JPS62176038A - X-ray luminescent device - Google Patents

X-ray luminescent device

Info

Publication number
JPS62176038A
JPS62176038A JP1463686A JP1463686A JPS62176038A JP S62176038 A JPS62176038 A JP S62176038A JP 1463686 A JP1463686 A JP 1463686A JP 1463686 A JP1463686 A JP 1463686A JP S62176038 A JPS62176038 A JP S62176038A
Authority
JP
Japan
Prior art keywords
ray
needle
plasma
substance
luminescent material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1463686A
Other languages
Japanese (ja)
Inventor
Yoshio Watanabe
渡辺 良男
Yukio Kurosawa
黒沢 幸夫
Hiroshi Arita
浩 有田
Koji Suzuki
光二 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1463686A priority Critical patent/JPS62176038A/en
Publication of JPS62176038A publication Critical patent/JPS62176038A/en
Pending legal-status Critical Current

Links

Landscapes

  • X-Ray Techniques (AREA)

Abstract

PURPOSE:To cause luminescence with high efficiency and good reproducibility by producing a magnetic pinch by gas except an X-ray luminescent material at a place with the X-ray luminescent material arranged in, making the X-ray luminescent material plasmatic by high temperature plasma and emitting light. CONSTITUTION:A cylindrical gas flow 8 is released from a nozzle 3. Hydrogen or helium with low radiation loss except the X-ray luminescent material constituting a needle 5 is used and introduced from the exterior of vacuum through a lead-in tube 10. On supplying electric charge charged between both electrodes of a capacitor 6 by closing a switch 7 between electrodes 1 and 2, discharge is produced along the surface of the gas flow 8 between the electrodes 1 and 2. As the result, an electric current layer 9 is formed and contracted toward its center axis by electromagnetic force. The contracted current layer 9 reaching the center axis, the plasma gets high temperature by adiabatic compression and fuses the tip of the needle 5, vapor of which flows into the plasma. This vapor is made plasmatic, compressed to high temperature high density to be an X-ray generating source and thereby can cause luminescence with high efficiency and good reproducibility.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はX線発光装置に係り、特に1発光元素を広く選
択するのに好適な放電構造の軟X線発生源に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an X-ray emitting device, and more particularly to a soft X-ray generating source with a discharge structure suitable for selecting one emitting element from a wide range.

〔発明の背景〕[Background of the invention]

波長1〜100人の軟X線を発生する方法の1つに、高
温高密度プラズマを形成し、そのプラズマから生ずる元
素固有の特性X線発光を利用する方法がある。高温高密
度プラズマを形成する1つの方法は、大電流放電による
磁気ピンチを利用するもので1次の2方式がある。その
第1の方式は。
One of the methods for generating soft X-rays with a wavelength of 1 to 100 nm is to form a high-temperature, high-density plasma and utilize the characteristic X-ray emission unique to an element generated from the plasma. One method of forming high-temperature, high-density plasma is to utilize magnetic pinching by large current discharge, and there are two methods: primary. The first method is.

ガスを用いた2ピンチで、この例は実開昭58−174
849号などに示されている。円筒状気柱に高速で立ち
上がる大電流を重畳すると2表皮効果により電流は気柱
表面に集中する。この集中電流層は磁場を誘起し、電流
ベクトルをJ、磁場ベクトルをBとするとJXBの磁場
力が発生して軸中心に向って運動する。電流層より内側
の気体は電流層に取りこまれると同時に電離し、′Ki
流層とともに軸中心に圧縮される。電流層が中心軸に達
したとき軸上に高温高密度プラズマが形成される(Zピ
ンチ)。
This example uses 2 pinches using gas.
No. 849, etc. When a large current that rises at high speed is superimposed on a cylindrical air column, the current concentrates on the surface of the air column due to the two-skin effect. This concentrated current layer induces a magnetic field, and when the current vector is J and the magnetic field vector is B, a magnetic field force of JXB is generated and the layer moves toward the axial center. The gas inside the current layer is ionized as soon as it is taken into the current layer, and ′Ki
It is compressed along the axis along with the fluid layer. When the current layer reaches the central axis, a high-temperature, high-density plasma is formed on the axis (Z-pinch).

この方式の利点は、放電が生じてからZピンチが生ずる
までの時間を気柱半径および気体密度を調整することで
容易に制御できる点である。このため、放電電流源に一
般に用いられるコンデンサの放電を用いた場合、放電電
流がピークに達するときZピンチを生じさせろことがで
き、コンデンサの充電エネルギーを効率よくプラズマに
注入できる。
The advantage of this method is that the time from when discharge occurs until Z-pinch occurs can be easily controlled by adjusting the air column radius and gas density. Therefore, when a commonly used capacitor discharge is used as a discharge current source, a Z-pinch can be generated when the discharge current reaches its peak, and the charging energy of the capacitor can be efficiently injected into the plasma.

問題点は、使用できる元素が限られる点である。The problem is that the elements that can be used are limited.

すなわち、使用できる元素は、常温で気体であるものに
限られ、化合物でもX線吸収の点から水素化物に限られ
る。さらに、均斉な放電を得るためには負イオンを作り
やすい気体(酸素、窒素等)は適しない。この結果、ネ
オン(約12人)、クリプトン(約7人)、アルゴン(
約4人)の希ガス3種しか適当な気体が存在しない。よ
って他の波長のX線をこの方式で得ることが難しい。
That is, the elements that can be used are limited to those that are gases at room temperature, and even compounds that can be used are limited to hydrides from the point of view of X-ray absorption. Furthermore, in order to obtain a uniform discharge, gases that easily produce negative ions (oxygen, nitrogen, etc.) are not suitable. As a result, neon (about 12 people), krypton (about 7 people), argon (about 7 people),
There are only three suitable noble gases (approximately 4 people). Therefore, it is difficult to obtain X-rays of other wavelengths using this method.

第2の方式は真空スパークと呼ばれる方式で。The second method is a method called vacuum spark.

この例は特開昭57−208099号などに示されてい
る。
An example of this is shown in Japanese Patent Application Laid-Open No. 57-208099.

真空に排気された放電容器中に対向して置かれたSt+
の一方を動作元素(液体もしくは固体)で構成する。放
電が生じると電極に流れこむ電流により加熱され、電極
の一部が溶は蒸発する。この蒸気がプラズマ化し電極間
抵抗が減少し、電流が急増してZピンチが生ずる。
St+ placed oppositely in an evacuated discharge vessel
one of which is composed of a working element (liquid or solid). When a discharge occurs, the current flowing into the electrode heats it up, causing some of the electrode to evaporate. This vapor becomes plasma, the resistance between the electrodes decreases, the current increases rapidly, and a Z-pinch occurs.

この方式の利点は適用できる元素種が多いこと。The advantage of this method is that it can be applied to many types of elements.

ならびに蒸発物質が広く拡散する前に2ピンチが生ずる
ため、Zピンチ位置の再現性が良い点である。
In addition, since two pinches occur before the evaporated substance widely diffuses, the reproducibility of the Z pinch position is good.

問題点は、蒸発密度を制御できないため、2ピンチの再
現性に乏しいこと、および電流の立ち上がり時にZピン
チを生じこの位相を制御できないため、電源コンデンサ
のエネルギーが十分プラズマに注入される前に2ピンチ
が生ずる点である。
The problem is that the reproducibility of the 2-pinch is poor because the evaporation density cannot be controlled, and the Z-pinch occurs at the rise of the current, and this phase cannot be controlled, so the 2-pinch occurs before the energy of the power supply capacitor is sufficiently injected into the plasma. This is the point where a pinch occurs.

このように両方式とも一長一短がある。In this way, both methods have advantages and disadvantages.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、液体もしくは固体状の元素種に適用で
きることで、広い適用元素種をもち、かつ、放電電流の
ピーク値でZピンチを生じさせることで、再現性よくか
つ効率よく軟X線を発生させることのできるX線発光装
置を提供することにある。
The purpose of the present invention is to be applicable to liquid or solid element types, to have a wide range of applicable element types, and to generate a Z-pinch at the peak value of the discharge current, thereby efficiently and reproducibly transmitting soft X-rays. An object of the present invention is to provide an X-ray emitting device that can generate X-rays.

〔発明の概要〕[Summary of the invention]

本発明では、上記目的を達成するために、磁気ピンチを
生じさせる構造を持つ放電管内の磁気ピンチが生ずる場
所にX線発光物質を配置し、X線発光物質以外の気体に
より磁気ピンチを生じさせる手段を備え、この高温プラ
ズマにより前記X線発光物質をプラズマ化して発光させ
る構成とする。
In order to achieve the above object, in the present invention, an X-ray emitting substance is placed at a location where a magnetic pinch occurs in a discharge tube having a structure that causes a magnetic pinch, and a gas other than the X-ray emitting substance causes the magnetic pinch. The apparatus is configured to include a means for turning the X-ray luminescent substance into plasma and emitting light using the high-temperature plasma.

すなわち、X線発光物質以外の、水素あるいはヘリウム
のような、放射損失の少ない気体を動作気流としてZピ
ンチを生じさせ、この高温ガスをX線発光物質にあてる
ことでX線発光物質を蒸発させ、そのままプラズマ化し
て発光させる構成とするものである。
In other words, a Z-pinch is created using a gas with low radiation loss, such as hydrogen or helium, other than the X-ray luminescent material, and this high-temperature gas is applied to the X-ray luminescent material to evaporate the X-ray luminescent material. , the structure is such that it directly turns into plasma and emits light.

〔発明の実施例〕[Embodiments of the invention]

以下1本発明の一実施例を第1図、第2図に示す断面図
により説明する。電極は内外同軸二重円筒から成る。1
は外側電極、2は内側電極で、内側f!1t42の内径
開口部には動作気流噴出し用のノズル3が設けである。
An embodiment of the present invention will be described below with reference to sectional views shown in FIGS. 1 and 2. The electrode consists of an inner and outer coaxial double cylinder. 1
is the outer electrode, 2 is the inner electrode, and the inner f! The inner diameter opening of 1t42 is provided with a nozzle 3 for ejecting the working airflow.

外側電極1と内側電極2の間に絶縁物4が配置されてい
る。放電空間軸上に。
An insulator 4 is arranged between the outer electrode 1 and the inner electrode 2. on the discharge space axis.

X線を発光させたい物質でできたニードル5が。The needle 5 is made of a substance that emits X-rays.

モリブデンあるいはタングステンのような高耐熱金属よ
りなるニードル支持体5′に支持されて。
It is supported by a needle support 5' made of a high heat resistant metal such as molybdenum or tungsten.

立てである。この電極全体が放16容器(図示せず)中
に置かれ、真空排気されている。電極1,2は。
It is vertical. The entire electrode is placed in a tank (not shown) and evacuated. Electrodes 1 and 2.

スイッチ7を介してコンデンサ6に接続されている。1
0は気体導入用の導入管である。
It is connected to a capacitor 6 via a switch 7. 1
0 is an introduction pipe for introducing gas.

動作は次の通りである。ノズル3より円筒状気流8が、
第1図に示すように、空間に放出される。
The operation is as follows. A cylindrical airflow 8 flows from the nozzle 3,
As shown in FIG. 1, it is released into space.

気体としては、ニードル5を構成するX線発光物質以外
の、放射損失の小さい水素もしくはヘリウムのいずれか
(必要に応じては若干の重いガスを含む混合気体)を用
いて、真空外部より導入管1゜を介して導入する。スイ
ッチ7を閉じコンデンサ6の両極間に充電された電荷を
電極1.2間に供給すると、気流8の表面に沿って電極
1,2の間に放電が生ずる。この結果、第2図に示す電
流層9が形成され、電磁力により中心軸に向って収縮す
る。収縮した電流層9が中心軸に達するとプラズマは断
熱圧縮により高温になる。この高温プラズマにより、中
心軸上に置かれたニードル5の先端が溶け、その蒸気が
プラズマ中に流入する。この蒸気は直ちにプラズマ化さ
れ、高温高密度に圧縮されてX線発生源となる。
As the gas, use hydrogen or helium (mixed gas containing some heavy gas as necessary) with low radiation loss, other than the X-ray emitting substance that constitutes the needle 5, and use it from the outside of the vacuum through the introduction tube. 1°. When the switch 7 is closed and the charge charged between the two poles of the capacitor 6 is supplied between the electrodes 1 and 2, a discharge occurs between the electrodes 1 and 2 along the surface of the air flow 8. As a result, the current layer 9 shown in FIG. 2 is formed and contracts toward the central axis due to electromagnetic force. When the contracted current layer 9 reaches the central axis, the plasma becomes hot due to adiabatic compression. This high-temperature plasma melts the tip of the needle 5 placed on the central axis, and its vapor flows into the plasma. This vapor is immediately turned into plasma, compressed to high temperature and high density, and becomes an X-ray generation source.

第;3図は本発明の他の実施例を示す断面図で。Figure 3 is a sectional view showing another embodiment of the present invention.

これは、常温において液体または気体のX線発光物質を
X線発生源とする場合である。11はこの液体または気
体のX線発光物質を、ニードル5“の中心軸部を貫通す
るように設けた側孔を介してニードル先端部に供給する
ための導入管で、その他の符号は第1図の場合と同じで
ある。ただし、ニードル5sは、第3図実施例では、単
にX線発光物質である液体または気体を導入することを
目的とするものであるので、ニードル5″全体がタング
ステン、モリブデンのような高耐熱性金属で作られる。
This is the case when a liquid or gaseous X-ray emitting substance at room temperature is used as the X-ray generation source. 11 is an introduction tube for supplying this liquid or gaseous X-ray emitting substance to the tip of the needle through a side hole provided to penetrate the central axis of the needle 5''; The needle 5s is the same as the case shown in the figure.However, in the embodiment shown in FIG. , made of high temperature resistant metals such as molybdenum.

第3図実施例の動作は第1図実施例の場合と同様で、導
入管10を介して水素もしくはヘリウムをノズル3に供
給すると同時に導入管】lを介してX線を発光させよう
とする液体または気体を導入すればよい。
The operation of the embodiment shown in FIG. 3 is similar to that of the embodiment shown in FIG. Liquid or gas may be introduced.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、コンデンサからの放電エネルギーをま
ず放射損失の小さい気体のプラズマエネルギーに変換し
、この2ピンチにより形成した高温プラズマで発光物質
を蒸気化してプラズマに注入する構成であるので1次の
効果が得られる。
According to the present invention, the discharge energy from the capacitor is first converted into gaseous plasma energy with small radiation loss, and the luminescent material is vaporized by the high temperature plasma formed by these two pinches and injected into the plasma, so the primary The effect of this can be obtained.

(1)動作ガスとして水素あるいはヘリウムのような放
射損失の小さい元素を用いるため、Zピンチが生ずるま
での損失を十分小さくでき効率よく高温プラズマを形成
できる。
(1) Since an element with low radiation loss, such as hydrogen or helium, is used as the working gas, the loss until Z-pinch occurs can be sufficiently reduced, and high-temperature plasma can be efficiently formed.

(2)発光物質はZピンチが生ずるとき初めてプラズマ
中に注入される。Zピンチが生ずる時刻は従来の2ピン
チと同様、気柱半径およびガス密度を調整することでコ
ンデンサエネルギーが最も大きくプラズマエネルギーに
変換される時刻に調整できる。
(2) Luminescent material is injected into the plasma only when a Z-pinch occurs. As with the conventional 2-pinch, the time at which the Z-pinch occurs can be adjusted to the time at which the capacitor energy is maximized and converted into plasma energy by adjusting the air column radius and gas density.

(3)発光物質は軸上に流入する高温プラズマによりプ
ラズマ化される構成であるので、液体、固体、電気的絶
縁物であっても容易にプラズマ化できる。さらに1発光
物質に気体を用いることも。
(3) Since the luminescent material is configured to be turned into plasma by high-temperature plasma flowing on the axis, even liquids, solids, and electrical insulators can be easily turned into plasma. Furthermore, a gas can also be used as a luminescent substance.

この気体の細い高密度気流を軸上に形成しておくことで
発光が可能になる。
By forming this thin, high-density gas stream on the axis, light emission becomes possible.

なお、電極構造はZピンチが生ずるものであれば、第1
図に示した構造に限定されないのは明らかである。また
中心軸上にニードルが存在することで、軸上のZピンチ
が生ずる場所をニードルの前面に限定できる効果も生ず
る。
Note that if the electrode structure causes Z pinch, the first
It is clear that the structure is not limited to the one shown in the figures. Furthermore, the presence of the needle on the central axis has the effect of limiting the location where Z-pinch occurs on the axis to the front surface of the needle.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例断面図で動作気流の形状を示
す図、第2図は同じく電流層の形状を示す図、第3図は
液体または気体を発光物質とする場合の本発明の一実施
例断面図である。 〈符号の説明〉 1・・・外側電極     2・・・内側電極コ3・・
・ノズル      4出絶縁物5.5#・・・発光物
質を供給するニードル8・・・気流       9・
・・電流層10、11・・・導入管 代理人弁理士  中 村 純之助 才1 カ 1−2図
Figure 1 is a cross-sectional view of one embodiment of the present invention, showing the shape of the operating airflow, Figure 2 is a diagram showing the shape of the current layer, and Figure 3 is a diagram showing the present invention when a liquid or gas is used as the luminescent material. FIG. <Explanation of symbols> 1...Outer electrode 2...Inner electrode 3...
・Nozzle 4-output insulator 5.5#... Needle for supplying luminescent substance 8... Air flow 9.
...Current Layer 10, 11...Introduction Management Agent Patent Attorney Junnosuke Nakamura 1 Fig. 1-2

Claims (1)

【特許請求の範囲】 1、磁気ピンチを生じさせる構造を持つ放電管内の磁気
ピンチが生ずる場所にX線発光物質を配置し、X線発光
物質以外の気体により磁気ピンチを生じさせる手段を備
え、この高温プラズマにより前記X線発光物質をプラズ
マ化して発光させることを特徴とするX線発光装置。 2、前記放電管が、同軸の内外二重円筒からなる電極の
内側電極の内径開口部に動作気流噴出し用のノズルを配
置した構造の放電管であり、このノズル開口部の中心軸
上に前記X線発光物質を供給するニードルを配置し、前
記X線発光物質以外の気体として水素もしくはヘリウム
を用いそのいずれかを上記ノズルより噴出させ前記両電
極間に充電したコンデンサからパルス電流を供給して磁
気ピンチを生じさせることを特徴とする特許請求の範囲
第1項記載のX線発光装置。 3、前記X線発光物質が常温において液体の物質であり
、この液体を、前記ニードルにその中心軸部を貫通する
ように設けた細孔を介してニードル先端部に導入するこ
とを特徴とする特許請求の範囲第2項記載のX線発光装
置。 4、前記X線発光物質が常温において気体の物質であり
、この気体を、前記ニードルにその中心軸部を貫通する
ように設けた細孔を介してニードル先端部に導入するこ
とを特徴とする特許請求の範囲第2項記載のX線発光装
置。
[Scope of Claims] 1. An X-ray emitting substance is disposed at a location where a magnetic pinch occurs in a discharge tube having a structure that causes a magnetic pinch, and means is provided for causing a magnetic pinch using a gas other than the X-ray emitting substance; An X-ray light-emitting device characterized in that the high-temperature plasma turns the X-ray light-emitting substance into plasma and causes it to emit light. 2. The discharge tube has a structure in which a nozzle for ejecting operating airflow is arranged at the inner diameter opening of the inner electrode of the electrode consisting of coaxial inner and outer double cylinders, and the nozzle is arranged on the central axis of the nozzle opening. A needle for supplying the X-ray luminescent substance is arranged, hydrogen or helium is used as a gas other than the X-ray luminescent substance, either of which is ejected from the nozzle, and a pulse current is supplied from a capacitor charged between the two electrodes. 2. The X-ray emitting device according to claim 1, wherein the X-ray emitting device generates a magnetic pinch. 3. The X-ray emitting substance is a liquid substance at room temperature, and the liquid is introduced into the tip of the needle through a pore provided in the needle so as to penetrate through its central axis. An X-ray light emitting device according to claim 2. 4. The X-ray emitting substance is a gaseous substance at room temperature, and the gas is introduced into the tip of the needle through a pore provided in the needle so as to penetrate through its central axis. An X-ray light emitting device according to claim 2.
JP1463686A 1986-01-28 1986-01-28 X-ray luminescent device Pending JPS62176038A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1463686A JPS62176038A (en) 1986-01-28 1986-01-28 X-ray luminescent device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1463686A JPS62176038A (en) 1986-01-28 1986-01-28 X-ray luminescent device

Publications (1)

Publication Number Publication Date
JPS62176038A true JPS62176038A (en) 1987-08-01

Family

ID=11866682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1463686A Pending JPS62176038A (en) 1986-01-28 1986-01-28 X-ray luminescent device

Country Status (1)

Country Link
JP (1) JPS62176038A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1170982A1 (en) * 2000-07-03 2002-01-09 Asm Lithography B.V. Radiation source, lithographic apparatus, device manufacturing method, and device manufactured thereby
JP2004504706A (en) * 2000-07-04 2004-02-12 ランブダ フィジク アクチェンゲゼルシャフト Method for generating short wavelength radiation from gas discharge plasma and apparatus therefor
WO2011027737A1 (en) * 2009-09-01 2011-03-10 株式会社Ihi Plasma light source
JP2011054729A (en) * 2009-09-01 2011-03-17 Ihi Corp Plasma light source
JP2011054730A (en) * 2009-09-01 2011-03-17 Ihi Corp Plasma light source
US9000402B2 (en) 2009-09-01 2015-04-07 Ihi Corporation LPP EUV light source and method for producing the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1170982A1 (en) * 2000-07-03 2002-01-09 Asm Lithography B.V. Radiation source, lithographic apparatus, device manufacturing method, and device manufactured thereby
USRE41362E1 (en) 2000-07-03 2010-06-01 Asml Netherlands B.V. Radiation source, lithographic apparatus, device manufacturing method, and device manufactured thereby
JP2004504706A (en) * 2000-07-04 2004-02-12 ランブダ フィジク アクチェンゲゼルシャフト Method for generating short wavelength radiation from gas discharge plasma and apparatus therefor
JP4880179B2 (en) * 2000-07-04 2012-02-22 エクストリーム テクノロジーズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for generating short wavelength radiation from gas discharge plasma and apparatus therefor
WO2011027737A1 (en) * 2009-09-01 2011-03-10 株式会社Ihi Plasma light source
JP2011054729A (en) * 2009-09-01 2011-03-17 Ihi Corp Plasma light source
JP2011054730A (en) * 2009-09-01 2011-03-17 Ihi Corp Plasma light source
CN102484938A (en) * 2009-09-01 2012-05-30 株式会社Ihi Plasma light source
US8648536B2 (en) 2009-09-01 2014-02-11 Ihi Corporation Plasma light source
CN102484938B (en) * 2009-09-01 2014-12-10 株式会社Ihi Plasma light source
US9000402B2 (en) 2009-09-01 2015-04-07 Ihi Corporation LPP EUV light source and method for producing the same

Similar Documents

Publication Publication Date Title
US4538291A (en) X-ray source
US4800281A (en) Compact penning-discharge plasma source
JPH03129700A (en) Device generating cathode- ray beam from plasma source
JP2011505668A (en) Laser heating discharge plasma EUV light source
JPS6011417B2 (en) Hollow cathode discharge device
US5243638A (en) Apparatus and method for generating a plasma x-ray source
US2850225A (en) Pump
US6356618B1 (en) Extreme-UV electrical discharge source
JP3906207B2 (en) Electron beam source for stable focused electron beam formation
JPS62176038A (en) X-ray luminescent device
JP2002334663A (en) Charged particle generating device and charged particle generating method
JP4563807B2 (en) Gas discharge lamp
CN108428610A (en) A kind of small ion source and preparation method thereof
US6869574B2 (en) Apparatus and method of generating charged particles
JPH08102278A (en) Device and method for generating ion beam
US6445134B1 (en) Inner/outer coaxial tube arrangement for a plasma pinch chamber
JP2572787B2 (en) X-ray generator
Lamar et al. Proton Production in the Low Voltage Arc
JPS62224480A (en) Double beam gas ion laser
JPS5740845A (en) Ion beam generator
JP2001143894A (en) Plasma generator and apparatus for producing thin film
JPS62143350A (en) Plasma x-ray generator
JP2618006B2 (en) Negative charge generator
Silfvast Metal-Vapor Lasers
JPS6139593A (en) Metallic vapor laser