JPS6217609B2 - - Google Patents

Info

Publication number
JPS6217609B2
JPS6217609B2 JP4028281A JP4028281A JPS6217609B2 JP S6217609 B2 JPS6217609 B2 JP S6217609B2 JP 4028281 A JP4028281 A JP 4028281A JP 4028281 A JP4028281 A JP 4028281A JP S6217609 B2 JPS6217609 B2 JP S6217609B2
Authority
JP
Japan
Prior art keywords
resin
aromatic hydrocarbon
parts
phenolic resin
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4028281A
Other languages
Japanese (ja)
Other versions
JPS57155237A (en
Inventor
Takeshi Yoshioka
Akira Toko
Naoji Takeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP4028281A priority Critical patent/JPS57155237A/en
Publication of JPS57155237A publication Critical patent/JPS57155237A/en
Publication of JPS6217609B2 publication Critical patent/JPS6217609B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Phenolic Resins Or Amino Resins (AREA)
  • Paints Or Removers (AREA)
  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、寸法安定性、耐熱性が良好で、且つ
打抜加工性、耐薬品性、耐水性、電気的特性が著
しく優れた積層板の製造方法に関するものであ
る。 最近、電子機器等に使用される積層板は、プリ
ント配線板加工工程の自動化ラインシステム、電
子部品搭載個数の高密度化実装システムの著しい
進歩に伴い、寸法安定性、耐熱性の要求が益々厳
しくなつてきた。ところが、従来のフエノール樹
脂積層板では、該積層板の安価で性能もよいとい
うコストパーホーマンスの優秀性を損なわずに、
この厳しい要求を満足させうる事は、極めて困難
な事であつた。 従来、フエノール樹脂積層板の製造に用いられ
るフエノール樹脂は、大部分がレゾール型フエノ
ール樹脂である。これはレゾール型フエノール樹
脂の数平均分子量が100〜400と、ノボラツク型フ
エノール樹脂の500〜800よりも小さく、その為積
層板用基材であるリンター紙やクラフト紙への含
浸性が優れている為である。レゾール型フエノー
ル樹脂は、フエノール類に対してアルデヒド類を
過剰に使用し、アンモニアやアミン等のアルカリ
を触媒として反応させたものであり、打抜加工性
を向上させる為に、フエノールの一部をクレゾー
ル、ブチルフエノール、オクチルフエノール、ノ
ニルフエノール等のアルキルフエノールにした
り、桐油、脱水ひまし油、あまに油、異性化あま
に油等の乾性油で変性したりして使用する。とこ
ろがレゾール型フエノール樹脂の硬化反応は、メ
チロール基どうしあるいはメチロール基とフエニ
ル核間との脱水縮合でメチレン化していくもので
ある為、樹脂が著しく収縮し、寸法安定性が著し
く不満足であつた。 またベンゼン、トルエン、キシレン、メシチレ
ン、ナフタリン等の芳香族炭化水素をホルムアル
デヒドと反応して得られる芳香族炭化水素ホルム
アルデヒド樹脂と、フエノール、クレゾール、キ
シレノール、アルキル置換フエノール等のフエノ
ール類とを反応して得られる反応生成物をアルデ
ヒド類でレゾール化した芳香族炭化水素フエノー
ル樹脂は、更にカシユーナツトシエルオイルやウ
ルシオール等の植物油、あるいは桐油、脱水ひま
し油、あまに油、異性化あまに油などの乾性油で
変性し、もしくはせずして積層板用樹脂として使
用する。この様にして得られた積層板は、芳香族
炭化水素の特長として電気的特性、耐アルカリ
性、耐湿耐水性、打抜加工性などが優れている
が、レゾール型フエノール樹脂である為寸法安定
性が未だ不充分であつた。 本発明は、以上に述べた様な諸欠点を改良する
為になされたものであり、ジアリリデンペンタエ
リスリツトを一成分としてなるノボラツク型フエ
ノール樹脂とエポキシ化合物に、レゾール型フエ
ノール樹脂及び/又はヘキサメチレンテトラミン
を混合してなる新規なワニスで、寸法安定性、耐
熱性が良好で、打抜加工性、耐薬品性、耐水性、
電気的特性が優れた積層板の製造方法を提供する
ものである。 ジアリリデンペンタエリスリツトはフエノール
と反応しスピラツクフエノールを形成するが、ス
ピラツクの収縮性は殆んどない。 本発明におけるジアリリデンペンタエリスリツ
トを一成分としてなるノボラツク型フエノール樹
脂としては、フエノール類とホルムアルデヒド、
パラホルムアルデヒド、トリオキサン等のホルム
アルデヒド類とを、後者に対し前者を過剰に用い
て、更にジアリリデンペンタエリスリツトを添加
して、一般に酸触媒下で反応させたものである。
フエノールに対するジアリリデンペンタエリスリ
ツトの添加量は0.1〜20%が好ましい。0.1%以下
ではスピラツクの低収縮の効果がないし、20%以
上ではジアリリデンペンタエリスリツトが非常に
高価である為、フエノールの安価という特徴を損
う事となる。 本発明における芳香族炭化水素ホルムアルデヒ
ド樹脂としては、ベンゼン、トルエン、メタキシ
レン、混合キシレン、メシチレン、ナフタリン、
アルキル置換芳香族炭化水素などの芳香族炭化水
素から選ばれた1種もしくは2種以上の混合物
と、ホルムアルデヒドとの反応によつて得られる
エーテル結合、アセタール結合、メチロール基な
どを持つた反応性の樹脂が用いられる。 本発明のノボラツク型芳香族炭化水素フエノー
ル樹脂の合成に使用されるフエノール類として
は、フエノール、クレゾール、キシレノール、ブ
チルフエノール、オクチルフエノール、ノニルフ
エノール、ビスフエノールA、レゾルシン、カシ
ユーナツトシエルオイル、ウルシオールなどがあ
る。 本発明のノボラツク型フエノール樹脂あるいは
ノボラツク型芳香族炭化水素フエノール樹脂の変
性に使用する乾性油類は、桐油、オイチシカ油、
脱水ひまし油、あまに油、異性化あまに油などの
様な脂肪酸中に不飽和二重結合を2個以上有する
脂肪酸のグリセリンエステルを主成分とするもの
である。 本発明に用いるエポキシ化合物としては、ビス
フエノールA、ビスフエノールA置換体、ビスフ
エノールF、ビスフエノールF置換体、ノボラツ
ク樹脂、ノボラツク樹脂置換体、テトラオキシフ
エニルエタン、脂肪族多価アルコール等とエピハ
ロヒドリン/あるいはメチルエピハロヒドリン等
の縮合物やエポキシ化植物油などで、分子中に少
なくとも2個のエポキシ基を有するものである。 ノボラツク型フエノール樹脂類(A)とエポキシ化
合物(B)との配合割合は、(A):(B)=90:10〜30:70
が適当である。一般にフエノール性水酸基1当量
に対して、エポキシ基1当量になる様に配合する
のが、完全硬化させる為には望ましいと考えられ
るが、エポキシ化合物は高価格である為、フエノ
ール樹脂の低価格の特徴を生かす為には、エポキ
シ化合物は70%以上配合する事ができず、10%以
下ではエポキシ化合物の添加効果が期待できな
い。この様にエポキシ化合物を完全硬化に必要な
量よりも少な目に配合すると、かなりの未硬化の
ノボラツク型フエノール樹脂類が残る事になる。
我々はここに於いてレゾール型フエノール樹脂及
び/又はヘキサメチレンテトラミンで硬化する事
により十分な効果が得られる配合を見出した。即
ちノボラツク型フエノール樹脂類とエポキシ化合
物との混合組成物100部に、レゾール型フエノー
ル樹脂類20〜120部及び/又はヘキサメチレンテ
トラミン1〜8部の配合が好ましい。レゾール型
フエノール樹脂類が20部以下では硬化が不充分で
あり、120部以上ではレゾールのメチロール基に
よる収縮の悪影響が出てくる。ヘキサメチレンテ
トラミンが1部以下では硬化が不充分であり、8
部以上ではヘキサメチレンテトラミンの加熱分解
によるガスが半田耐熱性や寸法安定性を低下せし
める。 本発明で使用するレゾール型フエノール樹脂
は、積層板用樹脂ワニスとして通常のフエノール
系樹脂積層板の製造に用いられる樹脂ワニスを用
いる事ができる。例えばフエノール、クレゾー
ル、キシレノール、ブチルフエノール、ビスフエ
ノールAなどのフエノール化合物あるいは桐油、
脱水ひまし油などの乾性油やカシユーナツトシエ
ルオイルなどの植物油で変性した変性フエノール
化合物、あるいはトルエン、キシレンなどの芳香
族炭化水素ホルムアルデヒド樹脂とフエノール類
との反応生成物などを主成分としてなるレゾール
型フエノール樹脂ワニスであつて、それ自体で積
層板用樹脂として用いる事ができるものである。 レゾール型芳香族炭化水素フエノール樹脂の製
造において、芳香族炭化水素ホルムアルデヒド樹
脂と反応せしめるフエノール類の添加割合は、該
樹脂の含酸素原子1原子量当り0.6〜8.0モルが好
ましい。この割合が0.6モルに満たない範囲では
反応時にゲルする傾向があり、8.0モルを上廻る
と該樹脂の含有量が低下しその利用効果が得られ
なくなる。レゾール型フエノール樹脂類と更に反
応せしめられる乾性油の割合は、該樹脂100部に
対して10〜100部が用いられる。10部以下では十
分な可塑化効果が得られず、また100部をこえる
と遊離の乾性油が増加し、積層板用樹脂として役
立たなくなる。 本発明におけるノボラツク型芳香族炭化水素フ
エノール樹脂及び該樹脂の油変性フエノール樹脂
類の製造において、芳香族炭化水素ホルムアルデ
ヒド樹脂と反応せしめるフエノール類の割合は、
芳香族炭化水素ホルムアルデヒド樹脂の含酸素原
子1原子量に対して1〜5モルの範囲が用いられ
る。この割合が1モルに満たない範囲では反応時
にゲル化する傾向があり、また次工程での乾性油
との反応が不充分となり、この割合が5モルを上
廻ると芳香族核の含有量が低下し、芳香族炭化水
素ホルムアルデヒド樹脂の利用効果が得られなく
なる。芳香族炭化水素ホルムアルデヒド樹脂とフ
エノール類との反応生成物に更に反応せしめる乾
性油の割合は、該生成物100部に対して10〜100部
が用いられる。この割合が10部以下では十分な可
塑化効果が得られず、この割合が100部を越える
と遊離の乾性油が増加し、積層板の機械的、電気
的諸特性を低下せしめる。 ノボラツク型油変性芳香族炭化水素フエノール
樹脂の製造方法は、温度計、撹拌装置、還流反応
装置および減圧脱水装置を備えた反応容器中に、
上述の芳香族炭化水素ホルムアルデヒド樹脂とフ
エノール類とジアリリデンペンタエリスリツトと
を入れ、酸触媒存在下80〜120℃で1〜3時間反
応させたあと脱水する。脱水の意味は、、もしも
水が残留したまま次工程の乾性油との反応を行う
と、乾性油がエステル分解をおこすからである。
次に乾性油を加え、酸触媒存在下60〜120℃で0.5
〜2時間反応させたあと、アルカルで中和、濃縮
を行う。樹脂の分子量は200〜600が好ましく、
200以下では硬化時の収縮が大きく、またエポキ
シ化合物の硬化にも悪影響があり、600以上では
含浸性が低下する。樹脂の分子量は300〜500がよ
り好ましく、更に好ましくは350〜450である。 中和後、減圧下で加熱しながら140〜180℃ま
で、内容物の温度を上げて濃縮を行うと共に遊離
フエノール類分を除去する。エポキシ化合物のエ
ポキシ基は遊離フエノール類の水酸基と反応し未
硬化成分となり、積層板の諸特性を低下させる
為、遊離フエノール類分は8%以下が好ましい。 この様にしてノボラツク型油変性芳香族炭化水
素フエノール樹脂を製造するが、芳香族炭化水素
ホルムアルデヒド樹脂とフエノール類とジアリリ
デンペンタエリスリツトと乾性油を混合し、一挙
に反応を行なわしめる事も可能である。また反応
温度や反応時間は特に規定するものではなく、任
意に最適条件で行うべきである。 本発明の樹脂組成物は、ノボラツク型フエノー
ル樹脂とエポキシ化合物と硬化剤としてのレゾー
ル型フエノール樹脂及び/又はヘキサメチレンテ
トラミンから成る。 積層板用基材としては、セルロースを主成分と
するものが用いられ、例えばリンター紙やクラフ
ト紙がよく用いられる。またこれらの基材を予め
樹脂で処理したものも用いる事ができ、例えば水
溶性低分子量フエノール樹脂で処理したものや、
メラミン樹脂で処理したものが用いられる。 本発明の方法によつて、寸法安定性、耐熱性が
良好で、且つ打抜加工性、耐薬品性、耐水性、電
気的特性が著しく優れたフエノール樹脂積層板、
銅張積層板を作る事ができる。 以下実施例により本発明を更に詳細に説明す
る。 比較例 1 混合クレゾール1300gとノニルフエノール1000
gとホルマリン(37%ホルムアルデヒド水溶液)
1950gとを、28%アンモニア水溶液70gと98%エ
チレンジアミン8gとの存在下で93〜95℃に加熱
し3時間反応した。減圧脱水後、さらに加熱しな
がら減圧濃縮し、内容物の温度が90℃になつた所
で反応を終了し、メタノール/トルエン=2/1
の混合溶剤で希釈し、樹脂分50%のレゾール型フ
エノール樹脂ワニス(A)を得た。 予め下塗り用水溶性フエノールホルムアルデヒ
ド樹脂ワニスで下塗りした紙に、上記ワニス(A)を
含浸乾燥し、全樹脂付着分55%の樹脂含浸紙を得
た。この樹脂含浸紙を8枚と、その片側に接着剤
付銅箔を重ねて、160℃で60分間、80Kg/cm2で加
熱加圧し、厚さ1.6mmの銅張積層板を得た。 比較例 2 フエノール3000gとホルマリン(37%ホルムア
ルデヒド水溶液)2200gとを、5%塩酸水溶液52
gの存在下で97〜99℃に加熱し2時間反応した。
減圧脱水後、この反応生成物3600gと桐油1000g
とを、パラトルエンスルホン酸1.8gの存在下で
60〜62℃に加熱し1時間反応した。加熱しながら
減圧濃縮し、内容物の温度が120℃になつた所で
反応を終了し、メタノール/トルエン=2/1の
混合溶剤で希釈し、樹脂分50%のノボラツク型油
変性フエノール樹脂ワニス(B)を得た。 数平均分子量は740であり、 遊離フエノール分は11.0%であつた。 これを用いて、次の様に他の原料と配合し塗布
用ワニスを作つた。
The present invention relates to a method for manufacturing a laminate that has good dimensional stability and heat resistance, as well as excellent punching workability, chemical resistance, water resistance, and electrical properties. Recently, the requirements for dimensional stability and heat resistance for laminates used in electronic devices, etc. have become increasingly strict due to the remarkable progress in automated line systems for printed wiring board processing processes and high-density mounting systems for mounting electronic components. I'm getting old. However, with conventional phenolic resin laminates, without sacrificing the excellent cost performance of the laminates, which are inexpensive and have good performance,
It was extremely difficult to satisfy these strict demands. Conventionally, most of the phenolic resins used for manufacturing phenolic resin laminates are resol type phenolic resins. This is because the number average molecular weight of resol type phenolic resins is 100 to 400, which is lower than that of novolac type phenolic resins, which is 500 to 800. Therefore, it has excellent impregnating properties into linter paper and kraft paper, which are the base materials for laminates. It is for this purpose. Resol type phenolic resin is made by using an excess of aldehydes relative to phenols and reacting with alkali such as ammonia or amine as a catalyst.In order to improve punching processability, some of the phenols are removed. It is used by converting it into alkylphenols such as cresol, butylphenol, octylphenol, and nonylphenol, or by modifying it with drying oils such as tung oil, dehydrated castor oil, linseed oil, and isomerized linseed oil. However, the curing reaction of resol type phenolic resins involves methylene formation through dehydration condensation between methylol groups or between methylol groups and phenyl nuclei, resulting in significant shrinkage of the resin and extremely unsatisfactory dimensional stability. In addition, aromatic hydrocarbon formaldehyde resin obtained by reacting aromatic hydrocarbons such as benzene, toluene, xylene, mesitylene, and naphthalene with formaldehyde is reacted with phenols such as phenol, cresol, xylenol, and alkyl-substituted phenols. The aromatic hydrocarbon phenol resin obtained by resolizing the resulting reaction product with aldehydes can be further mixed with vegetable oils such as oaknut shell oil and urushiol, or with vegetable oils such as tung oil, dehydrated castor oil, linseed oil, and isomerized linseed oil. Used as a laminate resin with or without modification with drying oil. The laminates obtained in this way have excellent electrical properties, alkali resistance, moisture resistance, and punching workability due to the characteristics of aromatic hydrocarbons, but because they are resol-type phenolic resins, they have poor dimensional stability. was still insufficient. The present invention has been made to improve the various drawbacks described above, and combines a novolak type phenolic resin and an epoxy compound containing diarylidene pentaerythritol as one component with a resol type phenolic resin and/or A new varnish made by mixing hexamethylenetetramine, which has good dimensional stability and heat resistance, punching workability, chemical resistance, water resistance,
The present invention provides a method for manufacturing a laminate with excellent electrical properties. Diarylidenepentaerythrite reacts with phenol to form spirac phenol, but spirac has almost no contractility. In the present invention, the novolak type phenolic resin containing diarylidene pentaerythritol as one component includes phenols and formaldehyde,
A formaldehyde such as paraformaldehyde or trioxane is used in excess of the latter, diarylidene pentaerythritide is added, and the reaction is generally carried out under an acid catalyst.
The amount of diarylidene pentaerythrite added to the phenol is preferably 0.1 to 20%. If it is less than 0.1%, it will not have the low shrinkage effect of Spirac, and if it is more than 20%, diarylidenepentaerythritol will be very expensive, which will undermine the low cost characteristic of phenol. The aromatic hydrocarbon formaldehyde resin in the present invention includes benzene, toluene, metaxylene, mixed xylene, mesitylene, naphthalene,
A reactive compound containing an ether bond, an acetal bond, a methylol group, etc. obtained by reacting one type or a mixture of two or more selected from aromatic hydrocarbons such as alkyl-substituted aromatic hydrocarbons with formaldehyde. Resin is used. The phenols used in the synthesis of the novolak type aromatic hydrocarbon phenolic resin of the present invention include phenol, cresol, xylenol, butylphenol, octylphenol, nonylphenol, bisphenol A, resorcinol, oak nut shell oil, and sumac. There are oars, etc. The drying oils used for modifying the novolak type phenolic resin or novolak type aromatic hydrocarbon phenolic resin of the present invention include tung oil, oiticica oil,
The main component is a glycerin ester of a fatty acid having two or more unsaturated double bonds, such as dehydrated castor oil, linseed oil, isomerized linseed oil, etc. Epoxy compounds used in the present invention include bisphenol A, bisphenol A substituted products, bisphenol F, bisphenol F substituted products, novolac resins, novolac resin substituted products, tetraoxyphenylethane, aliphatic polyhydric alcohols, etc. It is a condensate of epihalohydrin/or methyl epihalohydrin, epoxidized vegetable oil, etc., and has at least two epoxy groups in its molecule. The blending ratio of novolac type phenolic resin (A) and epoxy compound (B) is (A):(B) = 90:10 to 30:70
is appropriate. Generally, it is considered desirable to mix 1 equivalent of epoxy group to 1 equivalent of phenolic hydroxyl group for complete curing, but since epoxy compounds are expensive, phenolic resins are less expensive. In order to take advantage of its characteristics, the epoxy compound cannot be added in a proportion of 70% or more, and if it is less than 10%, no effect can be expected from the addition of the epoxy compound. If the epoxy compound is blended in an amount smaller than that required for complete curing, a considerable amount of uncured novolak type phenolic resin will remain.
We have now found a formulation which can be cured with a resol type phenolic resin and/or hexamethylenetetramine to obtain sufficient effects. That is, it is preferable to mix 20 to 120 parts of a resol type phenolic resin and/or 1 to 8 parts of hexamethylenetetramine to 100 parts of a mixed composition of a novolac type phenolic resin and an epoxy compound. If the amount of resol type phenolic resin is less than 20 parts, curing will be insufficient, and if it is more than 120 parts, shrinkage due to the methylol group of the resol will occur. If hexamethylenetetramine is less than 1 part, curing will be insufficient;
If the temperature exceeds 1.0 parts, gases generated by thermal decomposition of hexamethylenetetramine deteriorate soldering heat resistance and dimensional stability. As the resol-type phenolic resin used in the present invention, a resin varnish that is commonly used in the production of phenolic resin laminates as a resin varnish for laminates can be used. For example, phenolic compounds such as phenol, cresol, xylenol, butylphenol, bisphenol A, or tung oil,
A resol type whose main component is a modified phenol compound modified with a drying oil such as dehydrated castor oil or a vegetable oil such as cashew nut shell oil, or a reaction product of an aromatic hydrocarbon formaldehyde resin such as toluene or xylene with a phenol. It is a phenolic resin varnish that can itself be used as a resin for laminates. In the production of a resol-type aromatic hydrocarbon phenol resin, the addition ratio of phenols reacted with the aromatic hydrocarbon formaldehyde resin is preferably 0.6 to 8.0 mol per atomic weight of oxygen-containing atom of the resin. If this ratio is less than 0.6 mol, it tends to gel during the reaction, and if it exceeds 8.0 mol, the content of the resin decreases and its utilization effect cannot be obtained. The proportion of the drying oil that is further reacted with the resol type phenolic resin is 10 to 100 parts per 100 parts of the resin. If it is less than 10 parts, a sufficient plasticizing effect cannot be obtained, and if it exceeds 100 parts, free drying oil increases and the resin becomes useless as a resin for laminates. In the production of the novolac-type aromatic hydrocarbon phenolic resin and the oil-modified phenolic resin of the resin in the present invention, the proportion of phenols reacted with the aromatic hydrocarbon formaldehyde resin is as follows:
A range of 1 to 5 moles is used per atomic weight of oxygen-containing atom of the aromatic hydrocarbon formaldehyde resin. If this ratio is less than 1 mole, there is a tendency for gelation during the reaction, and the reaction with drying oil in the next step will be insufficient, and if this ratio exceeds 5 moles, the content of aromatic nuclei will decrease. As a result, the aromatic hydrocarbon formaldehyde resin cannot be used effectively. The proportion of the drying oil to be further reacted with the reaction product of the aromatic hydrocarbon formaldehyde resin and the phenols is 10 to 100 parts per 100 parts of the product. If this proportion is less than 10 parts, a sufficient plasticizing effect cannot be obtained, and if this proportion exceeds 100 parts, the amount of free drying oil increases, deteriorating the mechanical and electrical properties of the laminate. The method for producing a novolak-type oil-modified aromatic hydrocarbon phenolic resin consists of a reaction vessel equipped with a thermometer, a stirring device, a reflux reaction device, and a vacuum dehydration device.
The above-mentioned aromatic hydrocarbon formaldehyde resin, phenols, and diarylidene pentaerythrite are added and reacted at 80 to 120°C for 1 to 3 hours in the presence of an acid catalyst, followed by dehydration. The meaning of dehydration is that if the reaction with the drying oil in the next step is carried out with water remaining, the drying oil will undergo ester decomposition.
Then add drying oil and 0.5 at 60-120℃ in the presence of acid catalyst.
After reacting for ~2 hours, neutralize with alkal and concentrate. The molecular weight of the resin is preferably 200 to 600,
If it is less than 200, shrinkage during curing will be large and it will also have an adverse effect on the curing of the epoxy compound, and if it is more than 600, the impregnation property will decrease. The molecular weight of the resin is preferably 300 to 500, and even more preferably 350 to 450. After neutralization, the temperature of the contents is raised to 140-180° C. while heating under reduced pressure to concentrate and remove free phenols. The epoxy group of the epoxy compound reacts with the hydroxyl group of free phenols and becomes an uncured component, degrading various properties of the laminate, so the content of free phenols is preferably 8% or less. A novolak-type oil-modified aromatic hydrocarbon phenol resin is produced in this way, but it is also possible to mix the aromatic hydrocarbon formaldehyde resin, phenols, diarylidene pentaerythrite, and drying oil and carry out the reaction all at once. It is possible. Further, the reaction temperature and reaction time are not particularly specified, and should be arbitrarily carried out under optimal conditions. The resin composition of the present invention comprises a novolac type phenolic resin, an epoxy compound, and a resol type phenolic resin and/or hexamethylenetetramine as a curing agent. As the base material for the laminate, a material containing cellulose as a main component is used, and for example, linter paper and kraft paper are often used. It is also possible to use these base materials that have been previously treated with a resin, such as those that have been treated with a water-soluble low molecular weight phenolic resin,
Those treated with melamine resin are used. By the method of the present invention, a phenolic resin laminate with good dimensional stability and heat resistance, and extremely excellent punching workability, chemical resistance, water resistance, and electrical properties,
Copper-clad laminates can be made. The present invention will be explained in more detail with reference to Examples below. Comparative example 1 Mixed cresol 1300g and nonylphenol 1000g
g and formalin (37% formaldehyde aqueous solution)
In the presence of 70 g of a 28% ammonia aqueous solution and 8 g of 98% ethylenediamine, 1950 g of the sample were heated to 93-95° C. and reacted for 3 hours. After dehydration under reduced pressure, it was further concentrated under reduced pressure while heating, and the reaction was terminated when the temperature of the contents reached 90°C, and methanol/toluene = 2/1.
A resol type phenolic resin varnish (A) with a resin content of 50% was obtained by diluting with a mixed solvent. Paper that had been previously undercoated with a water-soluble phenol formaldehyde resin varnish for undercoating was impregnated with the above varnish (A) and dried to obtain resin-impregnated paper with a total resin adhesion content of 55%. Eight sheets of this resin-impregnated paper were stacked with adhesive-coated copper foil on one side, and heated and pressed at 80 kg/cm 2 at 160° C. for 60 minutes to obtain a copper-clad laminate with a thickness of 1.6 mm. Comparative Example 2 3000 g of phenol and 2200 g of formalin (37% formaldehyde aqueous solution) were mixed with 5% hydrochloric acid aqueous solution 52 g.
The reaction mixture was heated to 97-99°C in the presence of 100 g and reacted for 2 hours.
After dehydration under reduced pressure, 3600g of this reaction product and 1000g of tung oil
and in the presence of 1.8 g of para-toluenesulfonic acid.
The mixture was heated to 60-62°C and reacted for 1 hour. Concentrate under reduced pressure while heating, finish the reaction when the temperature of the contents reaches 120°C, dilute with a mixed solvent of methanol/toluene = 2/1, and prepare a novolac type oil-modified phenol resin varnish with a resin content of 50%. I got (B). The number average molecular weight was 740, and the free phenol content was 11.0%. Using this, a coating varnish was made by blending it with other raw materials as follows.

【表】 上記塗布用ワニスを使用して、比較例1と同様
な方法で銅張積層板を得た。 実施例 1 キシレンホルムアルデヒド樹脂3100gとメタク
レゾール2000gとジアリリデンペンタエリスリツ
ト150gとを、パラトルエンスルホン酸6.4gの存
在下で93〜95℃に加熱し、2.5時間反応した。減
圧脱水後、この反応生成物3600gと桐油1000gと
を、パラトルエンスルホン酸1.8gの存在下で60
〜62℃に加熱し1時間反応した。次に、トリエタ
ノールアミン8.0gで中和した後、加熱しながら
減圧濃縮し、内容物の温度が160℃になつた所で
反応を終了し、メタノール/トルエン=2/1の
混合溶剤で希釈し、樹脂分50%のノボラツク型油
変性キシレンフエノール樹脂ワニス(C)を得た。 数平均分子量は400であり、 遊離クレゾール分は4.8%であつた。 これを用いて次の様な塗布用ワニスを作り、比
較例と同様な方法で銅張積層板を得た。
[Table] A copper-clad laminate was obtained in the same manner as in Comparative Example 1 using the above coating varnish. Example 1 3,100 g of xylene formaldehyde resin, 2,000 g of metacresol, and 150 g of diarylidene pentaerythritol were heated to 93-95° C. in the presence of 6.4 g of para-toluenesulfonic acid and reacted for 2.5 hours. After dehydration under reduced pressure, 3600 g of this reaction product and 1000 g of tung oil were mixed for 60 g in the presence of 1.8 g of para-toluenesulfonic acid.
The mixture was heated to ~62°C and reacted for 1 hour. Next, after neutralizing with 8.0 g of triethanolamine, it was concentrated under reduced pressure while heating, and the reaction was terminated when the temperature of the contents reached 160°C, and diluted with a mixed solvent of methanol/toluene = 2/1. A novolac type oil-modified xylene phenol resin varnish (C) with a resin content of 50% was obtained. The number average molecular weight was 400, and the free cresol content was 4.8%. Using this, the following coating varnish was made, and a copper-clad laminate was obtained in the same manner as in the comparative example.

【表】 実施例 2 メシチレンを主成分とするアルキルベンゼンホ
ルムアルデヒド樹脂1800gとフエノール1400gと
ジアリリデンペンタエリスリツト130gとを、パ
ラトルエンスルホン酸4.6gの存在下で95〜97℃
に加熱し2.5時間反応した。減圧脱水後、この反
応生成物2500gと脱水ひまし油800gとを、パラ
トルエンスルホン酸0.8gの存在下で65〜67℃に
加熱し1時間反応した。次にトリエタノールアミ
ン5.3gで中和し、加熱しながら減圧濃縮し、内
容物の温度が140℃になつた所で反応を終了し、
メタノール/トルエン=2/1の混合溶剤で希釈
し、樹脂分50%のノボラツク型油変性アルキルベ
ンゼンフエノール樹脂ワニス(D)を得た。 数平均分子量は435であり、 遊離フエノール分は1.8%であつた。 これを用いて次の様な塗布用ワニスを作り、 比較例と同様な方法で銅張積層板を得た。
[Table] Example 2 1800 g of alkylbenzene formaldehyde resin mainly composed of mesitylene, 1400 g of phenol, and 130 g of diarylidene pentaerythritide were heated at 95 to 97°C in the presence of 4.6 g of paratoluenesulfonic acid.
and reacted for 2.5 hours. After dehydration under reduced pressure, 2500 g of this reaction product and 800 g of dehydrated castor oil were heated to 65-67°C in the presence of 0.8 g of para-toluenesulfonic acid and reacted for 1 hour. Next, it was neutralized with 5.3 g of triethanolamine, concentrated under reduced pressure while heating, and the reaction was terminated when the temperature of the contents reached 140°C.
It was diluted with a mixed solvent of methanol/toluene = 2/1 to obtain a novolac type oil-modified alkylbenzene phenol resin varnish (D) with a resin content of 50%. The number average molecular weight was 435, and the free phenol content was 1.8%. Using this, the following coating varnish was made, and a copper-clad laminate was obtained in the same manner as in the comparative example.

【表】 実施例 3 トルエンホルムアルデヒド樹脂2000gとフエノ
ール1100gとメタクレゾール600gとジアリリデ
ンペンタエリスリツト85gとを、パラトルエンス
ルホン酸5.3gの存在下で91〜93℃に加熱し2.5時
間反応した。減圧脱水後、この反応生成物3000g
と異性化あまに油900gとを、パラトルエンスル
ホン酸1.2gの存在下で63〜65℃に加熱し1時間
反応した。 次にトリエタノールアミン6.2gで中和し、加
熱しながら減圧濃縮し、内容物の温度が160℃に
なつた所で反応を終了し、メタノール/トルエン
=2/1の混合溶剤で希釈し、樹脂分50%のノボ
ラツク型油変性トルエンフエノール樹脂ワニス(E)
を得た。 数平均分子量は390であり、 遊離フエノール分は1.8%、 遊離クレゾール分は1.0%であつた。 これを用いて、次の様な塗布用ワニスを作り、
比較例と同様な方法で銅張積層板を得た。
[Table] Example 3 2000 g of toluene formaldehyde resin, 1100 g of phenol, 600 g of metacresol, and 85 g of diarylidene pentaerythritide were heated to 91-93°C in the presence of 5.3 g of para-toluenesulfonic acid and reacted for 2.5 hours. After dehydration under reduced pressure, 3000g of this reaction product
and 900 g of isomerized linseed oil were heated to 63-65°C in the presence of 1.2 g of para-toluenesulfonic acid and reacted for 1 hour. Next, neutralize with 6.2 g of triethanolamine, concentrate under reduced pressure while heating, complete the reaction when the temperature of the contents reaches 160 ° C., dilute with a mixed solvent of methanol / toluene = 2 / 1, Novolac type oil-modified toluene phenol resin varnish (E) with 50% resin content
I got it. The number average molecular weight was 390, the free phenol content was 1.8%, and the free cresol content was 1.0%. Using this, make the following varnish for application,
A copper-clad laminate was obtained in the same manner as in the comparative example.

【表】 比較例及び実施例で得た銅張積層板の試験結果
を第1表に示す。 実施例に示す如く、本発明のジアリリデンペン
タエリスリツトを含むノボラツク型油変性芳香族
炭化水素フエノール樹脂よりなる積層板は、寸法
安定性、耐熱性が著しく優れ、打抜加工性、耐薬
品性、耐水性、電気的特性も良好であつた。一方
比較例1に示す積層板用レゾール型フエノール樹
脂は収縮が大きく、比較例2に示す従来のノボラ
ツク型フエノール樹脂は分子量が大きい為に含浸
性が劣り、耐湿特性が悪かつた。
[Table] Table 1 shows the test results of the copper-clad laminates obtained in Comparative Examples and Examples. As shown in the examples, a laminate made of a novolac-type oil-modified aromatic hydrocarbon phenolic resin containing diarylidene pentaerythritol of the present invention has extremely excellent dimensional stability and heat resistance, and has excellent punching workability and chemical resistance. It also had good properties, water resistance, and electrical properties. On the other hand, the resol type phenolic resin for laminates shown in Comparative Example 1 had large shrinkage, and the conventional novolac type phenolic resin shown in Comparative Example 2 had poor impregnation properties and poor moisture resistance due to its large molecular weight.

【表】【table】

Claims (1)

【特許請求の範囲】 1 ジアリリデンペンタエリスリツト0.1〜20%
を含むフエノール類を主成分としてなる数平均分
子量200〜600、遊離フエノール分8%以下のノボ
ラツク型フエノール樹脂(A)と、分子内に少なくと
も2個のエポキシ基を有するエポキシ化合物(B)と
を、(A):(B)=90:10〜30:70の割合で混合した樹
脂組成物100部に、レゾール型フエノール樹脂20
〜120部及び/又はヘキサメチレンテトラミン1
〜8部を配合してなるワニスを積層板用基材に含
浸して乾燥せしめ、次いで加熱加圧することによ
り積層板を得る事を特徴とする積層板の製造方
法。 2 ノボラツク型フエノール樹脂が、芳香族炭化
水素ホルムアルデヒド樹脂に、ジアリリデンペン
タエリスリツト0.1〜20%を含むフエノール類
を、該樹脂の含酸素原子1原子量当り1〜5モル
の割合で酸性触媒下で反応せしめて得たノボラツ
ク型芳香族炭化水素フエノール樹脂である特許請
求の範囲第1項記載の積層板の製造方法。 3 ノボラツク型芳香族炭化水素フエノール樹脂
が、該樹脂100部に乾性油10〜100部を加えて反応
せしめて得たノボラツク型油変性芳香族炭化水素
フエノール樹脂である特許請求の範囲第2項記載
の積層板の製造方法。 4 レゾール型フエノール樹脂が、芳香族炭化水
素ホルムアルデヒド樹脂にフエノール類を、該樹
脂の含酸素原子1原子量当り0.6〜8.0モルの割合
で酸性触媒下で反応せしめて得た反応生成物とホ
ルムアルデヒド類とを、アルカリ触媒下で反応せ
しめて得たレゾール型芳香族炭化水素フエノール
樹脂である特許請求の範囲第1項、第2項又は第
3項記載の積層板の製造方法。 5 レゾール型芳香族炭化水素フエノール樹脂
が、該樹脂100部に乾性油10〜100部を加えて反応
せしめて得たレゾール型油変性芳香族炭化水素フ
エノール樹脂である特許請求の範囲第4項記載の
積層板の製造方法。
[Claims] 1. Diarylidenepentaerythrite 0.1-20%
A novolak type phenolic resin (A) which is mainly composed of phenols containing phenols having a number average molecular weight of 200 to 600 and a free phenol content of 8% or less, and an epoxy compound (B) having at least two epoxy groups in the molecule. , 20 parts of resol type phenolic resin to 100 parts of the resin composition mixed at a ratio of (A):(B) = 90:10 to 30:70.
~120 parts and/or 1 part hexamethylenetetramine
A method for producing a laminate, which comprises impregnating a varnish containing 8 parts of varnish into a laminate base material, drying it, and then heating and pressing to obtain a laminate. 2 Novolak-type phenolic resin is obtained by adding phenols containing 0.1 to 20% of diarylidene pentaerythritol to an aromatic hydrocarbon formaldehyde resin under an acidic catalyst at a ratio of 1 to 5 moles per atomic weight of oxygen-containing atom of the resin. 2. The method for producing a laminate according to claim 1, which is a novolac-type aromatic hydrocarbon phenol resin obtained by reacting with. 3. Claim 2, wherein the novolak-type aromatic hydrocarbon phenolic resin is a novolak-type oil-modified aromatic hydrocarbon phenolic resin obtained by adding 10 to 100 parts of drying oil to 100 parts of the resin and reacting the same. A method for manufacturing laminates. 4. Resol type phenolic resin is a reaction product obtained by reacting aromatic hydrocarbon formaldehyde resin with phenols at a ratio of 0.6 to 8.0 mol per atomic weight of oxygen-containing atom of the resin under an acidic catalyst and formaldehyde. The method for producing a laminate according to claim 1, 2 or 3, which is a resol-type aromatic hydrocarbon phenol resin obtained by reacting the following under an alkali catalyst. 5. Claim 4, wherein the resol type aromatic hydrocarbon phenol resin is a resol type oil-modified aromatic hydrocarbon phenol resin obtained by adding 10 to 100 parts of drying oil to 100 parts of the resin and reacting the same. A method for manufacturing laminates.
JP4028281A 1981-03-23 1981-03-23 Manufacture of laminated sheet Granted JPS57155237A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4028281A JPS57155237A (en) 1981-03-23 1981-03-23 Manufacture of laminated sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4028281A JPS57155237A (en) 1981-03-23 1981-03-23 Manufacture of laminated sheet

Publications (2)

Publication Number Publication Date
JPS57155237A JPS57155237A (en) 1982-09-25
JPS6217609B2 true JPS6217609B2 (en) 1987-04-18

Family

ID=12576249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4028281A Granted JPS57155237A (en) 1981-03-23 1981-03-23 Manufacture of laminated sheet

Country Status (1)

Country Link
JP (1) JPS57155237A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01143703U (en) * 1988-03-25 1989-10-03

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01143703U (en) * 1988-03-25 1989-10-03

Also Published As

Publication number Publication date
JPS57155237A (en) 1982-09-25

Similar Documents

Publication Publication Date Title
US3947393A (en) Resin composition for laminates and prepared therefrom
JPS6217609B2 (en)
JPS6238371B2 (en)
JPS634574B2 (en)
JPS6217610B2 (en)
JPH05279496A (en) Production of phenolic resin laminated board
US3429762A (en) Method for producing laminated plates of phenol type resin
JPS6238372B2 (en)
JPS588698B2 (en) Method for producing reactive flame retardant plasticizer
JPH0574609B2 (en)
JP3065383B2 (en) Manufacturing method of phenolic resin laminate
JPH05138793A (en) Manufacture of phenol ic resin laminate
KR820001055B1 (en) Process for producing internally plasticized phenolic resins
JPH05154955A (en) Production of phenol resin laminated sheet
JPH10279715A (en) Flame-retardant phenolic resin laminate
KR820001054B1 (en) Process for producing phenolic resins
JPH05230231A (en) Production of phenolic resin laminate
JPS61246220A (en) Production of oiticica oil-modified phenolic resin
JPH09157414A (en) Production of phenol resin
JPS6033128B2 (en) Production method of oil-modified phenolic resin for laminated products
JPH05220882A (en) Production of phenol resin laminated sheet
JPS6026489B2 (en) Production method of oil-modified phenolic resin for laminated products
JPS6033127B2 (en) Production method of oil-modified phenolic resin for laminated products
JPS6026490B2 (en) Production method of oil-modified phenolic resin for laminated products
JPH05138792A (en) Manufacture of phenol ic resin laminate