JPS62174189A - Insulating transfer material - Google Patents

Insulating transfer material

Info

Publication number
JPS62174189A
JPS62174189A JP61210158A JP21015886A JPS62174189A JP S62174189 A JPS62174189 A JP S62174189A JP 61210158 A JP61210158 A JP 61210158A JP 21015886 A JP21015886 A JP 21015886A JP S62174189 A JPS62174189 A JP S62174189A
Authority
JP
Japan
Prior art keywords
island
layer
transfer material
metal
metal vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61210158A
Other languages
Japanese (ja)
Other versions
JPH0325353B2 (en
Inventor
Nobuo Kuwabara
桑原 信夫
Miyoji Kosaka
小坂 三代治
Takeshi Fukumoto
剛 福本
Harumichi Oda
織田 晴道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Reiko Co Ltd
Original Assignee
Reiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Reiko Co Ltd filed Critical Reiko Co Ltd
Publication of JPS62174189A publication Critical patent/JPS62174189A/en
Publication of JPH0325353B2 publication Critical patent/JPH0325353B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/24Ablative recording, e.g. by burning marks; Spark recording
    • B41M5/245Electroerosion or spark recording

Landscapes

  • Duplication Or Marking (AREA)
  • Decoration By Transfer Pictures (AREA)

Abstract

PURPOSE:To provide a transfer material generating breakdown voltage of 1,000V or more at the time of transfer, capable of being safely used without supplying a current at all even if transferred to the outer frame of a television and capable of imparting beautiful metal gloss, by forming a metal vapor deposition layer into an island like structure to provide an insulating property thereto. CONSTITUTION:As a base material constituting this insulating transfer material, a plastic film such as a polyester film, cellophane, a metal foil and paper etc. can be used and a material to which emboss processing such as hairline processing was applied can be also used. A release layer is provided using an appropriate resin such as an acrylic resin and a protective layer is provided by an appropriate resin such as an acrylic resin and may be colored. A metal vapor deposition layer is provided by a membrane forming method known heretofore and formed into an island like structure from the formation of a nuclei through the bonding of the nuclei and an initial island structure. The size of each of islands in the island structure is set to about 200Angstrom -1mum and, if smaller than 200Angstrom , no beautiful metal gloss is obtained and, if exceeds 1mum, an insulating property is lowered. The intervals between islands is set to 100-5,000Angstrom and, if smaller than 100Angstrom , a tunnel current flows and an insulating property is inferior and, if larger than 5,000Angstrom , no beautiful metal gloss is obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、テレビ等の電気製品の外枠に転写しても通
電することのない絶縁性転写材料に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an insulating transfer material that does not conduct electricity even when transferred to the outer frame of an electrical product such as a television.

(従来の技術) テレビの外枠等には従来、そとに金属光沢を付与し美麗
さと金属の感じを出すために、AJ箔が粘着剤、接着剤
にて貼られたシあるいはネジで固定密着されたシしてい
る。また、Al箔にかえて、基材、離型層、保護層、A
I蒸着層、及び接着層を順次積層した転写材料の転写も
試みられている。
(Prior technology) Conventionally, AJ foil was attached to the outer frame of a TV with an adhesive or adhesive, or fixed with screws, in order to give the outer frame a metallic luster and give it a beautiful and metallic feel. I'm in close contact with you. Also, instead of Al foil, the base material, release layer, protective layer,
Attempts have also been made to transfer a transfer material in which an I vapor-deposited layer and an adhesive layer are sequentially laminated.

(発明が解決しようとする問題点) しかし%AI箔を使用した場合は、テレビのブラウン管
からの高圧電子線によシAl箔に帯電した電子を速やか
に流すためにアースを設ける必要があシ、また、帯電量
が大きくならないよう、Ad箔の表面積は制限され通常
1(ld以下とされている。さらに、AJ箔の貼付けや
固定等の工程を要すると共にこれがコスト高に影響を与
えていると共に面積的制限からデザイン上の制約も受け
る。
(Problem to be solved by the invention) However, when using %AI foil, it is necessary to provide a ground to quickly flow the charged electrons to the Al foil due to the high-voltage electron beam from the TV's cathode ray tube. Furthermore, in order to prevent the amount of charge from increasing, the surface area of the Ad foil is limited and is usually less than 1 (ld).Furthermore, processes such as pasting and fixing the AJ foil are required, and this has an impact on the cost. At the same time, it is also subject to design constraints due to area limitations.

そこで上記の欠点を除去すべくAl蒸着層を有する転写
材料の転写も試みられているが、この場合は、ブラウン
管からの高圧電子線によ1)hl蒸着層に帯電した電子
が放電を起こし、またとの放電を防止するためにアース
線を設けても、Al蒸着層が500Å〜1ooo1と薄
いため機械的な強度がなく実質的なアース線を設けるこ
とは不可能であシ、転写した部分に手などを触れると通
電することがあった。
Therefore, in order to eliminate the above-mentioned drawbacks, attempts have been made to transfer a transfer material having an Al vapor deposited layer, but in this case, 1) electrons charged in the HL vapor deposited layer cause discharge by a high voltage electron beam from a cathode ray tube; Even if a ground wire is provided to prevent electrical discharge from occurring, it is impossible to provide a substantial ground wire because the Al vapor deposition layer is as thin as 500 Å to 100 Å and lacks mechanical strength. If you touch it with your hand, it may become energized.

との発明は、これら諸々の欠点を除去するものであシ、
転写した場合の絶縁破壊電圧が1000V以上となシ、
テレビの外枠に転写しても何ら通電することもなく安心
して使用でき、また、それと同時に通常の転写材料と同
様美麗な金属光沢を付与することができる転写材料を提
供するものである。
The invention is intended to eliminate these various drawbacks,
The dielectric breakdown voltage when transferred must be 1000V or more.
To provide a transfer material that can be safely used without any electricity even when transferred to the outer frame of a television, and at the same time can impart a beautiful metallic luster like a normal transfer material.

(問題点を解決するための手段) この発明は、基材の片面に離型層、保護層、金属蒸着層
、及び接着層を順次積層してなる転写材料において、金
属蒸着層を島状構造として絶縁性をもたせたことを特徴
とする絶縁性転写材料である0 基材としては、ポリエステルフィルム等のプラスチック
フィルム、セロハン、金属箔、紙弊従来から転写材料の
基材として使用されているものが使用でき、ヘアーライ
ン加工等の凹凸加工を施こしたものももちろん使用でき
る。
(Means for Solving the Problems) The present invention provides a transfer material in which a release layer, a protective layer, a metal vapor deposited layer, and an adhesive layer are sequentially laminated on one side of a base material. It is an insulating transfer material characterized by having insulating properties.The base material includes plastic films such as polyester film, cellophane, metal foil, and paper. Of course, it is also possible to use materials with uneven processing such as hairline processing.

離型層はアクリル樹脂等適宜の樹脂にて設ける。The release layer is made of an appropriate resin such as acrylic resin.

保護層はアクリル樹脂等適宜の樹脂にて設は着色をして
もよい。
The protective layer may be made of an appropriate resin such as acrylic resin or may be colored.

金属蒸着層は真空蒸着、スパッタリング、イオンブレー
ティング等の従来公知の薄膜生成法によシ設ける。金属
蒸着層は薄膜生成過程でいえば「核生成」から「被結合
」、「初期島状構造」を経た後の島状構造となるように
設ける。
The metal vapor deposition layer is provided by a conventionally known thin film forming method such as vacuum deposition, sputtering, or ion blasting. In terms of the thin film production process, the metal vapor deposition layer is provided so as to form an island structure after passing through "nucleation", "bonding", and "initial island structure".

この発明は金属蒸着層の構造を島状構造とすることによ
り、金属を使用しているにもかかわらず絶縁性のものと
したものである。島状構造におけtA) る島のサイズは2001〜1μm程度とする。島のサイ
ズが200Xよシ小さいと美麗な金属光沢が得られない
。島のサイズが1μmを超える島と島とが接して一体と
なってきて絶縁性が低下する。
In this invention, the structure of the metal vapor deposited layer is made into an island structure, thereby making the layer insulating even though metal is used. The size of the islands in the island-like structure is approximately 2001 to 1 μm. If the size of the island is smaller than 200X, a beautiful metallic luster cannot be obtained. Islands with an island size of more than 1 μm come into contact with each other and become integrated, resulting in a decrease in insulation.

島の間隔は100Å〜5000Aとする。島の間隔が1
00xよシ小さいとトンネル電流が流れ絶縁性が悪い。
The spacing between the islands is 100 Å to 5000 Å. Island spacing is 1
If it is smaller than 00x, tunnel current will flow and the insulation will be poor.

島の間隔が500OAよシ大きいと全体としての金属の
量が少なく美麗な金属光沢は得られない。
If the spacing between the islands is larger than 500 OA, the overall amount of metal will be small and a beautiful metallic luster will not be obtained.

また、島の間隔が500OAを超えると、金属蒸着層の
平面方向の密度が粗となり耐摩耗性が低下すると共に、
後に接着層を金属蒸着層上に設ける際に溶剤がこの間隔
から浸透して保護層と金属蒸着層との間に悪影響を与え
転写時の耐熱性が低下して転写時にいわゆる熱ヤケ等に
より外観異常が生じ反射光沢が低下するし、さらに、金
属蒸着層の鉛賠硬度が低下して引掻きに非常に弱くなる
ものである。
In addition, when the spacing between the islands exceeds 500 OA, the density of the metal vapor deposited layer in the plane direction becomes coarse, and the wear resistance decreases.
Later, when an adhesive layer is provided on the metal vapor deposited layer, the solvent penetrates through this gap and has an adverse effect on the relationship between the protective layer and the metal vapor deposited layer, reducing the heat resistance during transfer and causing so-called heat discoloration during transfer, resulting in poor appearance. Abnormalities occur and the reflective gloss decreases, and furthermore, the lead hardness of the metal vapor deposited layer decreases, making it extremely susceptible to scratching.

この発明の金属蒸着層の島状構造を得るには、蒸発速度
、基材温度、蒸着膜厚等を制御する必要がある。この発
明の島のサイズや間隔を得るための制御は使用する金属
によシ難易がある。大ざっばにいえば融点の低い金属や
貴金属は制御が比較的容易であり、中でもSn 、 P
b 、Zn 、 Bi等はこの発明には特に好ましい。
In order to obtain the island-like structure of the metal vapor deposited layer of this invention, it is necessary to control the evaporation rate, substrate temperature, vapor deposition film thickness, etc. Controlling the size and spacing of the islands in this invention is difficult depending on the metal used. Generally speaking, metals with low melting points and noble metals are relatively easy to control, especially Sn and P.
b, Zn, Bi, etc. are particularly preferred for this invention.

また、Ti、Or%Fe%Co。Also, Ti, Or%Fe%Co.

N1等の遷移金属やSl、Gθ等の半導体金属は制御は
比較的容易でない。
Control of transition metals such as N1 and semiconductor metals such as Sl and Gθ is relatively difficult.

この発明の島状構造の金属蒸着層の生成は、金属の凝集
エネルギーと吸着エネルギーとの関係の制御にかかつて
おシ、そのために各種の蒸着条件の制御を要するもので
あるが、一般的には蒸発速度を速く、また基材温度を低
くする程島のサイズは小さくなる傾向にある。しかし蒸
着膜厚の影響は特に大きく、蒸着膜厚を光線透過率で換
算した場合、光線透過率10%〜15%がこの発明の金
属蒸着層の島状構造を得るのに最適である。もつともこ
れも金属によシ異なl) 、On、Pb、Zn、Bi等
はとれでよいが、その他の金属では必ずしもこの範囲が
最適とはならない場合もある。
The formation of a metal vapor deposited layer with an island-like structure according to the present invention involves controlling the relationship between cohesive energy and adsorption energy of the metal, and therefore requires control of various vapor deposition conditions. The island size tends to decrease as the evaporation rate increases and the substrate temperature decreases. However, the influence of the deposited film thickness is particularly large, and when the deposited film thickness is converted into light transmittance, a light transmittance of 10% to 15% is optimal for obtaining the island-like structure of the metal vapor deposited layer of this invention. Of course, this also differs depending on the metal. For On, Pb, Zn, Bi, etc., it is acceptable, but for other metals, this range may not necessarily be optimal.

この発明に使用する代表的金属である8nの場合、Sn
i着層の光線透過率が10%よシ少ないと絶縁破壊電圧
が1ooovに達せず、光線透過率が15チを超えると
絶縁破壊電圧は120007以上となるが、美麗な金属
光沢がなくなる。美麗な金属光沢を得るにはSn蒸着層
の場合光沢度で大体550%以上を要するのであるが、
Sn蒸着層の光線透過率が15−以下であれば光沢度が
350qlJ以上となるものであんしかし、Sn蒸着層
の光線透過率が10%よシ少ないと光沢度は450チ以
上ともなるのであるが、絶縁破壊電圧は1000’Vに
達しなくなるものである。
In the case of 8n, which is a typical metal used in this invention, Sn
If the light transmittance of the i-attached layer is less than 10%, the dielectric breakdown voltage will not reach 100V, and if the light transmittance exceeds 15 cm, the dielectric breakdown voltage will be 120,007 or more, but the beautiful metallic luster will be lost. In order to obtain a beautiful metallic luster, the Sn vapor deposited layer requires a gloss level of approximately 550% or more.
If the light transmittance of the Sn vapor deposited layer is 15 or less, the gloss will be 350 qlJ or more, but if the light transmittance of the Sn vapor deposited layer is less than 10%, the gloss will be 450 qlJ or more. However, the dielectric breakdown voltage does not reach 1000'V.

(実施例) 厚さ25μmの長尺なポリエステルフィルムの片面に、
アクリル樹脂を使用して厚さ1μmの離型層をロールコ
ーティングによシ設け、該離型層上にアクリル−ウレタ
ン樹脂を使用して1.5μmの厚さの保護層をロールコ
ーティングによシ設け、次に該保護層上に、半連続式真
空蒸着機を使用してSn蒸着層を真空蒸着によシ下記の
蒸着条件にて下記の島状構造に設けて実施例1、実施例
2とし、さらにこれら実施例のSn蒸着層上にアクリル
−塩ビ酢ビ共重合体樹脂を用いて2.5μmの厚さの接
着層をロールコーティングによシ設けて、この発明の絶
縁性転写材料を2種類得た。
(Example) On one side of a long polyester film with a thickness of 25 μm,
A release layer with a thickness of 1 μm is provided by roll coating using an acrylic resin, and a protective layer with a thickness of 1.5 μm is applied on the release layer using an acrylic-urethane resin by roll coating. Example 1, Example 2 Further, on the Sn vapor deposited layer of these Examples, an adhesive layer of 2.5 μm thick was provided by roll coating using an acrylic-vinyl chloride-vinyl acetate copolymer resin to obtain the insulating transfer material of the present invention. I got two types.

東蒸着基材温度としては蒸着機のクーリングキャンの温
度を一10℃とした 東光線透過率はフィルム巻取スピードの制御−によ)コ
ントロールした 東光線透過率は、全光線透過率を、rl[に6714の
方法によシ測定した 来島のサイズについては電子顕微鏡にて蒸着層を観察し
平均的な大きさを表示した 来島の間隔については電子顕微鏡にて蒸着層を観察し平
均的な間隔を表示した (比較例) 実施例1におけるSn蒸着層にかえて厚さ500 Xの
AI!蒸着層としたほかは実施例1と同様にして転写材
料を作成しこれを比較例とした。
The temperature of the cooling can of the vapor deposition machine was set to -10°C as the temperature of the substrate for vapor deposition.The light transmittance was controlled by controlling the film winding speed. [For the size of Kurushima measured by the method of 6714, the average size was determined by observing the deposited layer with an electron microscope.As for the spacing of Kurushima, the average size was determined by observing the deposited layer with an electron microscope. (Comparative example) Instead of the Sn vapor deposited layer in Example 1, a 500× thick AI! A transfer material was prepared in the same manner as in Example 1 except that it was a vapor deposited layer, and this was used as a comparative example.

次に、実施例1、実施例2、及び上記比較例で得られた
転写材料を8dのスチロール板に転写してそれぞれサン
プルとして絶縁破壊電圧を測定した。測定方法は、サン
プルの表面にsongφノ円柱による電極と70j11
7肉厚5Mのガードリング電極を接触させ、この両電極
間に電圧を印加し、放電によシ転写部分に孔がおいてス
チロール板が露出したときの電圧を測定した。
Next, the transfer materials obtained in Example 1, Example 2, and the above-mentioned comparative example were transferred onto an 8D styrene plate, and the dielectric breakdown voltage was measured for each sample. The measurement method is to use a songφ cylinder electrode and a 70j11 electrode on the surface of the sample.
7 A guard ring electrode with a wall thickness of 5M was brought into contact, a voltage was applied between the two electrodes, and the voltage was measured when a hole was made in the transfer portion due to discharge and the styrene plate was exposed.

このようにして実施例1、実施例2、及び比較例の場合
の絶縁破壊電圧を測定した結果は次の通電である。また
、それぞれのサンプルにつき表面の光沢度釦ついても測
定した。
The results of measuring the dielectric breakdown voltage in Example 1, Example 2, and Comparative Example in this manner are as follows. The surface glossiness of each sample was also measured.

(発明の効果) この発明は、金属蒸着層を島状構造として絶縁性をもた
せたから、転写した場合に10007以上もの絶縁破壊
電圧を容易に得ることができるものセあシ、従来の単な
るAd蒸着層等を使用した場合とは異なシ、テレビの外
枠に転写した場合に手を触れても何ら通電するととなく
安心して使用できると共に、金属光沢も従来と同様美麗
なものが得られるものである。
(Effects of the Invention) Since the metal vapor deposited layer has an island-like structure and has insulating properties, it is possible to easily obtain a dielectric breakdown voltage of 10,007 or more when transferred, compared to the conventional simple Ad vapor deposition. Unlike when using a layer, etc., when transferred to the outer frame of a TV, there is no electricity even if you touch it, so you can use it with confidence, and you can also obtain the same beautiful metallic luster as before. be.

Claims (4)

【特許請求の範囲】[Claims] (1)基材の片面に離型層、保護層、金属蒸着層、及び
接着層を順次積層してなる転写材料において、金属蒸着
層を島状構造として絶縁性をもたせたことを特徴とする
絶縁性転写材料。
(1) A transfer material in which a release layer, a protective layer, a metal vapor deposited layer, and an adhesive layer are sequentially laminated on one side of a base material, characterized in that the metal vapor deposit layer has an island-like structure to provide insulation properties. Insulating transfer material.
(2)金属蒸着層の島状構造が、島のサイズ200Å〜
1μm、島の間隔100Å〜5000Åである特許請求
の範囲第1項記載の絶縁性転写材料。
(2) The island-like structure of the metal vapor deposited layer has an island size of 200 Å or more.
The insulating transfer material according to claim 1, wherein the insulating transfer material has an island spacing of 1 μm and an island spacing of 100 Å to 5000 Å.
(3)金属蒸着層の金属がSn、Pb、Zn、Biより
なる群から選ばれた一種又は二種以上の金属である特許
請求の範囲第1項又は第2項記載の絶縁性転写材料。
(3) The insulating transfer material according to claim 1 or 2, wherein the metal of the metal vapor deposition layer is one or more metals selected from the group consisting of Sn, Pb, Zn, and Bi.
(4)金属蒸着層の光線透過率が10%〜15%である
特許請求の範囲第3項記載の絶縁性転写材料。
(4) The insulating transfer material according to claim 3, wherein the metal vapor deposited layer has a light transmittance of 10% to 15%.
JP61210158A 1985-10-21 1986-09-05 Insulating transfer material Granted JPS62174189A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP60-235598 1985-10-21
JP23559885 1985-10-21

Publications (2)

Publication Number Publication Date
JPS62174189A true JPS62174189A (en) 1987-07-30
JPH0325353B2 JPH0325353B2 (en) 1991-04-05

Family

ID=16988374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61210158A Granted JPS62174189A (en) 1985-10-21 1986-09-05 Insulating transfer material

Country Status (1)

Country Link
JP (1) JPS62174189A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01192598A (en) * 1988-01-27 1989-08-02 Reiko Co Ltd Transfer foil for copying
JPH0326540A (en) * 1989-06-23 1991-02-05 Reiko Co Ltd Base material partially having insulating metal membrane and method for partially applying insulating metal membrane
JPH0327999A (en) * 1989-06-27 1991-02-06 Reiko Co Ltd Insulating and microwave permeable transfer material
WO2008020482A1 (en) * 2006-08-18 2008-02-21 Reiko Co., Ltd. Insulating material excelling in metallic gloss and molded article making use of the same
JP2008105179A (en) * 2006-10-23 2008-05-08 Toray Advanced Film Co Ltd Metal thin film transfer material and its manufacturing method
US7651033B2 (en) 2005-12-19 2010-01-26 Dai Nippon Printing Co., Ltd. Noncontract IC tag with non-conductive metal film
JP2010240982A (en) * 2009-04-06 2010-10-28 Reiko Co Ltd Resin molded product excellent in designability, metallic luster and insulating property, and method for manufacturing the same
JP2013523494A (en) * 2010-03-29 2013-06-17 ピーピージー・インダストリーズ・オハイオ・インコーポレイテッド Solar control coating with discontinuous metal layer
WO2019187929A1 (en) * 2018-03-30 2019-10-03 ソニー株式会社 Structure, decorative film, and decorative film manufacturing method
US10562812B2 (en) 2018-06-12 2020-02-18 Guardian Glass, LLC Coated article having metamaterial-inclusive layer, coating having metamaterial-inclusive layer, and/or method of making the same
US10654748B2 (en) 2010-03-29 2020-05-19 Vitro Flat Glass Llc Solar control coatings providing increased absorption or tint
US10654747B2 (en) 2010-03-29 2020-05-19 Vitro Flat Glass Llc Solar control coatings with subcritical copper
US10830933B2 (en) 2018-06-12 2020-11-10 Guardian Glass, LLC Matrix-embedded metamaterial coating, coated article having matrix-embedded metamaterial coating, and/or method of making the same
US11078718B2 (en) 2018-02-05 2021-08-03 Vitro Flat Glass Llc Solar control coatings with quadruple metallic layers

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60168689A (en) * 1984-02-14 1985-09-02 Kyodo Printing Co Ltd Vapor-deposited type hot stamping film
JPS60235598A (en) * 1984-05-08 1985-11-22 Mitsubishi Electric Corp Vco for secam encoder
JPS61211078A (en) * 1985-03-16 1986-09-19 Kansai Makitorihaku Kogyo Kk Magnetic transfer material and transfer method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60168689A (en) * 1984-02-14 1985-09-02 Kyodo Printing Co Ltd Vapor-deposited type hot stamping film
JPS60235598A (en) * 1984-05-08 1985-11-22 Mitsubishi Electric Corp Vco for secam encoder
JPS61211078A (en) * 1985-03-16 1986-09-19 Kansai Makitorihaku Kogyo Kk Magnetic transfer material and transfer method

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01192598A (en) * 1988-01-27 1989-08-02 Reiko Co Ltd Transfer foil for copying
JPH0326540A (en) * 1989-06-23 1991-02-05 Reiko Co Ltd Base material partially having insulating metal membrane and method for partially applying insulating metal membrane
JPH0737111B2 (en) * 1989-06-23 1995-04-26 株式会社麗光 Substrate partially having insulating metal thin film and method of partially applying insulating metal thin film
JPH0327999A (en) * 1989-06-27 1991-02-06 Reiko Co Ltd Insulating and microwave permeable transfer material
US7651033B2 (en) 2005-12-19 2010-01-26 Dai Nippon Printing Co., Ltd. Noncontract IC tag with non-conductive metal film
WO2008020482A1 (en) * 2006-08-18 2008-02-21 Reiko Co., Ltd. Insulating material excelling in metallic gloss and molded article making use of the same
JP2008105179A (en) * 2006-10-23 2008-05-08 Toray Advanced Film Co Ltd Metal thin film transfer material and its manufacturing method
JP2010240982A (en) * 2009-04-06 2010-10-28 Reiko Co Ltd Resin molded product excellent in designability, metallic luster and insulating property, and method for manufacturing the same
US10358384B2 (en) 2010-03-29 2019-07-23 Vitro, S.A.B. De C.V. Solar control coatings with discontinuous metal layer
US10654747B2 (en) 2010-03-29 2020-05-19 Vitro Flat Glass Llc Solar control coatings with subcritical copper
US11401207B2 (en) 2010-03-29 2022-08-02 Vitro Flat Glass Llc Solar control coatings providing increased absorption or tint
US11993536B2 (en) 2010-03-29 2024-05-28 Vitro Flat Glass Llc Solar control coating with discontinuous metal layer
US11891328B2 (en) 2010-03-29 2024-02-06 Vitro Flat Glass Llc Solar control coatings providing increased absorption or tint
US10654748B2 (en) 2010-03-29 2020-05-19 Vitro Flat Glass Llc Solar control coatings providing increased absorption or tint
US10654749B2 (en) 2010-03-29 2020-05-19 Vitro Flat Glass Llc Solar control coatings providing increased absorption or tint
US9932267B2 (en) 2010-03-29 2018-04-03 Vitro, S.A.B. De C.V. Solar control coatings with discontinuous metal layer
US10703673B2 (en) 2010-03-29 2020-07-07 Vitro Flat Glass Llc Solar control coating with discontinuous metal layer
US11286200B2 (en) 2010-03-29 2022-03-29 Vitro Flat Glass Llc Solar control coatings with subcritical copper
JP2013523494A (en) * 2010-03-29 2013-06-17 ピーピージー・インダストリーズ・オハイオ・インコーポレイテッド Solar control coating with discontinuous metal layer
US10981826B2 (en) 2010-03-29 2021-04-20 Vitro Flat Glass Llc Solar control coatings with subcritical copper
US11267752B2 (en) 2010-03-29 2022-03-08 Vitro Flat Glass Llc Solar control coating with discontinuous metal layer
US11078718B2 (en) 2018-02-05 2021-08-03 Vitro Flat Glass Llc Solar control coatings with quadruple metallic layers
US11885174B2 (en) 2018-02-05 2024-01-30 Vitro Flat Glass Llc Solar control coatings with quadruple metallic layers
JPWO2019187929A1 (en) * 2018-03-30 2021-04-01 ソニー株式会社 Structure, decorative film and manufacturing method of decorative film
WO2019187929A1 (en) * 2018-03-30 2019-10-03 ソニー株式会社 Structure, decorative film, and decorative film manufacturing method
US10830933B2 (en) 2018-06-12 2020-11-10 Guardian Glass, LLC Matrix-embedded metamaterial coating, coated article having matrix-embedded metamaterial coating, and/or method of making the same
US10562812B2 (en) 2018-06-12 2020-02-18 Guardian Glass, LLC Coated article having metamaterial-inclusive layer, coating having metamaterial-inclusive layer, and/or method of making the same

Also Published As

Publication number Publication date
JPH0325353B2 (en) 1991-04-05

Similar Documents

Publication Publication Date Title
JPS62174189A (en) Insulating transfer material
US20180014359A1 (en) Heating device, in particular a semi-transparent heating device
US6266193B1 (en) Anti-reflective composite
CN108367556A (en) Metal layer is laminated transparent conducting film and uses its touch sensor
JPWO2004065656A1 (en) ITO thin film, film forming method thereof, transparent conductive film, and touch panel
KR100336621B1 (en) Method of depositing an io or ito thin film on polymer substrate
JPH10230558A (en) Organic substrate with photoabsorptive reflection preventive film and its manufacture
JPS62220330A (en) Antistatic gas barrier film
CN109825806A (en) A kind of PET non-conductive film and preparation method thereof
JP2722509B2 (en) Transparent plate exhibiting blue to green reflection color and method of manufacturing the same
JPS62222518A (en) Manufacture of transparent conductive film
JP2019179318A (en) Conductive film and manufacturing method thereof
JPH0531464B2 (en)
JPH0273963A (en) Formation of thin film on low-temperature substrate
EP0385007A2 (en) Sealing of polymeric web surfaces
JP4876850B2 (en) Metal thin film transfer material and method for producing the same
JP2752225B2 (en) Method for synthesizing hard carbon film
JPH0562556B2 (en)
JPS60110871A (en) Apparatus for forming thin film
JPH0266158A (en) Production of transparent laminate
JPS6112992B2 (en)
Volchek et al. Electron Microscope Examinaiton of Mercury Selenide Films with Anomalous Photoconduction
Parkansky et al. Nano-organization of thin titanium films by an electrical field during vacuum arc deposition
JPH06450Y2 (en) Coil movable ion plating device
Kato et al. Plasma parameter analysis of Ag sputter deposition using cathodes with different magnetic flux densities

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term