotation of 7z is transmitted to the rotary operation-linear motion conversion mechanisms 4 and 5 through the shaft 6y, and the two stages 8 are driven. Axis B
The structure of x and 6y is the same as axis 6.

第5図に、θ、Tの動作原理を示す。Xステージ3の上
に、θ駆動機構、ψ駆動機構が組み立てである。両機梢
は第4図の2ステ一ジ駆動機構と7zt 6x+ 91
6yまで同じである。0駆動機横では、6yの先に回転
方向変換機構90.軸60、回転方向変換機構12A、
12Bがあり、10A、12A、IOC,11,15を
含q摺造]−4全体を回転できる。ここでは、90にか
さ歯歯串、12A、12Bにウオームギアを用いた。
FIG. 5 shows the principle of operation of θ and T. The θ drive mechanism and the ψ drive mechanism are assembled on the X stage 3. Both machines are equipped with the two-stage drive mechanism shown in Figure 4 and the 7zt 6x+ 91
The same is true up to 6y. On the side of the 0 drive machine, there is a rotation direction conversion mechanism 90. shaft 60, rotation direction conversion mechanism 12A,
12B, including 10A, 12A, IOC, 11, and 15]-4 can be rotated as a whole. Here, a bevel toothed skewer was used for 90, and worm gears were used for 12A and 12B.

軸60は軸6と同じ構造を持つ。r駆動機構では、6y
の先に回転方向変換m構9ψ、軸6ψ、回転運動−直線
運動変換機構10B、IOA、直線運動−回転運動変換
機構10A、l0C5回転運動伝達機構11を持ち構造
15を回転する。ここでは、9ψにかさ両歯車10Aに
全円周をラックにした軸、IOB、10Gに平歯車、1
1に平歯車を用いた。IOAで用いたラック軸の断面を
第7図に示す。第2図〜第5図で説明した機構を第1図
の様に組み合せると独立した5軸、x、y、z。
Shaft 60 has the same structure as shaft 6. In the r drive mechanism, 6y
The structure 15 is rotated by having a rotational direction conversion m structure 9ψ, an axis 6ψ, a rotational motion-linear motion conversion mechanism 10B, an IOA, a linear motion-rotational motion conversion mechanism 10A, and an l0C5 rotational motion transmission mechanism 11. Here, 9ψ is a bevel gear 10A, a shaft with a rack around the entire circumference, IOB, 10G is a spur gear, 1
1, a spur gear was used. FIG. 7 shows a cross section of the rack shaft used in IOA. When the mechanisms explained in FIGS. 2 to 5 are combined as shown in FIG. 1, five independent axes, x, y, and z, are created.

0、ψを持つマニピュレータとなる。超高真空中で使用
する際には、材質を吟味し、放出ガス量が少ない金属材
料を選び、無潤滑で使う必要がある。
It becomes a manipulator with 0 and ψ. When used in an ultra-high vacuum, it is necessary to carefully examine the material, choose a metal material that releases a small amount of gas, and use it without lubrication.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、真空中で独立にx、 y、Z。 According to the invention, x, y, Z independently in vacuum.

θ、rの5#Iを動かすことが可能なマニピュレータが
できる。各自由度は独立に構成されているため、本発明
により6軸以上の自由度を持つ装置の作成も容易である
。また、[、tliな機構を採用しているため、安いコ
スト、4e4理の容易さ、高い信頼性等が期待できる。
A manipulator that can move 5#I of θ and r is created. Since each degree of freedom is configured independently, it is easy to create a device having degrees of freedom in six or more axes according to the present invention. In addition, since it adopts a [,tli mechanism, low cost, easy 4e4 processing, high reliability, etc. can be expected.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例になるマニピュレータの全体
の構成を示す斜視図、第2図はXステージの原理説明図
、第3図はXステージの原理説明図、第4図はZステー
ジの原理説明図、第5図は0駆動機楕、<P駆動機構の
原理説明図、第6図は軸の断面図、第7図はラック軸の
断面図である。 1・・・ベース、2・・・Xステージ、3・・・Xステ
ージ、4.5・・・回転運動−直線運動変換機構(例ニ
ラツクと平歯車)、6・・・軸、7y、7z、7θ、7
ψ・・・回転導入機構、8・・・2ステージ、9,91
J。 9ψ・・・回転方向変換機構(例:かさ歯車)、10B
、IOA・・・回転運動−直31f!!運動変換機横(
例:平歯車とラック軸)、IOA、IOC・・・直進運
動−回転方向変換機構(例ニラツク軸と平歯車)、11
・・・回転導入機構(例:平歯車)、12A、12B・
・・回転方向変換機構(例:ウオームギア)、13・・
・直線導入機、14・・・θ軸回転構造体、15・・・
T軸回転構造体、21・・・内軸、22第 1 口 ! 茅2(21 菫 3(21 ¥] 4 図 第6 図 第7 図 珍謬2ゑZ刻 、fl 5 図 九 4要11
Fig. 1 is a perspective view showing the overall configuration of a manipulator according to an embodiment of the present invention, Fig. 2 is an explanatory diagram of the principle of the X stage, Fig. 3 is an explanatory diagram of the principle of the X stage, and Fig. 4 is a diagram of the Z stage. FIG. 5 is an explanatory diagram of the principle of the 0 drive machine ellipse, <P drive mechanism, FIG. 6 is a sectional view of the shaft, and FIG. 7 is a sectional view of the rack shaft. 1...Base, 2...X stage, 3...X stage, 4.5...Rotary motion-linear motion conversion mechanism (e.g. Nirakku and spur gear), 6... Axis, 7y, 7z , 7θ, 7
ψ...Rotation introduction mechanism, 8...2 stage, 9,91
J. 9ψ...Rotation direction conversion mechanism (e.g. bevel gear), 10B
, IOA...Rotary motion - Direct 31f! ! Next to the motion converter (
e.g. spur gear and rack shaft), IOA, IOC... linear motion-rotation direction conversion mechanism (e.g. straight shaft and spur gear), 11
...Rotation introduction mechanism (e.g. spur gear), 12A, 12B.
・Rotation direction conversion mechanism (e.g. worm gear), 13...
・Linear introduction machine, 14... θ-axis rotating structure, 15...
T-axis rotating structure, 21...inner shaft, 22 first port! Kaya 2 (21 Sumire 3 (21 ¥) 4 Fig. 6 Fig. 7 Fig. 2 Z engraving, fl 5 Fig. 94 Key 11

Claims (1)

【特許請求の範囲】[Claims] 内軸と外軸から成り軸方向には相互にすべるが一体とな
って回転する2重軸を使い、x方向の駆動は外部から与
える直線運動で行うが、y方向の駆動はx方向に設置し
た2重軸のすべりを用いて外部から与える軸回転で行い
、z方向の駆動はx方向、y方向にそれぞれ2重軸を設
置(両軸を回転伝達機構で結びつけたシステムにより外
部から与える軸回転で行い、θの回転はx、y、z方向
に設置した2重軸と回転伝達機構を設けたシステムによ
り行い、ψの回転は、θ回転機構と同様なシステムを設
け、さらにその回転運動をθ軸方向の直線運動に変換後
再び回転運動に戻して行うごとくになした、x、y、z
、θ、ψの5軸の運動を真空中で互いに干渉することな
く独立に行うことを特徴とする5軸マニピュレータ。
It uses a double shaft consisting of an inner shaft and an outer shaft, which slide on each other in the axial direction but rotate as a unit. Drive in the x direction is performed by linear motion applied from the outside, but drive in the y direction is installed in the x direction. Drive in the z direction is achieved by externally applied shaft rotation using the sliding of a double shaft, and a double shaft is installed in each of the x and y directions. The rotation of θ is performed by a system equipped with double axes installed in the x, y, and z directions and a rotation transmission mechanism, and the rotation of ψ is performed by a system similar to the θ rotation mechanism, and the rotational movement is x, y, z by converting it into linear motion in the θ-axis direction and then returning it to rotational motion.
, θ, and ψ independently in vacuum without interfering with each other.
JP1791886A 1986-01-31 1986-01-31 Penta-shaft manipulator Pending JPS62177844A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1791886A JPS62177844A (en) 1986-01-31 1986-01-31 Penta-shaft manipulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1791886A JPS62177844A (en) 1986-01-31 1986-01-31 Penta-shaft manipulator

Publications (1)

Publication Number Publication Date
JPS62177844A true JPS62177844A (en) 1987-08-04

Family

ID=11957137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1791886A Pending JPS62177844A (en) 1986-01-31 1986-01-31 Penta-shaft manipulator

Country Status (1)

Country Link
JP (1) JPS62177844A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0385708A2 (en) * 1989-02-28 1990-09-05 Eaton Corporation Beam pattern control system for an ion implanter
JP4778971B2 (en) * 2006-09-12 2011-09-21 スガツネ工業株式会社 Shutter device and hardware for shutter device
JP2012109115A (en) * 2010-11-17 2012-06-07 Korea Basic Science Institute Specimen holder capable of performing three-axis drive for three-dimensional analysis of transmission electron microscope

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0385708A2 (en) * 1989-02-28 1990-09-05 Eaton Corporation Beam pattern control system for an ion implanter
JP4778971B2 (en) * 2006-09-12 2011-09-21 スガツネ工業株式会社 Shutter device and hardware for shutter device
JP2012109115A (en) * 2010-11-17 2012-06-07 Korea Basic Science Institute Specimen holder capable of performing three-axis drive for three-dimensional analysis of transmission electron microscope
US8581207B2 (en) 2010-11-17 2013-11-12 Korea Basic Science Institute Specimen holder with 3-axis movement for TEM 3D analysis

Similar Documents

Publication Publication Date Title
CA1268797A (en) Manipulator-head drive assembly
CN100439053C (en) Link drive mechanism with a harmonic gear reducer and industrial robot using the same
JP6719956B2 (en) Dual arm actuator
KR20070108522A (en) High-speed parallel robot with four degrees of freedom
US4502347A (en) Robotic wrist
JP6765284B2 (en) Activator and double-arm actuator
JPS62177844A (en) Penta-shaft manipulator
JPS6130386A (en) Robot wrist aggregate
JPS63163063A (en) Two-degree of freedom driving mechanism performing straight advancing motion and rotary motion
JP6568381B2 (en) Gear mechanism and hand mechanism that can extract power from multiple directions
KR20010014913A (en) Stage apparatus
JPS632753B2 (en)
GB908563A (en) Arrangement for producing a rotary and wobbling movement of a part through the agency of an invertible kinematic chain
EP0174916B1 (en) An arrangement in an industrial robot
CN109891125B (en) Speed reduction device and robot
US4515039A (en) Robot joint
JPH1058359A (en) Carrying robot
JPH08161049A (en) Positioning device
DE3734179A1 (en) Manipulator
US3231098A (en) Remote-control manipulators
JPS59182083A (en) Robot hand
JPH05138567A (en) Handling device
Quaglia et al. Spherical 3 dof Geared Wrist with no Aligned Singularity
JPS62162488A (en) Joint device
JPH0545885Y2 (en)