JPS62171170A - Thin film solar cell - Google Patents

Thin film solar cell

Info

Publication number
JPS62171170A
JPS62171170A JP61012919A JP1291986A JPS62171170A JP S62171170 A JPS62171170 A JP S62171170A JP 61012919 A JP61012919 A JP 61012919A JP 1291986 A JP1291986 A JP 1291986A JP S62171170 A JPS62171170 A JP S62171170A
Authority
JP
Japan
Prior art keywords
layer
film
solar cell
band width
forbidden band
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61012919A
Other languages
Japanese (ja)
Inventor
Yoshihiro Yamamoto
山本 義宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP61012919A priority Critical patent/JPS62171170A/en
Publication of JPS62171170A publication Critical patent/JPS62171170A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/545Microcrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To improve photoelectric conversion characteristics further by making forbidden band width in the vicinity of the interface with a crystallite mixing film of an (i) layer wider than that of the central section of the (i) layer. CONSTITUTION:The forbidden band width of an (i) layer in a photoelectric conversion active region for a thin film solar cell is widened in the vicinity of the interface with a crystallite mixing film (an addition layer), thus preventing a diffusion to the addition layer of free carriers generated in the vicinity of the interface with the addition layer of the (i) layer. Forbidden band width is controlled by using an amorphous material having wide forbidden band width such as a-SixC1-x:H and an a-SixN1-x:H film, and the amorphous material is applied, changing a composition ratio to silicon of an alloy material such as carbon and nitrogen. Potential barriers are shaped near both interfaces of a (p) layer 5 and an (n) layer 6 in the graph showing the energy band structure of the solar cell forming potential barriers, but a large effect is acquired even when potential barriers are shaped only on the incident side of beams according to the characteristics of a cell, the spectrum of a light source, etc.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は非晶質膜及び微結晶混合質膜を備えた薄膜太陽
電池に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to a thin film solar cell comprising an amorphous film and a microcrystalline mixed film.

(発明の技術的背景とその問題点) 近年、非晶質ソリコン等を用いた薄膜太陽電池の開発か
盛んに行なわれているが、これら薄膜太陽電池の光電変
換効率の向上が重要な課題になっている。
(Technical background of the invention and its problems) In recent years, there has been active development of thin film solar cells using amorphous silicon, etc., but improving the photoelectric conversion efficiency of these thin film solar cells has become an important issue. It has become.

従来より、薄膜太陽電池の光電変換効率を向上させる有
力な手段として、光の入射側の不純物添加層での光の損
失を少なくするために、不純物部tmHに禁制帯幅の広
い非晶質半導体(a−SixC+−x:H等)を用いた
り、可視光領域の光の吸収係数の小さな微結晶混合質膜
を用いる方法等が提案され、効果を上げている。
Conventionally, as an effective means to improve the photoelectric conversion efficiency of thin-film solar cells, an amorphous semiconductor with a wide forbidden band width has been used in the impurity region tmH in order to reduce the loss of light in the impurity-doped layer on the light incident side. (a-SixC+-x:H, etc.) or a method using a microcrystalline mixed film with a small absorption coefficient for light in the visible light region has been proposed and has been effective.

a−3ix(g−x : I−(膜をp層に用いた場合
、禁制帯幅の制御が比較的容易であることと、更に、禁
制帯幅がi層の禁制帯幅よりも広いため、i層のp−i
界面近傍で生成された自由電子がp層へ拡散するのを防
ぐ障壁の役割もなしており、キャリヤの巣板効率の向上
にも寄与していること等の長所があることがら光電変換
効率向上のための手法として主流をなしている。
a-3ix (g-x: I- , p-i of i layer
It also acts as a barrier to prevent free electrons generated near the interface from diffusing into the p-layer, and it also contributes to improving carrier nesting plate efficiency, which improves photoelectric conversion efficiency. It is the mainstream method for

一方、微結晶混合質膜はa−Six(g−x : II
膜の場合と同様に、入射光側添加層での光の損失を軽減
できると共に、太陽電池の内部電位を大幅に増加させる
ため、光電変換効率の向上には大きな効果がある。しか
し、ガラス/透明導電膜/pin/裏面電極溝造の太陽
電池のp層に用いる場合、微結晶混合質膜は高いRF電
力を投入して形成するために、プラズマのダメージによ
り透明導電膜の特性が損われると共に、p層更にi層へ
透明導電膜の組成元素が混入し、期待されるような効果
は得られなかった。ステンレス基板を用いたセルでは入
射光側添加層に用いた例があり、大きな効果が得られて
いる。前述のガラス基板を用いたセルにおいても、p層
を非晶質膜と微結晶混合質膜の2層で形成することによ
り透明導電膜へのダメージをなくし、微結晶混合質膜の
特性を生かしたセルができることが報告されており、薄
膜太陽電池の光電変換効率を向上させる手法として微結
晶混合質膜の応用の拡大が大いに期待できる。
On the other hand, the microcrystalline mixed film has a-Six (g-x: II
As in the case of a film, it is possible to reduce the loss of light in the additive layer on the incident light side, and it also significantly increases the internal potential of the solar cell, which has a great effect on improving photoelectric conversion efficiency. However, when used in the p layer of a solar cell with a glass/transparent conductive film/pin/back electrode groove structure, the microcrystalline mixed film is formed by applying high RF power, so the transparent conductive film may be damaged by plasma. In addition to the properties being impaired, the constituent elements of the transparent conductive film were mixed into the p-layer and further into the i-layer, and the expected effect could not be obtained. In cells using stainless steel substrates, there are examples where it is used as an additive layer on the incident light side, and great effects have been obtained. Even in the cell using the glass substrate mentioned above, by forming the p-layer with two layers, an amorphous film and a microcrystalline mixed film, damage to the transparent conductive film can be eliminated and the characteristics of the microcrystalline mixed film can be utilized. It has been reported that microcrystalline mixed films can be used to improve the photoelectric conversion efficiency of thin-film solar cells, and the application of microcrystalline mixed films is highly expected to expand.

微結晶混合質膜添加層の禁制帯幅は多くの場合1層の禁
制帯幅と同等らしくは狭い。従って、a−S ixc 
+−X・H膜の場合のようなキャリヤの拡散を防ぐ障壁
の効果は期待できない。先に述べたように、微結晶混合
質膜を添加層に用いた場合、1層中に高い拡散電位が形
成されるため、キャリヤの拡散に因る効果は軽減されて
いるが、光電変換効率を更に向上させるためには、この
ようなキャリヤの拡散に因る効果をより軽減させること
が望まれている。
In many cases, the forbidden band width of a microcrystalline mixed film-added layer is narrow and is equivalent to the forbidden band width of one layer. Therefore, a-S ixc
The effect of a barrier to prevent carrier diffusion as in the case of the +-X·H film cannot be expected. As mentioned earlier, when a microcrystalline mixed film is used as an additive layer, a high diffusion potential is formed in one layer, so the effect due to carrier diffusion is reduced, but the photoelectric conversion efficiency is In order to further improve this, it is desired to further reduce the effect caused by such carrier diffusion.

(発明の目的) 本発明は、上記問題点に鑑みてなされたもので、微結晶
混合質膜の性質と相反する性質に期待される効果を太陽
電池自体の特性を何ら損ねることなく付加し、光電変換
特性を更に向上させるようにした薄膜太陽電池を提供す
る。
(Objective of the Invention) The present invention has been made in view of the above-mentioned problems, and provides an effect expected from properties that are contradictory to those of a microcrystalline mixed film without impairing the properties of the solar cell itself. A thin film solar cell with further improved photoelectric conversion characteristics is provided.

(発明の構成) 即ち、本発明は充電変換活性領域がpin接合型構造を
有し、p型またはn型添加層の少なくとも一方が微結晶
混合質膜からなる薄膜太陽電池において、 i層の微結
晶混合質膜との界面付近の禁制帯幅が1層中心部禁制帯
幅より広いことを特徴とする薄膜太陽電池を提供する。
(Structure of the Invention) That is, the present invention provides a thin film solar cell in which the charge conversion active region has a pin junction structure and at least one of the p-type or n-type additive layer is a microcrystalline mixed film. Provided is a thin film solar cell characterized in that the forbidden band width near the interface with a crystalline mixed film is wider than the forbidden band width at the center of one layer.

本発明によれば、薄膜太陽電池の光電変換活性領域のi
層の禁制帯幅を、微結晶混合質膜(添加層)との界面付
近を広くすることにより、 i層の添加層界面付近で発
生した自由キャリヤが添加層に拡散するのを防げる。
According to the present invention, i of the photoelectric conversion active region of a thin film solar cell
By widening the forbidden band width of the layer near the interface with the microcrystalline mixed film (additional layer), free carriers generated near the addition layer interface of the i-layer can be prevented from diffusing into the addition layer.

禁制帯幅の制御はa−9ixC+−x : Hやa−S
ixN+−x : H膜のような禁制帯幅の広い非晶質
材料を用い、炭素や窒素のような合金材料のシリコンに
対する組成比を変えながら被着する。被着方法は具体的
にはスパッタリング、プラズマCVD等の方法が例示さ
れろ。
Forbidden band width control is a-9ixC+-x: H or a-S
ixN+-x: An amorphous material with a wide forbidden band width such as an H film is used, and the composition ratio of an alloy material such as carbon or nitrogen to silicon is varied. Specific examples of the deposition method include sputtering and plasma CVD.

添加層は通常アモルファスシリコン(a−9i)にリン
等のV、ff1元素をドープしたものおよびホウ素等の
III族元素をドープしたものが使用される。
The additive layer is usually amorphous silicon (a-9i) doped with V and ff1 elements such as phosphorus, and doped with a group III element such as boron.

上記光電変換活性領域は通常透明電極のついたガラス基
板上に被着され、次いで背面電極としてAOやAgを付
けることにより、太陽電池を形成する。
The photoelectric conversion active region is usually deposited on a glass substrate with a transparent electrode, and then AO or Ag is applied as a back electrode to form a solar cell.

(発明の実施例) 以下、図面を参照して本発明の実施例を詳細に説明する
(Embodiments of the Invention) Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

第1図は非晶質シリコン系材料から成る薄膜太陽TL池
のエネルギー帯構造を模式的に示す。図中、(1)はフ
ェルミレベルを示し、(3)は1層のエネルギー抽構造
を示す。第1図(a)はpin各層に非晶質膜を用いた
太陽電池のエネルギー帯構造で、p層(2)及びn層(
4)に微結晶混合質膜(5,6)を用いた場合が第1図
(b)である。第1図(b)の場合の方が内部電圧が高
く、(a)の場合に比べ、キャリヤの拡散による効果は
少なくなっている。しかし、この効果を著しく減らし、
光電変換効率の向上への寄与を明確にできるようにする
には、添加層との界面、特に光の入射側の界面に、キャ
リヤの拡散を担止するための電位障壁が必要である。
FIG. 1 schematically shows the energy band structure of a thin film solar TL cell made of amorphous silicon-based material. In the figure, (1) shows the Fermi level, and (3) shows the energy extraction structure of one layer. Figure 1(a) shows the energy band structure of a solar cell using an amorphous film for each pin layer, including the p layer (2) and the n layer (2).
FIG. 1(b) shows the case in which microcrystalline mixed films (5, 6) are used in 4). In the case of FIG. 1(b), the internal voltage is higher, and the effect of carrier diffusion is smaller than in the case of FIG. 1(a). However, significantly reducing this effect,
In order to make the contribution to the improvement of photoelectric conversion efficiency clear, a potential barrier is required at the interface with the additive layer, particularly at the interface on the light incident side, to prevent carrier diffusion.

このような電位障壁を本発明に基づいて形成した太陽電
池のエネルギー帯構造を示したのが第1図(C)である
。図ではp層(5)、nJffl(6)両界面近傍に電
位障壁を形成しているが、セルの特性や光源のスペクト
ル等により、光の入射側のみに形成しても大きな効果が
得られる。図中の破線は第1図(b)と同じエネルギー
帯を示している。界面近傍のi層よりも禁制帯幅が広く
なっている領域(7)の幅は界面でのi層の禁制帯幅や
、その領域中での電位勾配の分布等によって異なり、添
加層及びi層の作製条件や膜質によって最適化を要する
FIG. 1(C) shows the energy band structure of a solar cell in which such a potential barrier is formed based on the present invention. In the figure, a potential barrier is formed near both the p-layer (5) and nJffl (6) interfaces, but depending on the characteristics of the cell and the spectrum of the light source, a great effect can be obtained even if it is formed only on the light incident side. . The broken line in the figure indicates the same energy band as in FIG. 1(b). The width of the region (7) where the forbidden band width is wider than that of the i layer near the interface varies depending on the forbidden band width of the i layer at the interface, the potential gradient distribution in that region, etc. Optimization is required depending on layer production conditions and film quality.

(効果) 本発明に基づく電位障壁の形成により、キャリヤの拡散
効果による電子のp層への侵入及び正孔のn層への侵入
を防ぎ、キャリヤの消滅を著しく減)し、薄膜太陽電池
の光電変換効率を格段に向上させる。
(Effect) The formation of the potential barrier based on the present invention prevents electrons from entering the p-layer and holes from entering the n-layer due to the carrier diffusion effect, significantly reducing the disappearance of carriers, and improving thin-film solar cells. Significantly improves photoelectric conversion efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は各種薄膜太陽電池のエネルギー帯構造で、第1
図(a)は添加層に通常の非晶質シリコン膜を用いた場
合、第1図(b)は添加層に微結晶混合質膜を用いた場
合、第1図(C)は本発明による禁制帯幅の広いi層に
よる電位障壁を設けた場合である。 図中、番号は以下の通り。 (1)・・フェルミレベル、 (2)・・・p型部晶質シリコン膜エネルギー帯構造、
(3)・・・1型非晶質ンリコン膜エネルギー帯構造、
(4)・・・n型非晶質ソリコン膜エネルギー帯構造、
(5)・・p型機結晶混合質シリコン膜エネルギー帯構
造、 (6)・・・n型機結晶混合質シリコン膜エネルギー帯
構造、 (7)・・・1層(3)よりも禁制帯幅の広い領域。
Figure 1 shows the energy band structure of various thin film solar cells.
Figure 1 (a) shows the case where a normal amorphous silicon film is used as the additive layer, Figure 1 (b) shows the case where a microcrystalline mixed film is used as the additive layer, and Figure 1 (C) shows the case where the present invention is used. This is a case where a potential barrier is provided by an i-layer with a wide forbidden band width. In the figure, the numbers are as follows. (1)...Fermi level, (2)...p-type crystalline silicon film energy band structure,
(3)... Type 1 amorphous silicon film energy band structure,
(4)...n-type amorphous solicon film energy band structure,
(5)...P-type mechano-crystalline mixed silicon film energy band structure, (6)...N-type mechano-crystalline mixed silicon film energy band structure, (7)...Forbidden band than one layer (3) wide area.

Claims (1)

【特許請求の範囲】 1、光電変換活性領域がpin接合型構造を有し、p型
またはn型添加層の少なくとも一方が微結晶混合質膜か
らなる薄膜太陽電池において、i層の微結晶混合質膜と
の界面付近の禁制帯幅がi層中心部禁制帯幅より広いこ
とを特徴とする薄膜太陽電池。 2、i層がa−SixC_1−x:H膜またはa−Si
xN_1−x:H膜である第1項記載の薄膜太陽電池。
[Claims] 1. In a thin film solar cell in which the photoelectric conversion active region has a pin junction structure and at least one of the p-type or n-type additive layer is a microcrystalline mixed film, the i-layer contains a microcrystalline mixed film. 1. A thin film solar cell characterized in that the forbidden band width near the interface with a thin film is wider than the forbidden band width at the center of the i-layer. 2. The i layer is a-SixC_1-x:H film or a-Si
xN_1-x: The thin film solar cell according to item 1, which is an H film.
JP61012919A 1986-01-22 1986-01-22 Thin film solar cell Pending JPS62171170A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61012919A JPS62171170A (en) 1986-01-22 1986-01-22 Thin film solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61012919A JPS62171170A (en) 1986-01-22 1986-01-22 Thin film solar cell

Publications (1)

Publication Number Publication Date
JPS62171170A true JPS62171170A (en) 1987-07-28

Family

ID=11818743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61012919A Pending JPS62171170A (en) 1986-01-22 1986-01-22 Thin film solar cell

Country Status (1)

Country Link
JP (1) JPS62171170A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9923307B2 (en) 2012-11-13 2018-03-20 Harting Electric Gmbh & Co. Kg Retaining frame for retaining plug-in connector modules

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9923307B2 (en) 2012-11-13 2018-03-20 Harting Electric Gmbh & Co. Kg Retaining frame for retaining plug-in connector modules

Similar Documents

Publication Publication Date Title
US5213628A (en) Photovoltaic device
US6459034B2 (en) Multi-junction solar cell
US4433202A (en) Thin film solar cell
US4718947A (en) Superlattice doped layers for amorphous silicon photovoltaic cells
EP0523919B1 (en) Multijunction photovoltaic device and fabrication method
US4108684A (en) Large grain thin film polycrystalline P-InP/n-Cds solar cell
US20110174374A1 (en) Heterojunction solar cell with absorber having an integrated doping profile
JP2009503848A (en) Composition gradient photovoltaic device, manufacturing method and related products
US5437734A (en) Solar cell
JPH04130671A (en) Photovoltaic device
US5104455A (en) Amorphous semiconductor solar cell
JPS62234379A (en) Semiconductor device
JP2722761B2 (en) GaAs solar cell
JP2614561B2 (en) Photovoltaic element
EP0248953A1 (en) Tandem photovoltaic devices
JPH0526354B2 (en)
JPS62171170A (en) Thin film solar cell
JPH11274527A (en) Photovoltaic device
EP0051980A1 (en) Photovoltaic device and photoelectrochemical cell electrode
JPH05275725A (en) Photovoltaic device and its manufacture
JPS62209871A (en) Manufacture of photovoltaic device
JPS636882A (en) Photocell of tandem structure
US4366334A (en) Photovoltaic cell usable as a solar cell
JP3197673B2 (en) Photovoltaic device
JP3197674B2 (en) Photovoltaic device