JPS62173789A - Manufacture of semiconductor laser - Google Patents

Manufacture of semiconductor laser

Info

Publication number
JPS62173789A
JPS62173789A JP1652586A JP1652586A JPS62173789A JP S62173789 A JPS62173789 A JP S62173789A JP 1652586 A JP1652586 A JP 1652586A JP 1652586 A JP1652586 A JP 1652586A JP S62173789 A JPS62173789 A JP S62173789A
Authority
JP
Japan
Prior art keywords
layer
substrate
laser
semiconductor laser
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1652586A
Other languages
Japanese (ja)
Inventor
Yasumasa Imoto
井元 康雅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1652586A priority Critical patent/JPS62173789A/en
Publication of JPS62173789A publication Critical patent/JPS62173789A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To manufacture a superhigh speed operation semiconductor laser in good reproducibility by forming a mesa which arrives at a substrate, then removing the part of the substrate by etching from the back surface, and removing a portion projected by the removal of the substrate to form a cleaved surface. CONSTITUTION:An electrode contact layer 2 is formed on a semi-insulating substrate 1, and a wafer formed with a laser layer of a buried structure on the layer 2 is selectively mesa etched at a cap layer 3 and an active layer 4 with first etchant and at a buried layer 5 and a clad layer 6 as second etchant. Further, after the par of the layer 2 is etched until the substrate 1 is exposed, an electrode 7 is formed on the layer 3 and an electrode 8 is formed on the layer 2. Then, the part of the substraste 1 is etched from the back surface, the both sides of the layer are projected, the projected portions are then cleaved by an ultrasonic vibration to form a laser resonator surface.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、半導体レーザ、特に超高速動作可能な半導体
レーザ或いは、0EICに搭載する半導体レーザの製造
方法の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an improvement in a method for manufacturing a semiconductor laser, particularly a semiconductor laser capable of ultra-high-speed operation or a semiconductor laser mounted on an 0EIC.

(従来技術とその問題点) 近年、光通信技術の進歩とともに半導体光デバイスの高
性能化が強く求められており、10GH,以上の高速で
動作が可能な半導体レーザ或いは、高速、低電力消費の
レーザと電子回路とをモノリシックに集積した0EIC
の実現が望まれている。このデバイスを実現するには、
レーザの短共振器化或いは電子回路のレイアウトを左右
しないレーザの共振器形成が必要となる。そのためには
、ウェハーのへき開を用いない共振器形成が必要であり
、その一方法としてマイクロクリープ法が知られている
。従来のマイクロクリープ法としては、レーザ層側から
絶縁膜或いは電極をマスクとしてエツチングし、レーザ
層下の基板の一部を除去して突出部を形成し、これを超
音波振動によりへき関する方法が知られていた( Ap
pl、 Phys、 Lett、 40289(198
2)参照)、シかしこの方法で良好なへき開面を得るに
はサイドエツチングのエツジをなめらかにする必要があ
るが、サイドエツチングは本来制御性、再現性に欠け、
また突出部の形成をモニターできないから、この方法は
歩留まり、再現性が悪いといった欠点を有していた。
(Prior art and its problems) In recent years, with the advancement of optical communication technology, there has been a strong demand for higher performance of semiconductor optical devices. 0EIC monolithically integrated laser and electronic circuit
It is hoped that this will be realized. To realize this device,
It is necessary to shorten the laser cavity or form a laser cavity that does not affect the layout of the electronic circuit. For this purpose, it is necessary to form a resonator without using wafer cleavage, and a microcreep method is known as one method thereof. The conventional microcreep method involves etching from the laser layer side using an insulating film or electrode as a mask, removing a part of the substrate under the laser layer to form a protrusion, and separating this using ultrasonic vibration. It was known (Ap
pl, Phys, Lett, 40289 (198
However, in order to obtain a good cleavage surface using this method, it is necessary to smooth the edges of side etching, but side etching inherently lacks controllability and reproducibility.
Furthermore, since the formation of protrusions cannot be monitored, this method has drawbacks such as poor yield and reproducibility.

そこで、本発明の目的は、上述の欠点を除去し、超高速
動作可能な半導体レーザ、或いは高速、低消費電力の0
EICを歩留まり良く製造する方法を提供することにあ
る。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to eliminate the above-mentioned drawbacks and provide a semiconductor laser capable of ultra-high-speed operation, or a high-speed, low-power semiconductor laser.
An object of the present invention is to provide a method for manufacturing an EIC with high yield.

(問題点を解決するための手段) 前述の問題点を解決するために本発明が提供する手段は
、基板と隣接する石が前記基板の混晶組成とは異なる半
導体レーザの製造方法であって、前記基板まで達するメ
サを形成する工程と、少なくとも前記メサ下部の前記基
板の一部をその基板の裏面からエツチングして除去し前
記基板から突出している突出部を形成する工程と、前記
突出部を超音波振動により除去してへき開面を形成する
工程とを含むことを特徴とする。
(Means for Solving the Problems) Means provided by the present invention to solve the above-mentioned problems is a method for manufacturing a semiconductor laser in which a substrate and a stone adjacent to the substrate have a mixed crystal composition different from that of the substrate. forming a mesa that reaches the substrate; etching and removing at least a portion of the substrate below the mesa from the back surface of the substrate to form a protrusion protruding from the substrate; and forming a protrusion protruding from the substrate; The method is characterized in that it includes a step of removing the cleavage plane by ultrasonic vibration to form a cleavage plane.

(実施例) 次に図面を参照して本発明の実施例を詳細に説明する。(Example) Next, embodiments of the present invention will be described in detail with reference to the drawings.

第1図は一実施例の半導体レーザの製造方法を説明する
ための工程図である。本実施例では、半絶縁性InPの
基板1上にキャリア濃度がlXl0”cm−”のn型I
no、ayGao、+sA!3o、z*Po、y+によ
りなる電極コンタクト層2を形成し、その上に埋め込み
型構造のレーザ層を形成したウェハをSiOxをマスク
としてp型Ino、5yGao、 1jA91ffit
pH,71よりなるキャップ暦3とアンドープIno、
ysGao、*tASa、++sP6.44よりなる活
性層4をH!504 : HsCh : H*O−3:
1:1組成のエツチング液Iで、p型InP及びn型I
nPよりなる埋め込み層5及び活性層4を狭むp型及び
n型InPよりなるクラッド暦6をlcQ : H,P
O4−4; 1組成のエツチング液■でそれぞれの層を
選択的にメサエッチングし幅30泗、長さ150−のメ
サを形成し、更に電極コンタクト層2の一部に更にマス
クを施しエツチング液Iで基板1が露出するまでエツチ
ングする。次にキャブ層3上にA工2.2極7を電極コ
ンタクト居士にA、G。
FIG. 1 is a process diagram for explaining a method of manufacturing a semiconductor laser according to an embodiment. In this example, an n-type I with a carrier concentration of lXl0"cm-" is placed on a semi-insulating InP substrate 1.
no, ay Gao, +sA! A wafer on which an electrode contact layer 2 consisting of 3o, z*Po, and y+ was formed, and a laser layer with an embedded structure was formed thereon was used as a p-type Ino, 5yGao, and 1jA91ffit using SiOx as a mask.
Cap calendar 3 consisting of pH, 71 and undoped Ino,
The active layer 4 consisting of ysGao, *tASa, ++sP6.44 is heated to H! 504: HsCh: H*O-3:
With etching solution I of 1:1 composition, p-type InP and n-type I
A buried layer 5 made of nP and a cladding layer 6 made of p-type and n-type InP that narrows the active layer 4 are lcQ: H, P
O4-4: Selectively mesa-etch each layer with an etching solution (1) of one composition to form a mesa with a width of 30 cm and a length of 150 cm, and further mask a part of the electrode contact layer 2 and apply the etching solution. Etch with I until the substrate 1 is exposed. Next, connect the A-type 2.2 poles 7 to the electrode contacts A and G on the cab layer 3.

電極8をリフトオフ法により形成する(第1図(a))
、次にレーザ層側をフォトレジストによリガラス板には
りつけ基板1の裏面にSin、マスクを施し、裏面より
エツチング液■により基板1のみを選択的にエツチング
し、レーザ層の両側を5015TI突出きせる(第1f
fl(b))。こうして形成した突出部を超音波振動に
よりへき関し、レーザ共振器面を形成すると共振器長5
0PrrrIのレーザが製造できる。(第1図(C))
Electrode 8 is formed by lift-off method (Fig. 1(a))
Next, the laser layer side is attached to a glass plate using a photoresist, a Sin mask is applied to the back side of the substrate 1, and only the substrate 1 is selectively etched from the back side using an etching solution (2) to make 5015TI protrude on both sides of the laser layer. (1st f
fl(b)). When the protrusions thus formed are separated by ultrasonic vibration to form a laser resonator surface, the resonator length is 5.
0PrrrI laser can be manufactured. (Figure 1 (C))
.

本実施例では基板1の裏面からエツチングしているから
、レーザ層の突出部根元9を滑らかにでき、また基板1
のエツチングにおいて電極コンタクトJ!52がエツチ
ングストップ居となっているため、レーザ層がエツチン
グされることもないので、歩留まり良く良好なへき開面
が形成できる。
In this embodiment, since etching is performed from the back surface of the substrate 1, the base 9 of the protruding portion of the laser layer can be made smooth, and the etching is performed from the back surface of the substrate 1.
In the etching of the electrode contact J! Since 52 serves as an etching stop, the laser layer is not etched, so that a good cleavage plane can be formed with a high yield.

また本実施例ではへき開工程がレーザ製造工程の最後の
工程となっており、またへき開面を形成するためのレー
ザ層の突出部形成を基板1の裏面より行なうから、電子
回路をレーザとモノリシック集積する0EIC製造工程
にも、そのまま適用することができる。
Furthermore, in this embodiment, the cleavage step is the last step in the laser manufacturing process, and since the protrusion of the laser layer for forming the cleavage plane is formed from the back surface of the substrate 1, the electronic circuit can be monolithically integrated with the laser. It can also be applied as is to the 0EIC manufacturing process.

なお、レーザWt)告【十m IF2(a )〜(c 
’)に7Kした構造に限らず、各種構造のレーザに本発
明は適用できる。
In addition, the laser Wt) notification [10 m IF2 (a) ~ (c
The present invention is applicable not only to lasers having a 7K structure, but also to lasers having various structures.

(発明の効果) 以上説明したように本発明によれば、超高速動作が可能
な半導体レーザ、或いは高速、低1力消費の0EICが
歩留まり良く製造できる半導体レーザの製造方法が提供
できる。
(Effects of the Invention) As described above, according to the present invention, it is possible to provide a method for manufacturing a semiconductor laser capable of ultra-high-speed operation or a semiconductor laser capable of manufacturing a high-speed 0EIC with low unit power consumption at a high yield.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(c)は本発明の一実施例を示すための
工程図である。 図において、1は基板、2は電極コンタクト層、3はキ
ャップ居、4は活性層、5は埋め込み】、6はクラッド
】、7はA、Z、電極、8はA、G、’!!極、9はレ
ーザ突出部根元。
FIGS. 1(a) to 1(c) are process diagrams showing one embodiment of the present invention. In the figure, 1 is the substrate, 2 is the electrode contact layer, 3 is the cap layer, 4 is the active layer, 5 is the buried], 6 is the cladding], 7 is A, Z, electrode, 8 is A, G, '! ! Pole 9 is the base of the laser protrusion.

Claims (1)

【特許請求の範囲】[Claims] 基板と隣接する層が前記基板の混晶組成とは異なる半導
体レーザの製造方法において、前記基板まで達するメサ
を形成する工程と、少なくとも前記メサ下部の前記基板
の一部をその基板の裏面からエッチングして除去し、前
記基板から突出している突出部を形成する工程と、前記
突出部を超音波振動により除去してへき開面を形成する
工程とを含むことを特徴とする半導体レーザの製造方法
In a method of manufacturing a semiconductor laser in which a layer adjacent to a substrate has a mixed crystal composition different from that of the substrate, the step includes forming a mesa that reaches the substrate, and etching at least a portion of the substrate below the mesa from the back surface of the substrate. A method of manufacturing a semiconductor laser, the method comprising the steps of: forming a protrusion protruding from the substrate; and removing the protrusion using ultrasonic vibration to form a cleavage plane.
JP1652586A 1986-01-28 1986-01-28 Manufacture of semiconductor laser Pending JPS62173789A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1652586A JPS62173789A (en) 1986-01-28 1986-01-28 Manufacture of semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1652586A JPS62173789A (en) 1986-01-28 1986-01-28 Manufacture of semiconductor laser

Publications (1)

Publication Number Publication Date
JPS62173789A true JPS62173789A (en) 1987-07-30

Family

ID=11918690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1652586A Pending JPS62173789A (en) 1986-01-28 1986-01-28 Manufacture of semiconductor laser

Country Status (1)

Country Link
JP (1) JPS62173789A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03285381A (en) * 1990-04-02 1991-12-16 Sharp Corp Manufacture of semiconductor laser element
JP2007103460A (en) * 2005-09-30 2007-04-19 Sanyo Electric Co Ltd Semiconductor laser device and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03285381A (en) * 1990-04-02 1991-12-16 Sharp Corp Manufacture of semiconductor laser element
JP2007103460A (en) * 2005-09-30 2007-04-19 Sanyo Electric Co Ltd Semiconductor laser device and its manufacturing method

Similar Documents

Publication Publication Date Title
JP2008233707A (en) Method for manufacturing optical device
JPS62173789A (en) Manufacture of semiconductor laser
US5821134A (en) Method of manufacturing an optoelectronic device
JPH0716081B2 (en) Semiconductor light emitting device
JPS62128586A (en) Manufacture of optoelectronic integrated circuit
JP2626149B2 (en) Optoelectronic integrated circuit manufacturing method
JP2000183459A (en) Ridge waveguide semiconductor laser
JPS58114477A (en) Semiconductor light emitting device
JPH09246159A (en) Manufacture of semiconductor device by using alignment mark
JPH09148666A (en) Semiconductor laser element and its manufacture
JP2783240B2 (en) Semiconductor laser device
JPH0283990A (en) Manufacture of semiconductor light emitting device
KR100372768B1 (en) Method for fabricating laser diode
JPH08139411A (en) Manufacture of semiconductor laser
JPS6177327A (en) Etchant
JPS59231885A (en) Optical semiconductor device
JPS6344790A (en) Semiconductor laser
JPH01220883A (en) Manufacture of photoelectron integrated circuit
JP2999520B2 (en) Method for manufacturing semiconductor light emitting device
JPS63318192A (en) Manufacture of semiconductor laser
JPH0282679A (en) Manufacture of semiconductor light emitting device
JPH0712099B2 (en) Method for manufacturing semiconductor laser device
JPH07297497A (en) Semiconductor laser and its manufacturing method
JPH01217918A (en) Finely working method
JPS60136283A (en) Manufacture of buried type semiconductor laser