JPS62176667A - Vacuum exhausting method - Google Patents

Vacuum exhausting method

Info

Publication number
JPS62176667A
JPS62176667A JP1900286A JP1900286A JPS62176667A JP S62176667 A JPS62176667 A JP S62176667A JP 1900286 A JP1900286 A JP 1900286A JP 1900286 A JP1900286 A JP 1900286A JP S62176667 A JPS62176667 A JP S62176667A
Authority
JP
Japan
Prior art keywords
vacuum
electron beam
metal
melting
active metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1900286A
Other languages
Japanese (ja)
Inventor
Tatsuhiko Sodo
龍彦 草道
Toshio Onoe
尾上 俊雄
Takashi Nishimura
孝 西村
Hiroshi Kanayama
金山 宏志
Tetsuhiro Muraoka
村岡 哲弘
Kazuo Miyamoto
宮本 一雄
Yuji Koyama
佑二 児山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP1900286A priority Critical patent/JPS62176667A/en
Publication of JPS62176667A publication Critical patent/JPS62176667A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To quickly and effectively form high vacuum conditions by inputting an active metal into a vacuum melting furnace, by performing an electron beam projection on the active metal after having kept the inside of said furnace in the specified vacuum and by promoting the release of the residual gas component with scattering the active metal with melting. CONSTITUTION:The vacuum degree of a vacuum melting furnace is denoted as about 5X10<-2>-1X10<-3>Torr by a diffusion pump. The vacuum degree is once lowered immediately after the electron beam projection by the release of the H2 from the metal Ti which forms a Ti liquid metal by projecting the electron beam of an electron beam gun 4 after the vacuum inside the melting chamber reaching to 1X10<-3>Torr by the diffusion pump by fitting a metal Ti lump 2 inside a water cooling mold 1, but rises rapidly according to the progress of the melting. The hydrogen content in the metal Ti is remarkably reduced. In this way the high vacuum conditions can be obtd. quickly and effectively an the vacuum exhausting after melting is effectively performed.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、電子ビーム溶解炉等で金属を溶解するに当た
って達成されなければならない高真空条件を、迅速且つ
効果的に得ることに成功した真空排気方法に関するもの
である。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is a vacuum system that successfully achieves quickly and effectively the high vacuum conditions that must be achieved when melting metal in an electron beam melting furnace or the like. This relates to an exhaust method.

[従来の技術] 豐7二4 し’    z、:a !An I↓ 唯 
vl n−3−、4vl ^+fi中−−−工0肯の高
真空条件で行なわれるが、該高真空条件は、まず油回転
ポンプやルーツポンプでtxio−”〜IX to−3
rorr程度の真空条件を形成した後、更に拡散ポンプ
等を作動させることによって達成される。
[Prior art] 豐724 し' z, :a! An I↓ Yui
vl n-3-, 4vl ^+fi - - The process is carried out under high vacuum conditions with no labor required.
This is achieved by creating a vacuum condition of about 100 yen (RORR) and then further operating a diffusion pump or the like.

ところが上記拡散ポンプ使用領域(略lXl0−”To
rr以上の真空度)においては、該領域の真空度が高い
ことから油回転ポンプ等使用領域(760〜1 x 1
0−’Torr)の様にスムーズに真空排気することが
困難であり、上記高真空条件に達する迄に相当長い時間
を要していた。このことは真空排気能力のより大きい拡
散ポンプを使用する場合についても同じ様に言うことが
できる。
However, the above diffusion pump usage area (approximately lXl0-”To
Since the degree of vacuum in this area is high, the area where oil rotary pumps are used (760~1 x 1
It is difficult to perform vacuum evacuation smoothly such as 0-'Torr), and it takes a considerable amount of time to reach the above-mentioned high vacuum conditions. The same can be said for the case of using a diffusion pump with greater vacuum evacuation capacity.

ところで電子ビーム溶解を行なうに当たっては、いわゆ
るスプラッシュ現象を伴なうのが普通であるから、電子
ビーム溶解炉の構成材例えば炉壁等には目的金属の凝固
物が付着するが、実際操業においてはこうした凝固物が
付着したままの電子ビーム溶解炉であっても、数回程度
であるならばそのままの状態で使用しても重大な障害が
ある訳ではなく、むしろクリーニングに伴なう生産効率
の低下等を考慮するならば1!続運転する方が良いと考
えられていた。しかしこの様な凝固物付着状態の電子ビ
ーム溶解炉を用いると、上記凝固物中に水分等が含まれ
ていることから、真空排気過程殊に前記拡散ポンプ使用
中に上記水分の蒸発が発生し真空排気効率に弊害をもた
らすことが分かった。この為電子ビーム照射が可能な真
空レベルに達するまでに数時間を要する場合があったの
である。そこで電子ビーム溶解毎に炉壁等をクリーニン
グして上記凝固物を取り除くことも実施されたが、炉壁
等の微細部分までに至る完壁なりリーニングは望み得な
いので清掃効果は少なかった。
By the way, when performing electron beam melting, it is normal to be accompanied by a so-called splash phenomenon, so solidified material of the target metal adheres to the constituent materials of the electron beam melting furnace, such as the furnace walls, but in actual operation, Even if an electron beam melting furnace has such solidified matter still attached to it, there will be no serious problem if it is used as is for only a few times, but rather the production efficiency will be reduced due to cleaning. If you take into account the decline, etc., it is 1! It was considered better to continue driving. However, when an electron beam melting furnace with such a coagulated substance is used, since the coagulated substance contains moisture, evaporation of the moisture occurs during the evacuation process, especially during the use of the diffusion pump. It was found that this had a negative effect on vacuum pumping efficiency. For this reason, it sometimes took several hours to reach a vacuum level that allowed electron beam irradiation. Therefore, it has been attempted to remove the above-mentioned solidified matter by cleaning the furnace walls and the like every time electron beam melting is performed, but the cleaning effect was small because it was impossible to achieve a complete wall or lean down to the minute parts of the furnace walls and the like.

[発明が解決しようとする問題点] 本発明はこうした事情を考慮してなされたものであって
、上記クリーニングが完壁である場合はもとより、これ
が不完全な場合であっても前記高真空条件を迅速且つ効
果的に達成することのできる真空排気方法を提供しよう
とするものである。
[Problems to be Solved by the Invention] The present invention has been made in consideration of these circumstances, and it is possible to solve the above-mentioned high vacuum conditions not only when the above-mentioned cleaning is complete but also when it is incomplete. The purpose of the present invention is to provide a vacuum evacuation method that can quickly and effectively achieve the following.

[問題点を解決する為の手段] 本発明に係る真空排気方法とは、真空溶解炉内を高真空
条件とする真空排気方法であって、上記真空溶解炉内に
電子ビーム照射装置を配置すると共に活性金属元素を装
入してお籾、上記真空溶解炉内を5 X 10””””
 I X 10−’Torrの真空7囲気とした後上記
活性金属元素に電子ビーム照射を行ない、これによって
上記活性金属元素を溶融飛散しつつ上記残留ガス成分の
放出を促進するところにその要旨が存在するものである
[Means for Solving the Problems] The vacuum evacuation method according to the present invention is a vacuum evacuation method in which the inside of a vacuum melting furnace is brought to a high vacuum condition, and an electron beam irradiation device is arranged in the vacuum melting furnace. At the same time, active metal elements were charged and the rice was placed in the vacuum melting furnace in a 5×10”
The gist is that the active metal element is irradiated with an electron beam after creating a vacuum of 7 to 10 Torr, thereby melting and scattering the active metal element while promoting the release of the residual gas component. It is something to do.

[作用] 電子ビーム溶解炉を用いて活性金属を溶解するに当たっ
ては、該溶解炉における真空排気状況を、活性金属溶解
過程と関連づけて把握しておくことが必要である。本発
明者等もこの様な観点から上記真空排気状況を把握すべ
く検討を進めてきたが、該真空排気状況は大略以下の通
りである。
[Operation] When melting active metal using an electron beam melting furnace, it is necessary to understand the vacuum evacuation situation in the melting furnace in relation to the active metal melting process. The present inventors have also proceeded with studies to understand the above evacuation situation from such a viewpoint, and the evacuation situation is roughly as follows.

■前述の如く油回転ポンプ(又はルーツポンプ)を作動
させる。
■ Operate the oil rotary pump (or Roots pump) as described above.

■次いで前述の如く拡散ポンプを作動させ、5 x 1
0−’ 〜1 x to−3Torrの高真空条件とす
る。
■Next, operate the diffusion pump as described above, and 5 x 1
A high vacuum condition of 0-' to 1 x to-3 Torr is used.

■上記高真空条件が達成された後、活性金属に電子ビー
ムを照射し上記活性金属を溶解させる。
(2) After the above high vacuum conditions are achieved, the active metal is irradiated with an electron beam to dissolve the active metal.

■上記活性金属溶解初期においては、上記活性金属中に
含まれているガス成分(例えば水素等)が放出し、この
為真空度が若干低下する。
(2) At the initial stage of the active metal dissolution, gas components (eg, hydrogen, etc.) contained in the active metal are released, resulting in a slight decrease in the degree of vacuum.

■しかし引き続き活性金属の溶解を行なっていると、上
記ガス成分の放出終了と共に真空度が急激に上昇した。
(2) However, as the active metal continued to be melted, the degree of vacuum suddenly increased as soon as the release of the gas components was completed.

この理由については以下の通りであると考えられる。即
ち上記ガス成分放出後においては第3図に示す如く残存
しているガスのほとんどが水(水蒸気)であるが、この
水は、活性金属の溶解によって生じる蒸気に取り込まれ
、これによって水る。この取り込みは急激に行なわれる
から真空度も急激に進行する。また炉壁に前記凝固物が
付着している場合には、電子ビーム照射に伴ない上記炉
壁が加熱された結果、上記凝固物中の水の蒸発が促進さ
れるといったことも上記真空排気効率向上に寄与したも
のと考えられる。
The reason for this is thought to be as follows. That is, after the gas component is released, most of the remaining gas is water (steam) as shown in FIG. 3, but this water is taken in by the steam generated by the dissolution of the active metal and thereby becomes water. Since this intake occurs rapidly, the degree of vacuum also increases rapidly. Furthermore, if the solidified material is attached to the furnace wall, the heating of the furnace wall due to electron beam irradiation may accelerate the evaporation of water in the solidified material. This is thought to have contributed to the improvement.

本発明者等は、特に上記■の事実に着目し、これを真空
排気方法として積極的に応用できないものかと考え、そ
の方向に沿って検討した結果本発明を完成するに至フた
。即ち本発明は、真空排気環が5 X 10−2〜I 
X 10−’Torrに達した時点で活性金属に電子ビ
ームを照射し、これによって該活性金属を溶融飛散する
という過程を、真空排気方法として積極的に活用したと
ころにその木質を有するものである。
The inventors of the present invention particularly focused on the above fact (2), considered whether this could be actively applied as a vacuum evacuation method, and as a result of studies in that direction, they were able to complete the present invention. That is, in the present invention, the vacuum evacuation ring is 5 x 10-2~I
The woody property lies in the active use of the process of irradiating the active metal with an electron beam when the temperature reaches X 10-'Torr, thereby melting and scattering the active metal as a vacuum evacuation method. .

尚本発明の真空排気方法を利用することのできる溶解方
法としては、上記の如き電子ビーム溶解法に限る必要が
なく、非消耗電極式真空アーク溶解法やプラズマ溶解法
等であってもよい。これらの久す※↓ル宣右當オスr当
トh遺解臘免仝ヱレ1.て活性金属以外の金属、即ちF
e基合金、Ni基合金、超合金、特殊鋼、Nb、Mo、
W等を用いる場合には、前記溶融・飛散活性金属を形成
する為の活性金属を溶解炉内に別途準備しておき、これ
に電子ビームを照射すれば良い。尚活性金属により上記
Fe基合金等の汚染が問題となる場合には、Fe基合金
等を汚染から守るもの、例えば冷却板等を該合金上に設
けておけば良い。溶解対象金属として活性金属を用いる
場合にあっては、該活性金属を溶融・飛散活性金属形成
用の活性金属として用いることもできる。
The melting method that can utilize the vacuum evacuation method of the present invention is not limited to the electron beam melting method described above, and may also be a non-consumable electrode vacuum arc melting method, a plasma melting method, or the like. It's been a long time since I've been in the middle of a long time since I've been in the middle of a long time since I've been 1. metals other than active metals, i.e. F
e-based alloy, Ni-based alloy, superalloy, special steel, Nb, Mo,
When using W or the like, an active metal for forming the melted/splattered active metal may be separately prepared in a melting furnace and irradiated with an electron beam. If contamination of the Fe-based alloy or the like by active metals becomes a problem, something to protect the Fe-based alloy from contamination, such as a cooling plate, may be provided on the alloy. When an active metal is used as the metal to be melted, the active metal can also be used as an active metal for forming the melted and scattered active metal.

以下実施例を挙げることによって本発明を具体的に説明
していくが、本発明はこれらの実施例に限定される性質
のものではなく、前・後記の内容に基づき随時変更が可
能である。
The present invention will be specifically explained below by giving examples, but the present invention is not limited to these examples, and can be modified at any time based on the contents described above and below.

[実施例] 実施例1 第4図は本発明方法を実施する為に用いられた電子ビー
ム溶解炉を示す模式図である。水冷鋳型1内に金属Ti
塊2 ([H] =20ppm:但し[H]は金属Ti
塊中の水素含有率)を装入した後拡散ポンプ(図示せず
)により真空排気を開始し溶解室内真空度(ペニング真
空計3によって測定)が1 x 1G−’Torrに達
してから電子ビーム(電子ビームガン4)を照射しTi
溶渇を作った。これらの過程における炉内真空度(ペニ
ング真空計3使用)及び真空雰囲気ガス成分(4正極型
質量分析計5により測定)の真空排気時間に対する変化
を夫々第1図及び第2図に示す。電子ビーム照射直後に
おいては、金属TiからのH2放出により一時的に真空
度が低下するが、金属Tiの溶解が進行するにつれて急
速に真空度が上昇し、短時間の内に10−’Torrレ
ベルに達していることが分かる。本発明の真空排気方法
が迅速真空排気方法として有効なことは明らかである。
[Example] Example 1 FIG. 4 is a schematic diagram showing an electron beam melting furnace used to carry out the method of the present invention. Metal Ti in water-cooled mold 1
Mass 2 ([H] = 20 ppm: However, [H] is metal Ti
After charging the hydrogen content (hydrogen content in the lump), evacuation was started using a diffusion pump (not shown), and after the vacuum level in the melting chamber (measured with a Penning vacuum gauge 3) reached 1 x 1 G-' Torr, the electron beam was released. (electron beam gun 4) to irradiate Ti
Made a meltdown. Changes in the degree of vacuum in the furnace (using a Penning vacuum gauge 3) and vacuum atmosphere gas components (measured with a four-positive electrode mass spectrometer 5) with respect to evacuation time during these steps are shown in FIGS. 1 and 2, respectively. Immediately after electron beam irradiation, the degree of vacuum temporarily decreases due to the release of H2 from the metal Ti, but as the melting of the metal Ti progresses, the degree of vacuum rapidly increases, reaching the 10-'Torr level within a short time. It can be seen that it has reached. It is clear that the evacuation method of the present invention is effective as a rapid evacuation method.

尚溶解終了後における金属Ti中の[H]分析値は0.
6ppmとなっていた。この様に金属Tiを一度溶解す
ると[H]が低下し1 ppm以下となるので、該溶解
後の金属Tiを用いて本発明方法を実施すると、真空排
気のより一層の迅速化を図ることができる。
The analysis value of [H] in the metal Ti after the completion of dissolution is 0.
It was 6ppm. As described above, once metal Ti is melted, [H] decreases to 1 ppm or less, so if the method of the present invention is carried out using the melted metal Ti, vacuum evacuation can be performed even more quickly. can.

次にこのことについての実施例を示す。Next, an example regarding this will be shown.

実施例2 上記実施例1と同様の溶解装置を用いて行なった。第5
図は、脱水素された金属TL([H]=0.2ppm)
を用い、I X 1O−2Torrに達した後、電子ビ
ームを照射することによって金属Tiを溶解した際の第
4図に相当するスペクトル図であるが、これによると電
子ビーム照射による前述の如き一時的な真空度低化が認
められず、上記実施例1の場合より更に迅速な真空排気
効果を享受し得ることが分かる。以上溶解対象金属とし
て金属Ti(活性金属)を用いた例を示したが、下記実
施例3においてはNi基超超合金用いた例を示す。
Example 2 A melting apparatus similar to that of Example 1 was used. Fifth
The figure shows dehydrogenated metal TL ([H]=0.2ppm)
This is a spectrum diagram corresponding to FIG. 4 when metallic Ti is melted by electron beam irradiation after reaching I It can be seen that no significant reduction in the degree of vacuum was observed, and a more rapid evacuation effect than in the case of Example 1 can be enjoyed. The example in which Ti metal (active metal) was used as the metal to be melted was shown above, but in Example 3 below, an example in which a Ni-based superalloy was used is shown.

実施例3 第6図に示す如く溶解用水冷鋳型1のとなりに銅製の水
冷容器6を設置しここに金属Tiを装入しておく。拡散
ポンプ(図示せず)により真空排気して、真空度が5 
X 1O−3Torrに達した時、電子ビームを金属T
i7のみに照射して該金属Tiを溶融し飛散させた。こ
の時の真空度の時間変化を第7図に示した。TL溶渇生
成とともに急速に真空度が向上し、短時間の内にIQ−
5Torr台に達していることが分かる。
Example 3 As shown in FIG. 6, a copper water-cooled container 6 is installed next to the water-cooled mold 1 for melting, and metal Ti is charged therein. Evacuate with a diffusion pump (not shown) to a vacuum level of 5.
When the temperature reaches X 1O-3 Torr, the electron beam is
Only i7 was irradiated to melt and scatter the metal Ti. Figure 7 shows the change in the degree of vacuum over time at this time. The degree of vacuum increases rapidly with the generation of TL melt, and the IQ-
It can be seen that the temperature has reached the 5 Torr range.

[発明の効果] 本発明は上述の如く構成されているので、高真空条件を
迅速且つ効果的に得ることのできる真空排気方法を提供
することができた。
[Effects of the Invention] Since the present invention is configured as described above, it was possible to provide a vacuum evacuation method that can quickly and effectively obtain high vacuum conditions.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を実施した場合における電子ビーム溶解
炉内の真空度を示すスペクトル図、第2図は本発明を実
施した場合における電子ビーム溶解炉内の真空雰囲気ガ
ス成分変化を示すスペルトル図、第3図は電子ビーム溶
解炉の真空罪囲気ガスの質量スペクトル図、第4図は本
発明方法を実施する為に用いられた電子ビーム溶解炉を
示す模式図、第5図は脱水素された金属Tiを溶解原料
に用いた場合における第1図に相当するスペクトル図、
S6図は本発明方法を実施する為に用いられた他の電子
ビーム溶解炉を示す模式図、第7図は第6図の電子ビー
ム溶解炉を用いて本発明方法を実施した場合における第
1図に相当するスペクトル図である。 1・・・水冷鋳型    2・・・金属Ti塊3・・・
ペニング真空計 4・・・電子ビームガン5・・・4電
極型質量分析計
Fig. 1 is a spectrum diagram showing the degree of vacuum in the electron beam melting furnace when the present invention is implemented, and Fig. 2 is a spertle diagram showing changes in vacuum atmosphere gas components within the electron beam melting furnace when the present invention is implemented. , Fig. 3 is a mass spectrum diagram of the vacuum sinus gas in the electron beam melting furnace, Fig. 4 is a schematic diagram showing the electron beam melting furnace used to carry out the method of the present invention, and Fig. 5 is a diagram showing the mass spectrum of the vacuum gas in the electron beam melting furnace. A spectrum diagram corresponding to FIG. 1 when metallic Ti is used as a melting raw material,
Fig. S6 is a schematic diagram showing another electron beam melting furnace used to carry out the method of the present invention, and Fig. 7 is a schematic diagram showing the first method when the method of the present invention is carried out using the electron beam melting furnace of Fig. 6. FIG. 1...Water-cooled mold 2...Metal Ti lump 3...
Penning vacuum gauge 4...Electron beam gun 5...4-electrode mass spectrometer

Claims (1)

【特許請求の範囲】[Claims] 真空溶解炉内を高真空条件とする真空排気方法であって
、上記真空溶解炉内に電子ビーム照射装置を配置すると
共に活性金属元素を装入しておき、上記真空溶解炉内を
5×10^−^2〜1×10^−^3Torrの真空雰
囲気とした後上記活性金属元素に電子ビーム照射を行な
い、これによって上記活性金属元素を溶融飛散しつつ上
記残留ガス成分の放出を促進することを特徴とする真空
排気方法。
A vacuum evacuation method that sets the inside of the vacuum melting furnace to a high vacuum condition, in which an electron beam irradiation device is placed in the vacuum melting furnace and an active metal element is charged, and the inside of the vacuum melting furnace is heated to 5×10 ^-^ After creating a vacuum atmosphere of 2 to 1 x 10^-^3 Torr, the active metal element is irradiated with an electron beam, thereby melting and scattering the active metal element and promoting release of the residual gas component. A vacuum evacuation method characterized by:
JP1900286A 1986-01-29 1986-01-29 Vacuum exhausting method Pending JPS62176667A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1900286A JPS62176667A (en) 1986-01-29 1986-01-29 Vacuum exhausting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1900286A JPS62176667A (en) 1986-01-29 1986-01-29 Vacuum exhausting method

Publications (1)

Publication Number Publication Date
JPS62176667A true JPS62176667A (en) 1987-08-03

Family

ID=11987325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1900286A Pending JPS62176667A (en) 1986-01-29 1986-01-29 Vacuum exhausting method

Country Status (1)

Country Link
JP (1) JPS62176667A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6858059B2 (en) 2001-10-26 2005-02-22 Toho Titanium Co., Ltd. Electron beam melting method for metallic material
WO2006080269A1 (en) * 2005-01-25 2006-08-03 Toho Titanium Co., Ltd. Apparatus for melting metal by electron beams and process for producing high-melting metal ingot using this apparatus
JP2007162113A (en) * 2005-12-16 2007-06-28 Toho Titanium Co Ltd Apparatus for melting metal with electron beam, and method for melting metal by using the apparatus
US7757748B2 (en) 2005-01-25 2010-07-20 Toho Titanium Co., Ltd. Apparatus for melting metal by electron beams and process for producing high-melting metal ingot using this apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6858059B2 (en) 2001-10-26 2005-02-22 Toho Titanium Co., Ltd. Electron beam melting method for metallic material
WO2006080269A1 (en) * 2005-01-25 2006-08-03 Toho Titanium Co., Ltd. Apparatus for melting metal by electron beams and process for producing high-melting metal ingot using this apparatus
US7757748B2 (en) 2005-01-25 2010-07-20 Toho Titanium Co., Ltd. Apparatus for melting metal by electron beams and process for producing high-melting metal ingot using this apparatus
JP2007162113A (en) * 2005-12-16 2007-06-28 Toho Titanium Co Ltd Apparatus for melting metal with electron beam, and method for melting metal by using the apparatus

Similar Documents

Publication Publication Date Title
JP5001159B2 (en) Method for controlling the oxygen content of a powder
WO2011007578A1 (en) Method for producing alloy ingots
JP4947455B2 (en) Method and apparatus for refining silicon using electron beam
EP0532386B1 (en) Process and apparatus for carburizing steel in an atmosphere of low pressure
You et al. Evaporation behavior of Ni, Cr and Fe in Inconel 718 superalloy during electron beam smelting
JPS62176667A (en) Vacuum exhausting method
KR100310392B1 (en) Hydrogen absorbing alloy powder and method of producing hydrogen absorbing alloy powder
CN109072413B (en) Metal evaporation material
JP5792124B2 (en) Titanium ingot manufacturing method
US20160122850A1 (en) Method for producing a high temperature-resistant target alloy, a device, an alloy and a corresponding component
RU2534907C1 (en) Procedure for local treatment of material at nitriding in glow discharge
RU2571245C1 (en) Surface hardening of 20x13 steel
Liu et al. Analysis on elemental volatilization behavior of titanium alloys during electron beam smelting
JP3721709B2 (en) Ti scrap processing method
JP6471553B2 (en) Casting apparatus and casting method
JP2002150959A (en) Generating method of indium ion beam, and related apparatus
WO2011096170A1 (en) Method for purifying aluminum and apparatus therefor
Pavate et al. Correlation between aluminum alloy sputtering target metallurgical characteristics, arc initiation, and in-film defect intensity
RU2534697C1 (en) Method of local material treatment with effect of hollow cathode during ionic nitriding
RU2534906C1 (en) Method of local material treatment with effect of hollow cathode during ionic nitriding
US8490281B2 (en) Method of manufacturing a metal component from metal powder
JP6173253B2 (en) Method for producing titanium ingot by VAR
JPH05154642A (en) Method for casting titanium-aluminum alloy cast product
JP2004137580A (en) Method for producing iridium sputtering target, and target obtained by the method
Spiess et al. Experimental Research on the Absorption of Fluorine in gamma-TiAl during Electroslag Remelting