JPS62175550A - Setting of opening degree of indoor blow-off port in ductless air-conditioning system - Google Patents

Setting of opening degree of indoor blow-off port in ductless air-conditioning system

Info

Publication number
JPS62175550A
JPS62175550A JP61016406A JP1640686A JPS62175550A JP S62175550 A JPS62175550 A JP S62175550A JP 61016406 A JP61016406 A JP 61016406A JP 1640686 A JP1640686 A JP 1640686A JP S62175550 A JPS62175550 A JP S62175550A
Authority
JP
Japan
Prior art keywords
air
ceiling
indoor
outlet
opening degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61016406A
Other languages
Japanese (ja)
Other versions
JPH0219382B2 (en
Inventor
Daisuke Enokida
榎田 大輔
Kenichi Tokuda
得田 健一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OKUMURA CONSTR CO Ltd
Original Assignee
OKUMURA CONSTR CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OKUMURA CONSTR CO Ltd filed Critical OKUMURA CONSTR CO Ltd
Priority to JP61016406A priority Critical patent/JPS62175550A/en
Publication of JPS62175550A publication Critical patent/JPS62175550A/en
Publication of JPH0219382B2 publication Critical patent/JPH0219382B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Duct Arrangements (AREA)
  • Air-Flow Control Members (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To permit to set the opening degree of an indoor blow-off port correctly with respect to the desired amount of air by a method wherein the net of ventilation circuit is set preliminary in the space of a ceiling and the opening degree of the indoor blow-off port is set so as to obtain the desired amount of air by utilizing Kirchhoff's laws. CONSTITUTION:A blow-off port 22 is arranged so that air-conditioning air, blown off from the blow-off port 22 in a ceiling, flows uniformly along the flat surface of the ceiling. The model of a ventilating circuit net, in which air paths connecting connecting points mutually in case a fan 6 and indoor blow-off ports 1-4 are deemed to be the connecting points are supposed, is set. Subsequently, the desired blow-off amount of air from the indoor blow-off ports or the objective amount of air of the air paths is set and the specific resistance of the air path, which is determined by the structure of a building, is set. The amount of pressure drop in respective meshes of net, constituting closed circuits in the net of the ventilating circuit, is indicated as the function of the amount of air, flowing through the air paths, and the specific resistance and Kirchhoff's laws, in which the amount of respective pressure drops are zero, are employed to operate the specific resistance of the air path corresponding to the opening degree of the indoor blow-off ports so as to obtain the desired amount of air whereby the opening degree of the indoor blow-off port may be set.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、天井裏からダクトを削減したいわゆるダク
トレス空調システムにおける室内吹出口の開度設定法に
関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for setting the opening degree of an indoor air outlet in a so-called ductless air conditioning system in which a duct is removed from the ceiling.

〈従来の技術〉 ダクトレス空調システムは、送風機からの調和空気を天
井内吹出口より天井裏の空間に供給して、天井裏の空間
を給気チャンバーとし、天井に取り付けた室内吹出口か
ら被空調室にコh1和空気を吹き出すらのである。この
ダクトレス空調システムは、下記の利点を存するため、
大型店舗のような大スペースの空調システムとして多用
されている。
<Conventional technology> A ductless air conditioning system supplies conditioned air from a blower to the space above the attic through an outlet in the ceiling. This is to blow out a small amount of air into the room. This ductless air conditioning system has the following advantages:
It is often used as an air conditioning system for large spaces such as large stores.

■ メインダクト以外のダクト工事や保温工事がないた
め、工期を短縮でき、工事費を低減できる。
■ Since there is no duct construction or insulation work other than the main duct, the construction period can be shortened and construction costs can be reduced.

■ 天井内のダクトを大幅に簡略することで、従来のダ
クト方式に比べて梁下端と天井面のふところ寸法を低減
して、階高を低減でさる。
■ By significantly simplifying the ducts in the ceiling, the bottom end of the beam and the bottom of the ceiling are reduced compared to conventional duct systems, resulting in a reduction in floor height.

■ メインダクトと室内吹出口との接続がないので、室
内吹出口の配置が自由にできる。したがって、天井面の
デザインの自由度が確保され、竣工後の模様替えへの対
応が容易となる。すなわら、室内吹出口の配置のフレキ
シビリティが得られる。
■ Since there is no connection between the main duct and the indoor air outlet, you can freely arrange the indoor air outlet. Therefore, flexibility in the design of the ceiling surface is ensured, and it becomes easy to respond to remodeling after completion of construction. In other words, flexibility in the arrangement of indoor air outlets can be obtained.

■ 天井裏の空間を給気チャンバーとしているため、天
井面・床面の輻射効果と熱容量の大きい床面の蓄熱効果
か利用できる。
■ Since the space under the attic is used as an air supply chamber, it is possible to utilize the radiation effect of the ceiling and floor as well as the heat storage effect of the floor, which has a large heat capacity.

ところが、上記ダクトレス空調システムでは、次に述べ
る理由で、室内吹出口からの吹出風量が予測できず、室
内吹出口の開度をその室内吹出口を実際に操作して試行
錯誤で設定しな+jればならず、手間、時間がかかると
いう問題がある。オなわち、第13.14図に示すよう
に、送風機100から送られて来た調和空気は、天井内
吹出口101より、天井裏の空間102に吹き出され、
天井パの空間102を矢印A、Bに示すように対流する
。そして、天井裏の空間102から室内吹出口103,
104,105,106を通って被空調室+15に調和
空気が供給される。ところで天井裏の空間+02を対流
している矢印A、Bて示す1調和空気の流れの方向と、
室内吹出口103゜104.105,106から吹き出
される矢印Xで示す空気の流れの方向とは直交関係にあ
り、矢印A、Bで示す対流している空気には室内吹出口
+03.IO4,105,106の吹出し方向Xの速度
成分を持たない。したがって、室内吹出口103、IO
4,105,106からの吹出空気用は室内吹出口10
3,104.105,106を含む天井内外の静圧差で
定まる。一方、ベルヌイの定理により、(動圧)+(静
圧)=一定であるので、天井裏の空間102の静圧分布
は天井裏の対流の流速分布によって定まる。ところが、
天井裏空間の流速分布は天井裏の構造によって変化して
複雑であり、また一つの室内吹出口の開度を変えろだけ
て変わり、実際上予測することは難しい。
However, in the above-mentioned ductless air conditioning system, the air volume from the indoor air outlet cannot be predicted for the following reasons, and the opening degree of the indoor air outlet must be set by trial and error by actually operating the indoor air outlet. However, there is a problem in that it takes a lot of effort and time. That is, as shown in FIG. 13.14, the conditioned air sent from the blower 100 is blown out from the in-ceiling outlet 101 into the space 102 under the attic,
Convection flows through the ceiling space 102 as shown by arrows A and B. Then, from the attic space 102, the indoor air outlet 103,
Conditioned air is supplied to the air-conditioned room +15 through 104, 105, and 106. By the way, the direction of the flow of conditioned air shown by arrows A and B that is convecting in the space +02 under the attic,
It is perpendicular to the direction of the flow of air shown by arrows X blown out from the indoor air outlets 103°, 104, 105, and 106, and the convectional air shown by arrows A and B is connected to the indoor air outlets +03. It does not have a velocity component in the blowing direction X of IO4, 105, and 106. Therefore, indoor air outlet 103, IO
Indoor air outlet 10 for air blown from 4, 105, 106
It is determined by the static pressure difference between the inside and outside of the ceiling, including 3, 104, 105, and 106. On the other hand, according to Bernoulli's theorem, (dynamic pressure) + (static pressure) = constant, so the static pressure distribution in the space 102 in the attic is determined by the flow velocity distribution of convection in the attic. However,
The flow velocity distribution in the attic space is complicated and varies depending on the structure of the attic, and it also changes depending on the opening degree of a single indoor air outlet, so it is difficult to predict in practice.

したがって、室内吹出口+ 03.l 04.105゜
106からの風量を予測することは難しい。
Therefore, the indoor air outlet +03. It is difficult to predict the airflow from l 04.105°106.

このため、従来においては、室内吹出口の1311度設
定は、前述の如く、実機の試行錯誤により行なわなけれ
ばならず、工数と時間がかかるという問題があった。ま
た、このように室内吹出口からの風量を予測できないた
め、室内吹出口の開度を自動調節できないという問題が
あった。
Therefore, in the past, setting the indoor air outlet to 1311 degrees had to be done by trial and error using the actual machine, as described above, which posed a problem in that it took a lot of man-hours and time. Furthermore, since the amount of air from the indoor air outlet cannot be predicted, there is a problem in that the opening degree of the indoor air outlet cannot be automatically adjusted.

また、室内115には人間5011機械装置502等の
発熱源があり、さらに、天井裏の空間102には照明器
具503等の発熱源がある。これらの発熱による熱負荷
を考慮して、室内115の温度制御をしなければならな
い。しかし、上記のような実機の試行錯誤で、室内の温
度を考慮して、室内吹出口の開度を設定するのは難しい
。特に、熱負荷は時々刻々変化するので、変動する熱負
荷を考慮して試行錯誤で室内吹出口の開度を設定するの
は実際上極めて困難である。
Further, there are heat sources such as a person 5011 and a mechanical device 502 in the room 115, and furthermore, there are heat sources such as a lighting fixture 503 in the space 102 under the ceiling. The temperature in the room 115 must be controlled in consideration of the heat load caused by these heat generation. However, it is difficult to set the opening degree of the indoor air outlet in consideration of the indoor temperature by trial and error using the actual machine as described above. In particular, since the heat load changes from moment to moment, it is actually extremely difficult to set the opening degree of the indoor air outlet by trial and error in consideration of the fluctuating heat load.

〈発明の目的〉 そこで、この第1の発明の目的は、試行錯誤によらず、
所望風量に対して室内吹出口の開度を正確に設定できる
ようにすることである。
<Purpose of the invention> Therefore, the purpose of this first invention is to
To accurately set the opening degree of an indoor air outlet with respect to a desired air volume.

この第2の発明の目的は、試行錯誤によらず、熱負荷に
応じて室内吹出口の開度を正確に設定できるようにする
ことである。
The purpose of this second invention is to enable the opening degree of the indoor air outlet to be accurately set according to the heat load without trial and error.

〈発明の構成〉 上記目的を達成するため、この第1の発明は、送風機か
らの調和空気を天井内吹出口より天井裏の空間に供給し
て、天井裏の空間を給気チャンバーとし、天井に取り付
けた複数の室内吹出口から被空調室に調和空気を供給す
るダクトレス空調システムにおいて、上記天井内吹出口
は、その天井内吹出口から吹き出された調和空気が天井
平面に沿って略全方向に一様に流れるような構成とし、
」二足送風機および上記室内吹出口を接続点として、そ
の接続点相互を連結する風道を仮定した通気回路網のモ
デルを設定し、次に、室内吹出口からの所望の吹出風量
である風道の目標風量(V2′、V3°。
<Structure of the Invention> In order to achieve the above object, the first invention supplies conditioned air from a blower to the space in the attic from an in-ceiling outlet, and uses the space in the attic as an air supply chamber. In a ductless air conditioning system that supplies conditioned air to an air-conditioned room from multiple indoor air outlets installed in The composition is such that it flows uniformly,
A model of the ventilation network is set up with the two-legged blower and the indoor air outlet as the connection points, and a ventilation network is assumed to connect the connection points. Target air volume on the road (V2', V3°.

V4’、V5°)を設定すると共に、建物の構造によっ
て定まる風道の比抵抗(R+、Ro、R7,Rs、Re
)を設定し、次に、上記通気回路網のモデルに、」二足
通気回路網における閉回路をなす各網目における圧力降
下量(Fi)を上記風道を流れる風量(V i)および
比抵抗(Ri)の関数として表わし、上記各圧力降下量
(Fi)を零とするギルヒホッフの法則を用いて、上記
目標風量(V2′、V3′、■4′、V5りを得るよう
に、室内吹出口の開度に対応する風道の比抵抗(112
,R3,R,、Rfl)を算出して、上記室内吹出口の
開度を設定するようにしたことを特徴としている。
V4', V5°), and also set the specific resistance of the wind duct determined by the structure of the building (R+, Ro, R7, Rs, Re
), and then, in the model of the ventilation network, the amount of pressure drop (Fi) in each mesh forming the closed circuit in the two-legged ventilation network is calculated by the amount of air flowing through the air passage (Vi) and the specific resistance. (Ri), and using Gilchhoff's law in which each of the above pressure drops (Fi) is set to zero, indoor air blowing is performed to obtain the above target air volumes (V2', V3', ■4', and V5). The specific resistance of the wind passage corresponding to the opening degree of the outlet (112
, R3, R, , Rfl) to set the opening degree of the indoor air outlet.

また、第2の発明は、送風機からの調和空気を天井内吹
出口より天井裏の空間に供給して、天Jt−裏の空間を
給気チャンバーとし、天井に取り付けた複数の室内吹出
口から被空調室に調和空気を供給するダクトレス空調シ
ステムにおいて、上記天井内吹出口は、その天井内吹出
口から吹き出された講1和空気が天井平面にtf)って
略全方向に一様に流れるような構成とし、上記送風機お
よび上記室内吹出口を接続点として、その接続点H1r
iを連結4−る風道を仮定した通気回路網のモデルを設
定し、次に、室内吹出口からの所望の吹出風filであ
る風道の目標風m (V2’、V2′、V4′、 v 
s’ )を設定すると共に、建物の構造によって定まる
風道の比抵抗(n 1. Ru 、 Rq 、 RIl
、 Rs )を設定し、次に、上記通気回路網のモデル
に、上記通気回路網における閉回路をなす各網目におけ
る圧力降下1(1”i)を上記風道を流れる風量(V 
i)および比抵抗(Ri)の関数として表わし、上記各
圧力降下量(Fi)を零とするキルヒホッフの法ful
lを用いて、上記口(悪風量(V2′、v3’、v、′
、 V 5+ )を得るように、室内吹出口の開度に対
応する風道の比抵抗(R2,1N3.R,。
In addition, the second invention supplies conditioned air from a blower to a space in the attic from an in-ceiling outlet, and uses the space behind the ceiling as an air supply chamber, and from a plurality of indoor outlets attached to the ceiling. In a ductless air conditioning system that supplies conditioned air to an air-conditioned room, the air blown out from the ceiling outlet flows uniformly in substantially all directions toward the ceiling plane. The above-mentioned air blower and the above-mentioned indoor air outlet are used as connection points, and the connection point H1r
A model of the ventilation network is set up assuming a wind duct connecting 4-i, and then the target wind m (V2', V2', V4' , v
s'), as well as the specific resistance of the wind duct (n1. Ru, Rq, RIl) determined by the structure of the building.
, Rs), and then, in the model of the ventilation circuit network, the pressure drop 1 (1"i) in each mesh forming a closed circuit in the ventilation circuit network is expressed as the air volume (V
Kirchhoff's method ful expressed as a function of i) and specific resistance (Ri), with each of the above pressure drops (Fi) set to zero.
Using
, V 5+ ), the specific resistance of the air duct (R2, 1N3.R,) corresponding to the opening degree of the indoor air outlet.

R7)を算出して、上記室内吹出口の開度を設定し、次
に、各エリアに供給されろ風量(V1、V1、V7゜V
a、 V8、V9)と天井内吹出温度(’r0)と室内
設定温度(Tr)と総発生熱ffl (H)により定ま
る天井内各工’) 7 の ’lHt度(第8.第2.
Tz、’rJを算出し、この天井内路エリアに存する室
内1吹出口からの吹出温度(T1、第2.第3. ′I
’4)と吹出風!3 (V 1. V 2 、 V 3
 、 V 4)とに基づイテ室内供給熱ff1(C1,
C2,C:+、C−)を算出し、次に、上記室内設定温
度(Tr)となるために必要な室内の必要熱量(A、′
、A2′、A3′、)\4°)と室内供給熱量(C,、
C2,C,、C4)とを比較して、上記室内供給熱量(
C,、C2,C3,C−)と室内必要熱量(Alo、A
2.’Δ、3”A4゛)とか略等しくなるように、上記
目標風量(V2′、v2′、v□’V5’)を修正設定
し、再度、上記通気回路網にキルヒホッフの法則を用い
て、室内吹出口の開度に対応する比抵抗(R2,R3,
R−、R5)を算出して室内吹出口の開度を設定するよ
うにしたことを特徴としている。
R7) and set the opening degree of the indoor air outlet, then calculate the amount of air supplied to each area (V1, V1, V7°V
a, V8, V9), the ceiling blowout temperature ('r0), the indoor set temperature (Tr), and the total generated heat ffl (H)') 7 'lHt degree (8th. 2nd.
Calculate Tz, 'rJ, and calculate the air outlet temperature (T1, 2nd, 3rd, 'I
'4) And the blowing wind! 3 (V 1. V 2 , V 3
, V4) and the indoor supply heat ff1(C1,
C2, C: +, C-), and then calculate the required amount of indoor heat (A, '
, A2', A3', )\4°) and indoor heat supply (C,,
C2, C,, C4), the indoor heat supply amount (
C,, C2, C3, C-) and the required indoor heat amount (Alo, A
2. The above target air volume (V2', v2', v□'V5') is corrected and set so that it becomes approximately equal to 'Δ, 3''A4゛), and Kirchhoff's law is used again for the above ventilation circuit network, Specific resistance (R2, R3,
R-, R5) is calculated to set the opening degree of the indoor air outlet.

〈実施例〉 以下、この発明を図示の実施例により詳細に説明する。<Example> Hereinafter, the present invention will be explained in detail with reference to illustrated embodiments.

第1図において、11は肢空調室、12は天井平面、1
3は上スラブ、15は天井裏の空間、16は梁であり、
501は人間、502は事務機等のi緘装置、503は
照明器具である。
In Figure 1, 11 is a limb air conditioning room, 12 is a ceiling plane, 1
3 is the upper slab, 15 is the space behind the ceiling, 16 is the beam,
501 is a person, 502 is an i-liner device such as an office machine, and 503 is a lighting fixture.

また、6は調和空気を送給する送風機、2Iは給気ダク
ト、22は給気ダクト21の先端に設けられた天井内吹
出口である。この天井内吹出口22は、調和空気を天井
平面12と直交する上方向、ずなわら」−スラブ13に
向けて吹き付けて、はね返った空気を天井平面12に沿
って略全方向に一様に流すようにしている。この天井内
吹出口(以下噴水型天井内吹出口という)22の具体的
構造は第2図に示すようになっており、多孔板201の
複数の孔202,202.・・・より、多孔板201の
全面から均等に北向きに調和空気を徐々に吹き出すよう
になっている。
Further, 6 is a blower for supplying conditioned air, 2I is an air supply duct, and 22 is an in-ceiling outlet provided at the tip of the air supply duct 21. This in-ceiling air outlet 22 blows conditioned air in an upward direction orthogonal to the ceiling plane 12 toward the slab 13, and the bounced air is uniformly distributed in substantially all directions along the ceiling plane 12. I try to let it flow. The concrete structure of this in-ceiling outlet (hereinafter referred to as a fountain-type in-ceiling outlet) 22 is as shown in FIG. ..., the conditioned air is gradually blown out northward evenly from the entire surface of the perforated plate 201.

また、l、2,3.4は天井平面I2に設けた室内吹出
口(室内吹出口3.4は室内吹出口1゜2に対して紙面
の手前に離れて存する。)、5はリターン口である。
In addition, 1, 2, and 3.4 are indoor air outlets provided on the ceiling plane I2 (indoor air outlet 3.4 is located away from the indoor air outlet 1°2 in front of the page), and 5 is a return port. It is.

次に、上記送風機6および室内吹出DI、2゜3.4を
接続点として、第3図、第4図に示すような通気回路網
のモデルを設定4−ろ。そして、第3、・1図中で線で
示すように、各接続点1.2゜3.4.Gを接続する風
道を仮定する。この風道は梁下、室内吹出口等を通ると
仮定した空気の通路である。
Next, a model of the ventilation circuit network as shown in FIGS. 3 and 4 is set up using the above-mentioned air blower 6 and the indoor air outlet DI, 2° 3.4 as connection points. Then, as shown by the lines in Figure 3.1, each connection point is 1.2° 3.4°. Assume a wind duct connecting G. This air passage is assumed to be an air path that passes under a beam, through an indoor air outlet, etc.

第4図において、■、〜V9は各風道を流れろ風量(m
3/s )、R,〜Rsは各風道の比抵抗(kgf −
527m8)、q2〜q5は各網目(通気回路網中の閉
回路)の風量(m3/s )である。上記比抵抗R1は
給気ダクト2Iの抵抗であり、比抵抗na、Rr。
In Figure 4, ■, ~V9 is the amount of air flowing through each airway (m
3/s), R, ~Rs is the specific resistance (kgf −
527 m8), and q2 to q5 are the air volume (m3/s) of each mesh (closed circuit in the ventilation network). The specific resistance R1 is the resistance of the air supply duct 2I, and the specific resistances na and Rr.

R8,R9は天井裏空間15の粱16.16の下の寸法
等の天井裏空間の構造によって定まる乙のであり、比抵
抗1’l7.I”t1、R,、+15は主として室内吹
出口1,4.3,2の開度によって定まるしのである。
R8 and R9 are determined by the structure of the attic space, such as the dimensions below the ridges 16 and 16 of the attic space 15, and have a specific resistance of 1'l7. I''t1, R, , +15 is mainly determined by the opening degree of the indoor air outlet 1, 4, 3, 2.

一方、天井裏空間I5におi)7+’ll下寸法と局部
抵抗との関係は第5図に示すようになっており、これに
より求まる梁下の局部比抵抗に天井内の壁面の比抵抗等
を加えて天51′、裏空間にある風道の比抵抗R8,1
17,R8,I?Qは求められろ。
On the other hand, the relationship between the i) 7+'ll lower dimension and the local resistance in the ceiling space I5 is shown in Figure 5, and the local resistivity under the beam determined from this is combined with the resistivity of the walls in the ceiling. etc., the specific resistance of the wind duct in the top 51' and back space is R8,1.
17, R8, I? Q is required.

また、室内吹出口1,2,3.4の開度と圧力損失を示
す第6図のグラフより、室内吹出口1.2゜3.4の開
度に対する比抵抗が求まり、これに既知のリターン[]
5や披空1個室ll内の空気通路の比抵抗を加算して、
室内吹出口1.11.3.2の下流の風道の比抵抗fl
1、 113.11.、R5が求まる。
In addition, from the graph in Figure 6 showing the opening degrees and pressure loss of the indoor air outlets 1, 2, and 3.4, the specific resistance with respect to the opening degrees of the indoor air outlets 1.2° and 3.4 can be determined, and the known return[]
5 and the specific resistance of the air passage in one private chamber,
Specific resistance fl of the air duct downstream of indoor air outlet 1.11.3.2
1, 113.11. , R5 are found.

したがって、比抵抗R2,R3,R4,f15は室内吹
出口1,4,3.2の開度に対して一色的に定まる。
Therefore, the specific resistances R2, R3, R4, and f15 are uniformly determined with respect to the opening degrees of the indoor air outlets 1, 4, and 3.2.

さて、上記風量V1〜V11、網目の風量q+〜q5に
対して次式が成立する。
Now, the following equation holds true for the air volumes V1 to V11 and the mesh air volumes q+ to q5.

一方、単位時間に単位風量が通過したときの圧力損失り
は、 h−R−V” となる。
On the other hand, the pressure loss when a unit amount of air passes in a unit time is h-R-V''.

h :圧力損失(mmAqまたはkgf/m’ )■・
風量(m’/s ) R:比抵抗(kgf −s2/ m’ )したがって、
谷網目について第4図の矢印の方向に空気が流れ、その
過程での圧力降下量(F)を関数121〜125として
次式が成立する。
h: Pressure loss (mmAq or kgf/m') ■・
Air volume (m'/s) R: Specific resistance (kgf - s2/m') Therefore,
Air flows in the direction of the arrow in FIG. 4 about the valley mesh, and the following equation holds true with the amount of pressure drop (F) in this process as functions 121 to 125.

−Rs・Vs・1Vsl ここで各網目は閉回路を構成しているから、Fl=F、
=・・・・・・=FS=Oである。なお、P「は送風機
の吐出圧力である。
-Rs・Vs・1Vsl Here, each mesh constitutes a closed circuit, so Fl=F,
=...=FS=O. Note that P" is the discharge pressure of the blower.

上記(+)、(2)式より、比抵抗R1〜R11を設定
ずれば、風量v、〜V9が求まることになる。
From the above equations (+) and (2), if the specific resistances R1 to R11 are set, the air volume v, to V9 can be determined.

また、風量■1〜V、を設定ずれば、比抵抗R1〜R3
が求まることになる。このことを基にし、熱負荷を考慮
し、コンピュータにより第7図のようにして室内吹出l
コI、2,3.4の開度を設定する。
Also, if the air volume ■1~V is set, the specific resistance R1~R3
will be found. Based on this, and taking into account the heat load, the indoor air outlet is set up by computer as shown in Figure 7.
Set the opening degree of I, 2, 3.4.

まず、ステップS、で、総発生熱量口、調和空気の天井
的吹出温度′roおよび室内設定温度Trにより定まる
供給総風量Vと、給気ダクト21および天井裏空間15
を含む風道の比抵抗R詠、既知である天井裏空間I5の
風道の比抵抗R8〜R3をインプットする。
First, in step S, the total amount of air to be supplied V determined by the total amount of heat generated, the ceiling blowout temperature 'ro of conditioned air, and the room temperature setting Tr, the supply air duct 21, and the attic space 15 are determined.
Input the specific resistance R of the air duct including the air duct, and the known specific resistance R8 to R3 of the air duct in the attic space I5.

次いで、スラップS2に進んで、第15図に示すように
、室内15を4つのエリアE1、E1、E3゜R4に分
割し、各エリアに対応する室内発生熱量A1〜A4と、
天井照明器具の照度B、〜B4つまりそれにより定まる
発熱mと、天井的吹田温度T。
Next, proceeding to slap S2, as shown in FIG. 15, the indoor room 15 is divided into four areas E1, E1, E3°R4, and the amount of indoor heat generated A1 to A4 corresponding to each area is calculated.
Illuminance B, ~B4 of the ceiling lighting equipment, that is, heat generation m determined by it, and Suita temperature T on the ceiling.

との熱データをインプットする。Input the thermal data.

次いで、ステップS3に進んで室内吹出口1゜4.3.
2の比抵抗R2〜R6を仮定し、上記熱データを考慮し
て、室内吹出口1.4.3.2の目標風mV2° 、V
3° 、■4° 、V s’ ヲ初期設定オろ。
Next, the process proceeds to step S3, where the indoor air outlet 1°4.3.
Assuming specific resistances R2 to R6 of 2 and taking into account the above thermal data, the target wind mV2° of indoor air outlet 1.4.3.2, V
3°, ■4°, Vs' are the initial settings.

次いで、ステップS4に進んで、11り述の(1)式%
式% (2)式とにより、各風道の風量■2〜V9を算出する
Next, the process proceeds to step S4, and formula (1) described in 11%
The air volume ■2 to V9 of each air duct is calculated using the formula % (2).

次いで、ステップS5に進んで、先に算出した室内吹出
口1,4.3’、2からの吹出風量V2〜v5か目標風
量 V 2°〜Vs’ に対して、許容範囲内、っまり
l’Vi −Vi’ l /vi’ ≦ 0.01にな
っているか否かを判断し、許容範囲内に入っていれば、
先に仮定した比抵抗R7〜R1を適正なものとして、ス
テップS7に進む。一方、算出された吹田風m V 2
〜v5が目標風m V 2°〜V5°に対して許容範囲
内に入っていない場合には、ステップS。に進む。
Next, the process proceeds to step S5, and the previously calculated air volume V2 to v5 from the indoor air outlets 1, 4, 3', and 2 or the target air volume V2° to Vs' is within the allowable range, exactly l. Determine whether 'Vi - Vi' l /vi' ≦ 0.01, and if it is within the allowable range,
The previously assumed specific resistances R7 to R1 are assumed to be appropriate, and the process proceeds to step S7. On the other hand, the calculated Suita wind m V 2
~v5 is not within the allowable range with respect to the target wind mV2°~V5°, step S. Proceed to.

ステップS。では先に仮定した比抵抗R2〜1工。Step S. Now, let's take the resistivity R2-1 that was assumed earlier.

は適正でないとして、新たに比抵抗II2〜R1を次式
により設定してステップS4に戻る。
is determined to be inappropriate, and the resistivity II2 to R1 are newly set using the following formula, and the process returns to step S4.

fli←旧×5]] このように、対流が起らない状態でギルヒポラフの法則
を適用して算出し1こ風jilV2〜V、を目標風量V
t’ 〜v5° と比較して所望の風量になるまで、室
内吹出口の開口度(すなわち吹出口の比抵抗)を変化さ
U゛て設定することによって、実機の試行錯誤によらず
、最適な室内吹出口の開度を簡単かつ正確に求めること
ができる。
fli←old × 5] In this way, applying Gilhipolaf's law in a state where no convection occurs, the target air volume V
By changing and setting the opening degree of the indoor air outlet (i.e., the specific resistance of the air outlet) until the desired air volume is reached compared to t' ~ v5°, the optimal The opening degree of the indoor air outlet can be easily and accurately determined.

次いで、ステップS、に進んで、第16図に示すように
、天井内絡エリアEl′〜E4°における温度′r1〜
′F4を算出する。この温度T1〜T4は天井面12お
よびスラブ13を貰流する熱と、照明器具503.50
3.・・・からの発熱mと、各エリアに供給される調和
空気のmおよび温度とにより定まる。
Next, proceeding to step S, as shown in FIG.
'F4 is calculated. These temperatures T1 to T4 are the heat flowing through the ceiling surface 12 and the slab 13 and the lighting equipment 503.50.
3. It is determined by the heat generation m from ... and the m and temperature of the conditioned air supplied to each area.

次いで、ステップS8に進んで、上記天井内の各エリア
El″〜E4゛の温度T、−Tいつまり室内吹出し空気
温度T1〜′r4と吹出風量V、〜V4とに基づいて、
各室内吹出口1〜4からの室内供給熱量01〜C4を算
出する。
Next, the process proceeds to step S8, and based on the temperature T, -T of each area El'' to E4'' in the ceiling, that is, the indoor air blowout temperature T1 to 'r4, and the blowout air volume V, to V4,
Indoor heat supply amounts 01 to C4 from each indoor outlet 1 to 4 are calculated.

次いで、ステップS、に進んで、室内の各エリアE、〜
E4における必要熱ff1A、’〜A4°を天井内の各
エリアEl°〜E4′の温度と室内発生熱ff1A。
Next, proceed to step S, and check each area E, ~
The required heat ff1A,'~A4° in E4 is the temperature of each area El°~E4' in the ceiling and the indoor generated heat ff1A.

〜A4と室内設定温度1’rより算出する。たとえば、
次の如くである。
- Calculated from A4 and indoor set temperature 1'r. for example,
It is as follows.

Al’−AI−(Tr−TO)K ここで、Kは天井面の熱貫流率である。Al'-AI-(Tr-TO)K Here, K is the heat transmission coefficient of the ceiling surface.

次いて、ステップS IQに進んで、供給熱m Cl〜
C1が必要熱量A1°〜A4′に対して許容範囲内、つ
まりj Ai’−Cl <  Ci ≦ 0.OIにな
っているか否かを判断し、許容範囲内に入っていれば、
ステップS +2に進んで先に仮定した目標風量V2゛
〜V、′、ひいては室内吹出口の比抵抗1’l 2〜R
5,室内吹出口1〜4の開度か適正なものとして、これ
らをアウトプットする。一方、許容範囲内に入っていな
い場合には、ステップS Llに進んで、目標風量V2
°〜Vo′を修正設定し、ステップS4に戻り、室内供
給熱ff1c、−C,か室内必要熱量A、”〜A4°に
略等しくなるまで、先に述べた一連のステップを繰り返
す。
Next, proceeding to step S IQ, supply heat m Cl~
C1 is within the allowable range for the required heat amount A1° to A4', that is, j Ai'-Cl < Ci ≦ 0. Determine whether it is OI or not, and if it is within the allowable range,
Proceeding to step S +2, the previously assumed target air volume V2゛~V,', and the specific resistance of the indoor air outlet 1'l2~R
5. Output the opening degrees of the indoor air outlets 1 to 4 as appropriate. On the other hand, if it is not within the allowable range, proceed to step S Ll and set the target air volume V2.
˜Vo' is corrected and the process returns to step S4, where the series of steps described above is repeated until the indoor supplied heat ff1c, -C, becomes approximately equal to the indoor required heat amount A,''˜A4°.

なお、第1.3.4図に示した通気回路網は、送風機6
から出た調和空気は天井裏空間15や被空調室11を経
由して再び送風機6に直接戻る場合を示しているが、こ
れに限定されることはなく、被空調室11の空気が室外
に出る場合は、そのmだけ室外空気を送風機6が吸引し
て、天井裏空間15に送給するようにすれば、第3.4
図はこの場合の通気回路網を表わしていることになる。
Note that the ventilation circuit network shown in Figure 1.3.4 includes the blower 6.
Although the case is shown in which the conditioned air coming out of the attic space 15 and the conditioned room 11 return directly to the blower 6 again, the case is not limited to this, and the air in the conditioned room 11 is returned outdoors. 3.4, if the air blower 6 sucks the outdoor air by that m and sends it to the attic space 15.
The figure represents the ventilation network in this case.

また、上記実施例では、比抵抗R2〜Roを数値解析で
求めたが、これを目標風mvt’〜V5’を既知として
、比抵抗R2〜R5を代数演算により求めて乙よい。
Further, in the above embodiment, the specific resistances R2 to Ro were obtained by numerical analysis, but it is preferable to obtain the specific resistances R2 to R5 by algebraic calculations, assuming that the target winds mvt' to V5' are known.

第8.9図は本発明の方法で設定した第1の実験例を示
している。この実験例では天井内吹出口として第2図に
示す噴水型天井内吹田口6を用い、天井裏空間には梁が
ある。
Figure 8.9 shows a first experimental example set up according to the method of the invention. In this experimental example, a fountain-type in-ceiling outlet 6 shown in FIG. 2 is used as an in-ceiling air outlet, and there is a beam in the attic space.

第8図中の風向を示す矢印で分かるように、天Jト裏空
間には対流が起っていない。また、第9図から分かるよ
うに、()で囲まれた風量の計算値と()で囲まれない
風■の実測値とは良く一致している。これは、天井裏空
間I5に対流が生じていないからだと考えられろ。
As can be seen from the arrows indicating the wind direction in Figure 8, no convection is occurring in the space above and below the sky. Furthermore, as can be seen from FIG. 9, the calculated values of the air volume enclosed in parentheses and the actual measured values of the wind ■, which are not enclosed in parentheses, agree well. This is thought to be because no convection is occurring in the attic space I5.

第10.11図は本発明の方法で設定した第2の実験例
を示している。この実験例では、天井内吹出口として、
天井平面に平行に全方向に調和空気を吹き出す第12図
に示す扇子形状つまり拡散型の天井内吹田口35を用い
、天井裏空間には粱があり、かつエレベータ等の空調さ
れない障害物36がある。
Figure 10.11 shows a second experimental example set up according to the method of the invention. In this experimental example, as an in-ceiling air outlet,
Using a fan-shaped in-ceiling outlet 35 shown in FIG. 12 that blows out conditioned air in all directions parallel to the ceiling plane, it is assumed that there are grains in the attic space and there are no air-conditioned obstacles 36 such as elevators. be.

第10図は天井裏空間の静圧分布を示し、一様かつ全面
的に天井内吹出口35から静圧が低下しており、対流が
起こっていないことが分かる。また、第11図により、
実測値と計算値が良く一致することが分かる。
FIG. 10 shows the static pressure distribution in the attic space, and it can be seen that the static pressure is uniformly and entirely lowered from the in-ceiling air outlet 35, and no convection is occurring. Also, according to Figure 11,
It can be seen that the measured values and calculated values agree well.

〈発明の効果〉 以上より明らかなように、この第1の発明は、天井裏の
空間に対流が起こらないようにした上で、通気回路網を
仮定して、ギルヒホッフの法則を■;11用して、目標
風量を得ろように室内吹出口の開度を設定したので、実
機の試行錯誤によらず最適な室内吹出口の開度を簡単か
つ正確に設定することができる。また、室内吹出口から
の風量を予測することができるため、ダクトレス空調シ
ステムにおいて、室内の熱負荷の変化あるいは季節的な
変化に応じて、送風機の吐出量や室内吹出口の開度を要
求に応じて自動調整することか可能になる。
<Effects of the invention> As is clear from the above, the first invention prevents convection from occurring in the attic space, assumes a ventilation network, and uses Gilchhoff's law for Since the opening degree of the indoor air outlet is set so as to obtain the target air volume, the optimum opening degree of the indoor air outlet can be easily and accurately set without relying on trial and error using the actual machine. In addition, since the air volume from the indoor air outlet can be predicted, in a ductless air conditioning system, the blower discharge volume and the opening degree of the indoor air outlet can be adjusted according to changes in the indoor heat load or seasonal changes. It will be possible to automatically adjust accordingly.

また、第2の発明は、第1の発明の構成に加えて、室内
供給熱量が室内必要熱mに等しくなるようにしているの
で、第1の発明の効果に加えて、熱負荷に応じて室内吹
出口の開度を簡単かつ正確に設定できる。
Moreover, in addition to the configuration of the first invention, the second invention makes the indoor heat supply equal to the indoor required heat m, so in addition to the effect of the first invention, The opening degree of the indoor air outlet can be easily and accurately set.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例の断面図、第2図。 第12図は天井内吹出口の斜視図、第3.4図は通気回
路網を示す図、第5図、第6図は梁下の抵抗および室内
吹出口の特性図、第7図はフローチャート、第8.9,
10.11図は実験データを示す図、第13図、第14
図は従来例の縦断面図と水平断面図、第15図は天井お
よび室内のエリアを説明する平面図、第16図は天井裏
の拡大図である。 1.2,3.4・・・室内吹出口、6・・・送風機、!
!・・・被空調室、15・・・天井裏の空間、22.3
5・・・天井内吹出口。
FIG. 1 is a sectional view of an embodiment of the present invention, and FIG. 2 is a sectional view of an embodiment of the present invention. Figure 12 is a perspective view of the air outlet in the ceiling, Figures 3.4 are diagrams showing the ventilation circuit network, Figures 5 and 6 are characteristic diagrams of the resistance under the beam and the indoor air outlet, and Figure 7 is a flowchart. , No. 8.9,
10.11 shows experimental data, Figures 13 and 14
The figures are a vertical sectional view and a horizontal sectional view of a conventional example, FIG. 15 is a plan view illustrating the ceiling and interior areas, and FIG. 16 is an enlarged view of the attic space. 1.2, 3.4...Indoor air outlet, 6...Blower,!
! ...Air conditioned room, 15...Space behind the ceiling, 22.3
5...In-ceiling air outlet.

Claims (4)

【特許請求の範囲】[Claims] (1)送風機からの調和空気を天井内吹出口より天井裏
の空間に供給して、天井裏の空間を給気チャンバーとし
、天井に取り付けた複数の室内吹出口から被空調室に調
和空気を供給するダクトレス空調システムにおいて、 上記天井内吹出口は、その天井内吹出口から吹き出され
た調和空気が天井平面に沿って略全方向に一様に流れる
ような構成とし、 上記送風機および上記室内吹出口を接続点として、その
接続点相互を連結する風道を仮定した通気回路網のモデ
ルを設定し、 次に、室内吹出口からの所望の吹出風量である風道の目
標風量(V_2′、V_3′、V_4′、V_5′)を
設定すると共に、建物の構造によって定まる風道の比抵
抗(R_1、R_6、R_7、R_8、R_9)を設定
し、次に、上記通気回路網のモデルに、上記通気回路網
における閉回路をなす各網目における圧力降下量(Fi
)を上記風道を流れる風量(Vi)および比抵抗(Ri
)の関数として表わし、上記各圧力降下量(Fi)を零
とするキルヒホッフの法則を用いて、上記目標風量(V
_2′、V_3′、V_4′、V_5′)を得るように
、室内吹出口の開度に対応する風道の比抵抗(R_2、
R_3、R_4、R_5)を算出して、上記室内吹出口
の開度を設定するようにしたことを特徴とするダクトレ
ス空調システムにおける室内吹出口の開度設定法。
(1) The conditioned air from the blower is supplied to the space in the attic through the air outlet in the ceiling, the space in the attic is used as an air supply chamber, and the conditioned air is supplied to the conditioned room from the multiple indoor air outlets attached to the ceiling. In the ductless air conditioning system to be supplied, the above-mentioned in-ceiling outlet is configured such that the conditioned air blown out from the in-ceiling outlet flows uniformly in substantially all directions along the ceiling plane, and the above-mentioned blower and the above-mentioned indoor blower We set up a model of the ventilation circuit network assuming the outlet as a connection point and a wind duct that connects the connection points. Next, we set the target air volume of the air duct (V_2′, V_3', V_4', V_5') and set the specific resistance of the wind duct (R_1, R_6, R_7, R_8, R_9) determined by the structure of the building. Next, in the model of the ventilation network, Amount of pressure drop (Fi
) as the air volume (Vi) flowing through the air passage and the specific resistance (Ri
), and using Kirchhoff's law, which sets each pressure drop amount (Fi) to zero, the target air volume (V
The specific resistance (R_2,
A method for setting an opening degree of an indoor air outlet in a ductless air conditioning system, characterized in that the opening degree of the indoor air outlet is set by calculating R_3, R_4, R_5).
(2)上記天井内吹出口は天井平面と直交する方向を指
向して、その天井内吹出口から吹き出した空気がスラブ
または天井面に衝突した後、天井平面に沿って略全方向
に一様に流れるようにした特許請求の範囲第1項に記載
のダクトレス空調システムにおける室内吹出口の開度設
定法。
(2) The in-ceiling outlet is oriented in a direction perpendicular to the ceiling plane, and after the air blown out from the in-ceiling outlet collides with the slab or ceiling surface, it is uniformly distributed in almost all directions along the ceiling plane. A method for setting an opening degree of an indoor air outlet in a ductless air conditioning system according to claim 1, wherein the flow is made to flow.
(3)送風機からの調和空気を天井内吹出口より天井裏
の空間に供給して、天井裏の空間を給気チャンバーとし
、天井に取り付けた複数の室内吹出口から被空調室に調
和空気を供給するダクトレス空調システムにおいて、 上記天井内吹出口は、その天井内吹出口から吹き出され
た調和空気が天井平面に沿って略全方向に一様に流れる
ような構成とし、 上記送風機および上記室内吹出口を接続点として、その
接続点相互を連結する風道を仮定した通気回路網のモデ
ルを設定し、 次に、室内吹出口からの所望の吹出風量である風道の目
標風量(V_2′、V_3′、V_4′、V_5′)を
設定すると共に、建物の構造によって定まる風道の比抵
抗(R_1、R_6、R_7、R_8、R_9)を設定
し、次に、上記通気回路網のモデルに、上記通気回路網
における閉回路をなす各網目における圧力降下量(Fi
)を上記風道を流れる風量(Vi)および比抵抗(Ri
)の関数として表わし、上記各圧力降下量(Fi)を零
とするキルヒホッフの法則を用いて、上記目標風量(V
_2′、V_3′、V_4′、V_5′)を得るように
、室内吹出口の開度に対応する風道の比抵抗(R_2、
R_3、R_4、R_5)を算出して、上記室内吹出口
の開度を設定し、 次に、各エリアに供給される風量(V_1、V_6、V
_7、V_8、V_9)と天井内吹出温度(T_0)と
室内設定温度(Tr)と総発生熱量(H)により定まる
天井内各エリアの温度(T_1、T_2、T_3、T_
4)を算出し、この天井内各エリアに存する室内吹出口
からの吹出温度(T_1、T_2、T_3、T_4)と
吹出風量(V_1、V_2、V_3、V_4)とに基づ
いて室内供給熱量(C_1、C_2、C_3、C_4)
を算出し、 次に、上記室内設定温度(Tr)となるために必要な室
内の必要熱量(A_1′、A_2′、A_3′、A_4
′)と室内供給熱量(C_1、C_2、C_3、C_4
)とを比較して、上記室内供給熱量(C_1、C_2、
C_3、C_4)と室内必要熱量(A_1′、A_2′
、A_3′、A_4′)とが略等しくなるように、上記
目標風量(V_2′、V_3′、V_4′、V_5′)
を修正設定し、再度、上記通気回路網にキルヒホッフの
法則を用いて、室内吹出口の開度に対応する比抵抗(R
_2、R_3、R_4、R_5)を算出して室内吹出口
の開度を設定するようにしたことを特徴とするダクトレ
ス空調システムにおける室内吹出口の開度設定法。
(3) The conditioned air from the blower is supplied to the space in the attic through the air outlet in the ceiling, the space in the attic becomes an air supply chamber, and the conditioned air is supplied to the conditioned room from the multiple indoor air outlets attached to the ceiling. In the ductless air conditioning system to be supplied, the above-mentioned in-ceiling outlet is configured such that the conditioned air blown out from the in-ceiling outlet flows uniformly in substantially all directions along the ceiling plane, and the above-mentioned blower and the above-mentioned indoor blower We set up a model of the ventilation circuit network assuming the outlet as a connection point and a wind duct that connects the connection points. Next, we set the target air volume of the air duct (V_2′, V_3', V_4', V_5') and set the specific resistance of the wind duct (R_1, R_6, R_7, R_8, R_9) determined by the structure of the building. Next, in the model of the ventilation network, Amount of pressure drop (Fi
) as the air volume (Vi) flowing through the air passage and the specific resistance (Ri
), and using Kirchhoff's law, which sets each pressure drop amount (Fi) to zero, the target air volume (V
The specific resistance (R_2,
R_3, R_4, R_5) to set the opening degree of the indoor air outlet, and then calculate the air volume supplied to each area (V_1, V_6, V
_7, V_8, V_9), the temperature of each area in the ceiling (T_1, T_2, T_3, T_
4) is calculated, and the amount of heat supplied indoors (C_1 , C_2, C_3, C_4)
Next, calculate the required indoor heat amount (A_1', A_2', A_3', A_4) necessary to reach the above indoor set temperature (Tr).
') and indoor heat supply (C_1, C_2, C_3, C_4
), the indoor heat supply amount (C_1, C_2,
C_3, C_4) and the required indoor heat amount (A_1', A_2'
, A_3', A_4') are approximately equal to each other, the target air volume (V_2', V_3', V_4', V_5')
, and then apply Kirchhoff's law to the above ventilation network again to find the specific resistance (R
_2, R_3, R_4, R_5) to set the opening degree of the indoor air outlet in a ductless air conditioning system.
(4)上記天井内吹出口は天井平面と直交する方向を指
向して、その天井内吹出口から吹き出した空気がスラブ
または天井面に衝突した後、天井平面に沿って略全方向
に一様に流れるようにした特許請求の範囲第3項に記載
のダクトレス空調システムにおける室内吹出口の開度設
定法。
(4) The in-ceiling outlet is oriented in a direction perpendicular to the ceiling plane, and after the air blown out from the in-ceiling outlet collides with the slab or ceiling surface, it is uniformly distributed in almost all directions along the ceiling plane. A method for setting an opening degree of an indoor air outlet in a ductless air conditioning system according to claim 3, wherein the flow is made to flow.
JP61016406A 1986-01-27 1986-01-27 Setting of opening degree of indoor blow-off port in ductless air-conditioning system Granted JPS62175550A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61016406A JPS62175550A (en) 1986-01-27 1986-01-27 Setting of opening degree of indoor blow-off port in ductless air-conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61016406A JPS62175550A (en) 1986-01-27 1986-01-27 Setting of opening degree of indoor blow-off port in ductless air-conditioning system

Publications (2)

Publication Number Publication Date
JPS62175550A true JPS62175550A (en) 1987-08-01
JPH0219382B2 JPH0219382B2 (en) 1990-05-01

Family

ID=11915359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61016406A Granted JPS62175550A (en) 1986-01-27 1986-01-27 Setting of opening degree of indoor blow-off port in ductless air-conditioning system

Country Status (1)

Country Link
JP (1) JPS62175550A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009180425A (en) * 2008-01-30 2009-08-13 Takasago Thermal Eng Co Ltd Floor blowing air conditioning method and air conditioning system
WO2023152543A1 (en) * 2022-02-09 2023-08-17 Pure Impact Fzco Ductless hvac system for sustainable farming

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009180425A (en) * 2008-01-30 2009-08-13 Takasago Thermal Eng Co Ltd Floor blowing air conditioning method and air conditioning system
WO2023152543A1 (en) * 2022-02-09 2023-08-17 Pure Impact Fzco Ductless hvac system for sustainable farming

Also Published As

Publication number Publication date
JPH0219382B2 (en) 1990-05-01

Similar Documents

Publication Publication Date Title
Li et al. Total air age: an extension of the air age concept
Cheng et al. Cooling load calculation methods in spaces with stratified air: A brief review and numerical investigation
Chao et al. Airflow and air temperature distribution in the occupied region of an underfloor ventilation system
Chen et al. Experimental and simulated energy performance of a personalized ventilation system with individual airflow control in a hot and humid climate
CN105674390A (en) Dynamic hydraulic balance adjusting method for centralized heating system
Daly Underfloor air distribution: lessons learned
CN105674487A (en) Dynamic hydraulic balance adjusting method for central air conditioning system
JP6985794B2 (en) Control device for air conditioning system, air conditioning system
Hongtao et al. A method to generate effective cooling load factors for stratified air distribution systems using a floor-level air supply
Yang et al. Performance evaluation of ductless personalized ventilation combined with impinging jet ventilation
JPS62175550A (en) Setting of opening degree of indoor blow-off port in ductless air-conditioning system
Lan et al. Optimal zoning for building zonal model of large-scale indoor space
Krajčík et al. Energy saving potential of personalized ventilation applied in an open space office under winter conditions
Webster et al. Influence of supply air temperature on underfloor air distribution (UFAD) system energy performance
Bauman et al. How low can you go? Air flow performance of low-height underfloor plenums
JPH0258546B2 (en)
JP2018112352A (en) Control device for air-conditioning system, control method for air-conditioning system and air-conditioning system
CN113207701A (en) Special-shaped ventilation shaft structure suitable for flat-bed cultivation and improvement method
Sies et al. Airflow Analysis of Air Conditioning System for Lecture Hall: Study Case–Block G3, UTHM
CN112923504B (en) Classroom environment control device and method
US5899080A (en) Air conditioning method and system
JPS6410745B2 (en)
JP4531201B2 (en) Air conditioning method and air conditioning system
JP7437552B2 (en) Ventilation systems and methods
Webster et al. Influence of design and operating conditions on underfloor air distribution (UFAD) system performance

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees