JPS62176966A - Method of joining ceramic to metal - Google Patents

Method of joining ceramic to metal

Info

Publication number
JPS62176966A
JPS62176966A JP1817486A JP1817486A JPS62176966A JP S62176966 A JPS62176966 A JP S62176966A JP 1817486 A JP1817486 A JP 1817486A JP 1817486 A JP1817486 A JP 1817486A JP S62176966 A JPS62176966 A JP S62176966A
Authority
JP
Japan
Prior art keywords
layer
ceramic
metal
base material
bonding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1817486A
Other languages
Japanese (ja)
Other versions
JPH0339992B2 (en
Inventor
山田 武海
関口 英男
寛己 岡本
祥三 東
昭 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP1817486A priority Critical patent/JPS62176966A/en
Publication of JPS62176966A publication Critical patent/JPS62176966A/en
Publication of JPH0339992B2 publication Critical patent/JPH0339992B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)
  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はセラミックと金属の接合方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for joining ceramics and metals.

〔従来の技術及びその問題点〕[Conventional technology and its problems]

セラミックは高温における強度、耐食性。 Ceramic has strength and corrosion resistance at high temperatures.

耐摩耗性等に優れているため、ガスタービンやディーゼ
ルエンジン等の内燃機関の高温部材として注目されてい
る。しかし、セラミックは脆いという根本的な欠点があ
り。
Due to its excellent wear resistance, it is attracting attention as a high-temperature component for internal combustion engines such as gas turbines and diesel engines. However, ceramic has a fundamental drawback of being brittle.

このため実用化に当っては、使用条件の厳しい部分のみ
をセラミックとし、これを金属と接合させて使用する方
法が有望である。
Therefore, for practical use, it is promising to use ceramic only in the parts that require severe usage conditions and to use it by bonding it with metal.

内燃機関用セラミックとしては、5IC9S13N4が
最も有力であるが、これらは共有結合性が高く、金属と
の接合は困難である。
5IC9S13N4 is the most promising ceramic for internal combustion engines, but these have high covalent bonding properties and are difficult to bond to metals.

従来、高温使用を目的としたセラミックと金属の接合法
としては、■メタライジング法、■ろう付法、■固相拡
散接合法が知られているO しかし、これらのうち■の方法は工程が複雑でコストが
高くつく欠点があり、また■の方法は現在量も広く研究
開発が行われているが、そのほとんどにおいてろう付温
度が900℃以上となり、金属側の強度が低下するおそ
れがある。
Conventionally, known methods for joining ceramics and metals for high-temperature use include ■metallizing method, ■brazing method, and ■solid-phase diffusion bonding method.However, among these methods, ■method is difficult to process. It has the disadvantage of being complicated and expensive, and although method (2) is currently being widely researched and developed, in most of them the brazing temperature is over 900℃, which may reduce the strength of the metal side. .

これに対し■の方法は、工程が簡単でしかも液相状態を
必要としないため、適当な中間層を選定することにより
接合温度を下げることが可能である。しかしこの方法で
も、SiCやSi3N番等のセラミックの熱膨張係数(
約4xtO/’C)が、内燃機関に使われるNi基耐熱
合金、耐熱鋼、耐熱鋳鋼等の金属材料の熱膨張係数(約
13X10/℃)に較べて著しく小さく、このため接合
後の冷却中や運転中に生じる熱応力によりセラミックに
割れを生じてしまう。このような熱応力の緩和方法とし
ては、゛セラミックと金属の間に、中間層として両部材
の中間の熱膨張係数を有する金属や塑性変形能の大きな
軟質金属を介在させるという方法も提案されているが、
これだけでは十分な効果をあげることはできない。
On the other hand, method (2) requires a simple process and does not require a liquid phase state, so it is possible to lower the bonding temperature by selecting an appropriate intermediate layer. However, even with this method, the thermal expansion coefficient (
4xtO/'C) is significantly smaller than the coefficient of thermal expansion (approximately 13x10/'C) of metal materials such as Ni-based heat-resistant alloys, heat-resistant steel, and heat-resistant cast steel used in internal combustion engines. Thermal stress generated during operation can cause cracks in the ceramic. As a method for alleviating such thermal stress, a method has also been proposed in which a metal with a coefficient of thermal expansion between the two materials or a soft metal with large plastic deformability is interposed as an intermediate layer between the ceramic and the metal. There are, but
This alone cannot produce sufficient effects.

〔問題を解決するための手段〕[Means to solve the problem]

本発明はこのような従来の問題に鑑み、セラミックの接
合を容易にし、しかも熱応力によるセラミックの割れが
適切に防止されるという観点から、金属母材とセラミッ
ク材との間に介在させるべき中間部材及びセラミック材
の接合方式について検討を重ねたものであり、この結果
、金属母材とこれに接合されるセラミック材との間に、
金属母材側から銅層及びニッケル層を設け、該ニッケル
層に対しセラミック材を固相拡散接合することにより、
セラミックの接合を容易に行うことができ、しかも接合
後の熱応力によるセラミックの割れを適切に防止し得る
ことを見い出した。
In view of such conventional problems, the present invention aims to facilitate the joining of ceramics and to appropriately prevent cracking of the ceramics due to thermal stress. The method of joining components and ceramic materials has been studied repeatedly, and as a result, there is a gap between the metal base material and the ceramic material that is joined to it.
By providing a copper layer and a nickel layer from the metal base material side and solid-phase diffusion bonding a ceramic material to the nickel layer,
It has been found that ceramics can be easily joined and, moreover, cracking of the ceramics due to thermal stress after joining can be appropriately prevented.

以下、本発明を図面に基づいて説明する。Hereinafter, the present invention will be explained based on the drawings.

第1図は1本発明の一実施状況を示すもので、(1)は
セラミックを接合すべき金属母材。
FIG. 1 shows a state of implementation of the present invention, in which (1) shows a metal base material to which ceramics are to be joined.

(2)はセラミック材であり、主としてSiC,5is
N+等のセラミックが接合対象とされる。
(2) is a ceramic material, mainly SiC, 5is
Ceramics such as N+ are to be bonded.

本発明では、セラミック材(2)を金属母材(1)に接
合するに轟り、両部材の間に金属母材側から銅層(3)
及びニッケル層(4)を形成させ、該ニッケル層(4)
に対しセラミック材(2)を固相拡散接合する。
In the present invention, a ceramic material (2) is joined to a metal base material (1), and a copper layer (3) is placed between both members from the metal base material side.
and forming a nickel layer (4), the nickel layer (4)
A ceramic material (2) is solid phase diffusion bonded to the ceramic material (2).

前記銅層(3)及びニッケル層(4)は、通常金属母材
(1目こ予め形成され、しかる後、上層のニッケル層(
4)にセラミック材(2)が固相拡散接合される。図中
(5)は荷重負荷ロッド%(6ンは高周波誘導コイルで
あり、この高周波誘導コイル(6)で加熱しつつ荷重負
荷ロッド(5)で加圧することによりセラミック材(2
)はニッケル層(4)に対し、接合される。
The copper layer (3) and the nickel layer (4) are usually formed in advance on the metal base material (first layer), and then the upper nickel layer (
Ceramic material (2) is solid phase diffusion bonded to 4). In the figure, (5) is a load-bearing rod (%) (6 is a high-frequency induction coil, and the ceramic material (2
) is bonded to the nickel layer (4).

上記銅層(3J及びニッケル層(4)は、溶射により金
属母材面に予め形成させておくことができ、この溶射法
を用いることにより、各層の厚さを任意に制御すること
ができるとともに、円錐面や球面のような!!雑な形状
を持つ母材面上にも容易に形成させることができる。
The above-mentioned copper layer (3J) and nickel layer (4) can be formed in advance on the metal base material surface by thermal spraying, and by using this thermal spraying method, the thickness of each layer can be arbitrarily controlled. It can be easily formed on base material surfaces with rough shapes such as conical or spherical surfaces.

このように銅層(37及びニッケル層(4)の形成は溶
射法が特に有利な方法と言えるが、板状等の金属部材そ
のものを固相拡散接合により金属母材(1)に予め接合
する方法や、メッキ法。
In this way, thermal spraying is a particularly advantageous method for forming the copper layer (37) and the nickel layer (4), but the metal member itself, such as a plate, can be bonded to the metal base material (1) in advance by solid-phase diffusion bonding. method and plating method.

CVD法、PVD法等のコーティング法により上記銅層
(33及びニッケルJ’i (4)を形成させるように
することを妨げるものではない、また以上のような銅層
及びニッケル層を予め形成させる方法に対し、例えば銅
層を構成すべき金属部材、ニッケル層を構成すべき金属
部材及びセラミック材を金属母材上に積層配置し。
This does not preclude forming the copper layer (33 and nickel J'i (4)) by a coating method such as a CVD method or a PVD method. For example, a metal member to constitute a copper layer, a metal member to constitute a nickel layer, and a ceramic material are stacked and arranged on a metal base material.

各部材間を同時に固相拡散接合させるようにすることも
できる。
It is also possible to perform solid-phase diffusion bonding between each member at the same time.

以上のような本発明では、金属母材とセラミック材間の
中間層のうち、銅層(37がセラミック材(2)に生じ
る熱応力を緩和する作用をし、またニッケル層(4)は
同相拡散接合方式によるセラミック材(2)の接合を容
易にし、また低い接合温度による接合を可能ならしめる
In the present invention as described above, among the intermediate layers between the metal base material and the ceramic material, the copper layer (37) acts to relieve the thermal stress generated in the ceramic material (2), and the nickel layer (4) acts in the same phase. This facilitates the bonding of the ceramic material (2) using the diffusion bonding method, and also enables bonding at a low bonding temperature.

第1表は1本発明におけるニッケルとslc 。Table 1 shows nickel and SLC in the present invention.

5isN4の台セラミック材との接合実験結果を示すも
のであり、通常SaCでは700℃以上。
This shows the results of a bonding experiment with 5isN4 base ceramic material, which is usually 700°C or higher for SaC.

5lsN、では800℃以上で接合が可能であることが
示されている。
It has been shown that bonding is possible at 800° C. or higher at 5lsN.

第     1     表 注1)接合圧力 5.0助/11/ 接合時間 1 hr 第2図(AXB)は本発明法により得られた接合体及び
中間層を設けない従来の接合体について、セラミック材
に生じる最大主応力値を弾塑性解析ζこより求めた結果
を等応力線図で示すもので、σSは接合後の冷却中に生
じたセラミック材内の最大主応力値である。なお、本発
明例及び従来例ともに金属母材としてNimonic 
80 A 、  セラミックスして5ilN4を用いた
ものである。これiこよれば、セラミック材を金属母材
に対して直接接合した従来例の場合はσ5=57.0K
f/1I11!であるのに対し、本発明法により得られ
た接合体ではσ9=20.0V−と著しく小さくなって
おり、熱応力が適切に緩和されていることが判る。
Table 1 Note 1) Bonding pressure 5.0 aid/11/ Bonding time 1 hr Figure 2 (AXB) shows the bonded body obtained by the method of the present invention and the conventional bonded body without an intermediate layer. The resulting maximum principal stress value obtained from the elastic-plastic analysis ζ is shown in an iso-stress diagram, where σS is the maximum principal stress value generated in the ceramic material during cooling after joining. In addition, in both the present invention example and the conventional example, Nimonic was used as the metal base material.
80A, using 5ilN4 ceramics. According to this, in the case of the conventional example in which the ceramic material is directly joined to the metal base material, σ5 = 57.0K
f/1I11! On the other hand, in the bonded body obtained by the method of the present invention, σ9=20.0V-, which is significantly smaller, indicating that the thermal stress is appropriately alleviated.

なお、上記中間層(銅層及びニッケル/I)の厚さは接
合体の使用環境等に応じ任意に選択できるが、実用的に
は銅層は100〜1000μF7!、ニッケル層は50
μmが好ましい。第3図はニッケル層の厚みとセラミッ
ク材中に生じる最大主応力値との関係(銅層厚1100
0pの場合)を示すものであり、ニッケル層の厚みを5
0μm以下とすることにより最大主応力値をほぼ30 
Kg/Im!以下に抑えることができることが示されて
いる。
Note that the thickness of the intermediate layer (copper layer and nickel/I) can be arbitrarily selected depending on the usage environment of the joined body, etc., but in practical terms, the thickness of the copper layer is 100 to 1000 μF7! , the nickel layer is 50
μm is preferred. Figure 3 shows the relationship between the thickness of the nickel layer and the maximum principal stress value generated in the ceramic material (copper layer thickness 1100
0p), and the thickness of the nickel layer is 5
By setting it to 0 μm or less, the maximum principal stress value can be reduced to approximately 30
Kg/Im! It has been shown that it is possible to reduce the

また、固相拡散接合は例えば以下のような条件で行われ
る。
Furthermore, solid-phase diffusion bonding is performed, for example, under the following conditions.

雰囲気:真空中(IXlo  torr程度)もしくは
不活性ガス雰囲気 接合温度: 700〜1000℃ 接合圧カニ 1〜lO〜hノ また、固相拡散接合のための加熱は、高周波誘導加熱、
電気炉加熱等の適宜の方式を採ることができる。
Atmosphere: In vacuum (about IXlo torr) or inert gas atmosphere Bonding temperature: 700 to 1000°C Bonding pressure 1 to 10 to 1000 ℃ Also, the heating for solid phase diffusion bonding is high frequency induction heating,
An appropriate method such as electric furnace heating can be used.

〔実施例〕〔Example〕

本発明法により、第4図に示すような焼結セラミックフ
ェース部を有する排気弁を以下の条件により製造した6
図中(a)はフェース部であり、この部分の母材(1)
とセラミック材(2)との間には、母材側から銅層(3
)とニッケル層(4ンとが介在した構造となっている。
By the method of the present invention, an exhaust valve having a sintered ceramic face portion as shown in Fig. 4 was manufactured under the following conditions.
(a) in the figure is the face part, and the base material (1) of this part
A copper layer (3) is placed between the base material and the ceramic material (2).
) and a nickel layer (4) interposed therebetween.

また、各中間層は、その上部の部材(または層)を表面
を除き被包するような構造となっている。
Furthermore, each intermediate layer has a structure that covers the member (or layer) above it except for the surface.

すなわち、ニッケル層(4)はその上部のセラミック材
(2)を、また銅層(3)はその上部のニッケル層(4
)をそれぞれその周縁まで包むように被包している。
That is, the nickel layer (4) covers the ceramic material (2) above it, and the copper layer (3) covers the nickel layer (4) above it.
) are wrapped around each other to the periphery.

イ)材 料 フェース部材C5isN番 弁母材: Nlmonic 80A 中間層ニッケル層: 40μm 銅  層: 500μm 口)製造法 第4図に示した円錐面を有する弁母材 フェース面にショツトブラスト処理を 施し、脱脂後、第1層に銅を、第2層 にニッケルを溶射し、中間層を形成さ せた。b) Material Face member C5isN number Valve base material: Nlmonic 80A Intermediate nickel layer: 40μm Copper layer: 500μm 口)Manufacturing method Valve base material with conical surface shown in Figure 4 Shot blasting treatment on the face After applying and degreasing, apply copper to the first layer, and apply copper to the second layer. nickel is thermally sprayed to form an intermediate layer. I set it.

この中間層を形成させた接合面に1円 錐面を有するリング状の焼結セラミッ クスを合せ、以下の条件で固相拡散接 合を行った。1 yen on the joint surface where this intermediate layer was formed. Ring-shaped sintered ceramic with conical surface solid-phase diffusion welding under the following conditions. We held a meeting.

雰囲気: lXl0  torr真空中接合温度: 8
50℃X I Hr 接合圧カニ5Kf/−” なお1本実施例では中間層の形成に溶射法を用いている
ため、中間層を隙間なく、且つ均一に形成させることが
できた。
Atmosphere: lXl0 torr in vacuum Bonding temperature: 8
50° C. X I Hr Bonding pressure: 5 Kf/-” Note that in this example, since a thermal spraying method was used to form the intermediate layer, the intermediate layer could be formed uniformly without any gaps.

〔発明の効果〕〔Effect of the invention〕

以上述べた本発明によれば、熱応力によるセラミック材
の割れを適切に防止できる接合構造を得ることができ、
加えてセラミック材の接合を極めて容易に行うことがで
きるとともに、接合温度も低く抑えることができるため
、金属側の強度低下も適切に防止することができる効果
がある。
According to the present invention described above, it is possible to obtain a joining structure that can appropriately prevent cracking of ceramic materials due to thermal stress,
In addition, ceramic materials can be bonded extremely easily and the bonding temperature can be kept low, which has the effect of appropriately preventing a decrease in strength on the metal side.

lA−面の簡単な説明 第1図は本発明法の実施状況を示す説明−である。第2
図(AXB)は本発明法により得られた接合体及び中間
層を設けない従来の接合体について、セラミック材に生
じる応力を示す等応力線図である。第3因は本発明法を
より得られる接合体のニッケル層厚とセラミックに生じ
る最大主応力値との関係を示すものである。第4図は本
発明の一実施例において製造された排気弁の構造を示す
半断面囚である。
Brief Explanation of the IA Plane FIG. 1 is an explanatory diagram showing the implementation of the method of the present invention. Second
The figure (AXB) is an iso-stress diagram showing the stress generated in the ceramic material for the joined body obtained by the method of the present invention and the conventional joined body without an intermediate layer. The third factor shows the relationship between the nickel layer thickness of the bonded body obtained by the method of the present invention and the maximum principal stress value generated in the ceramic. FIG. 4 is a half cross-sectional view showing the structure of an exhaust valve manufactured in one embodiment of the present invention.

図において、(υは金属母材、(2)はセラミック材、
(3)は銅層、(4)はニッケル層を各示す・
In the figure, (υ is the metal base material, (2) is the ceramic material,
(3) shows the copper layer, and (4) shows the nickel layer.

Claims (1)

【特許請求の範囲】[Claims] 金属母材とこれに接合されるセラミック材との間に金属
母材側から銅層及びニッケル層を設け、該ニッケル層に
対しセラミック材を固相拡散接合することを特徴とする
セラミックと金属の接合方法。
A method of bonding ceramic and metal, characterized in that a copper layer and a nickel layer are provided from the metal base material side between a metal base material and a ceramic material to be bonded thereto, and the ceramic material is solid-phase diffusion bonded to the nickel layer. Joining method.
JP1817486A 1986-01-31 1986-01-31 Method of joining ceramic to metal Granted JPS62176966A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1817486A JPS62176966A (en) 1986-01-31 1986-01-31 Method of joining ceramic to metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1817486A JPS62176966A (en) 1986-01-31 1986-01-31 Method of joining ceramic to metal

Publications (2)

Publication Number Publication Date
JPS62176966A true JPS62176966A (en) 1987-08-03
JPH0339992B2 JPH0339992B2 (en) 1991-06-17

Family

ID=11964247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1817486A Granted JPS62176966A (en) 1986-01-31 1986-01-31 Method of joining ceramic to metal

Country Status (1)

Country Link
JP (1) JPS62176966A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2634756A1 (en) * 1988-07-28 1990-02-02 Lilliwyte Sa METHOD FOR JOINING CERAMIC COMPONENTS WITH METAL COMPONENTS AND MANUFACTURED PRODUCTS OBTAINED THEREBY
JP2009090121A (en) * 2007-10-10 2009-04-30 Zimmer Inc Method for bonding tantalum structure to cobalt-alloy substrate

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS613663A (en) * 1984-06-16 1986-01-09 Narumi China Corp Pretreatment for brazing of metallic members

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS613663A (en) * 1984-06-16 1986-01-09 Narumi China Corp Pretreatment for brazing of metallic members

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2634756A1 (en) * 1988-07-28 1990-02-02 Lilliwyte Sa METHOD FOR JOINING CERAMIC COMPONENTS WITH METAL COMPONENTS AND MANUFACTURED PRODUCTS OBTAINED THEREBY
JP2009090121A (en) * 2007-10-10 2009-04-30 Zimmer Inc Method for bonding tantalum structure to cobalt-alloy substrate

Also Published As

Publication number Publication date
JPH0339992B2 (en) 1991-06-17

Similar Documents

Publication Publication Date Title
JPH0891951A (en) Aluminum-silicon nitride conjugate and its production
JPS62182174A (en) Ceramics-metal composite body
JPH0454825B2 (en)
JPH042672A (en) Joined body of ceramics and steel and production thereof
JPS62176966A (en) Method of joining ceramic to metal
JPH0737346B2 (en) Joined body of ceramic body and metal body and joining method thereof
JP2941382B2 (en) Ceramic-metal bonded body and method of manufacturing the same
JP2568332B2 (en) Method for producing composite material at least partially composed of an intermetallic compound
EP0204276B1 (en) Components for engines and production therefor
JPS62235270A (en) Method and structure of joining sintered ceramic to metal
JPH0615426B2 (en) Bonded body of SiC or Si (bottom 3) N (bottom 4) base material and Mo or W base material
JPH0240631B2 (en)
JPS62235272A (en) Method and structure of joining sintered ceramic to metal
JPH0147277B2 (en)
JPH01224280A (en) Ceramic-metal conjugate form
JPS62250104A (en) Manufacture of outer tube fo combustion chamber
JPS62284959A (en) Manufacture of fuel injection valve
WO1996020333A1 (en) Sliding part and method of manufacturing the same
JPS59207885A (en) Method of bonding ceramic member to metal member
JPS59184778A (en) Pressure welding of ceramic member to metal member
JPS63106305A (en) Rocker arm with ceramics pad
JPS62235271A (en) Method and structure of joining sintered ceramic to metal
JPS63210076A (en) Method of joining ceramic to metal and solder therefor
JPH0333429B2 (en)
JPH0660065B2 (en) Engine parts