JPS62170707A - Static blade for axial flow fluid machine - Google Patents

Static blade for axial flow fluid machine

Info

Publication number
JPS62170707A
JPS62170707A JP1201586A JP1201586A JPS62170707A JP S62170707 A JPS62170707 A JP S62170707A JP 1201586 A JP1201586 A JP 1201586A JP 1201586 A JP1201586 A JP 1201586A JP S62170707 A JPS62170707 A JP S62170707A
Authority
JP
Japan
Prior art keywords
blade
tip
stator
inclination angle
inclined angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1201586A
Other languages
Japanese (ja)
Other versions
JPH0689651B2 (en
Inventor
Yoshio Kano
芳雄 鹿野
Yoshiaki Yamazaki
義昭 山崎
Tetsuo Sasada
哲男 笹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61012015A priority Critical patent/JPH0689651B2/en
Publication of JPS62170707A publication Critical patent/JPS62170707A/en
Publication of JPH0689651B2 publication Critical patent/JPH0689651B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE:To convert fluid energy into work efficiently with dynamic blade by gradually decreasing the inclined angle of mounting in the direction of contact line of a static blade rear edge from the base of the static blade toward the tip to meet the specified condition and so setting the inclined angle as to have positive inclined angle at the tip. CONSTITUTION:The shape of a static blade rear edge 6 is so set as to meet the following condition, in the step of an axial flow fluid machine consisting of a group of static blades and a group of dynamic blades. That is, when the rotating direction 9 of the dynamic blade is defined as positive, the inclined angle of the base of the static blade, as thetar and the inclined angle of the tip of the static blade, as thetat, the inclined angle of mounting in the direction of contact line of the static blade rear edge 6 is, so that they may be thetar>thetat>0, gradually decreased from the base of the static blade toward the tip of the static blade and so set as to have a positive inclined angle even at the tip. Further when the rotating direction 9 of the dynamic blade is defined as positive and the radial position in each section in the length direction of the static blade is defined as R, the inclined angle theta is made to change under the condition of Rtheta k (k is constant).

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は軸流流体機械の静翼構造に係り、とりわけ蒸気
タービン段落内部の蒸気流動の適正化のための静翼の接
線方向翼取付は傾き角の設定に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a stator vane structure for an axial flow fluid machine, and particularly to a tangential blade mounting of a stator vane for optimizing steam flow inside a steam turbine stage. Regarding setting the tilt angle.

〔従来の技術〕[Conventional technology]

例えば大容量の発電用蒸気タービン等においては効率の
向上は経済面、資源面等の面から極めて重要な改善課題
であり、従来から国内外の関係者による改善のための研
究開発努力がなされている。
For example, improving the efficiency of large-capacity power generation steam turbines is an extremely important improvement issue from economic and resource perspectives, and research and development efforts have been made by domestic and international parties for improvement. There is.

しかしながら蒸気タービンの低圧段落部における、蒸気
流の3次元流動に関する解明若くはそれに基づく改善は
充分に行われていなかった。
However, the three-dimensional flow of steam in the low-pressure stage of a steam turbine has not been sufficiently elucidated or improved based on this understanding.

第1図(、)は、フレア角(静翼ダイヤフラム上壁が下
流側に流路断面積を増大するように拡大する角度)のあ
る場合のタービン段落の子午面形状を示す。静翼1は動
翼2への流れを制御するものであり、下流側から静翼の
後縁形状6を見た場合を第1図(b)に示す。従来の静
翼後縁6は直線状をなし、しかも回転軸中心から放射状
に配置されている。従って、翼面から流れを翼根元方向
へ押しつける翼列は働かずこの場合は第2図に示すよう
に、静翼出口の流れは半径方向の速度成分を持ち、翼先
端に向うような流れ8となる。このため、動翼へ流入す
る流れは半径方向速度成分を有する流れとなるが、動翼
のなす仕事は半径方向速度成分とは無関係であり、半径
方向速度成分の値はそのまま損失となってしまう。この
現象は特に静翼のフレア角が大きい場合に、より顕著に
現られる。従来から対策として、低圧タービンのフレア
角の大きい場合に、第3図に示すように、静翼を動翼回
転方向9に・θだけ傾けて取付けることで、静翼から流
れに対して翼根元方向に押しつける力を発生させること
が行われていた。このθを接線方向翼取付は傾き角と呼
ぶが、実機での値は10″前後の値であり、第3図に示
すようにθの値は半径方向に一定値を保ち、従って翼後
縁形状6は直線状となっていた。この方法では、静翼根
元の流れは改善されるが、一方静翼先端の流れは逆に壁
から離れる方向になるため、二次流れの増大等の原因と
なる欠点がある。これの改善を意図して、実験室レベル
ではあるが、第4図に示すように、接線方向翼取付は傾
き角を静翼根元では動翼回転方向に、静翼先端では動翼
回転方向とは逆方向につける試みがなされた。そのこと
はソ連の熱工学に関する雑誌 チェプロ エネルギチイ
カCTQFVI3HePreTNKA  1964.5
) ニ掲fiす;M=フ+Jイヤニーエ ザクルルトキ
イ ポトーカ ナハラC0rT、/TOF3blY p
E(IJ”;=TDK ) す;6 m文テ紹介サレテ
イる。上記文献においては第1図(b)及び第3図及び
第4図に示すような接線方向翼取付は傾き角1%た静翼
単体について実験を行い、翼長方向の損失分布を算出し
てその結果を第5図の(a)。
FIG. 1(,) shows the meridional plane shape of a turbine stage when there is a flare angle (the angle at which the upper wall of the stator vane diaphragm expands downstream to increase the cross-sectional area of the flow path). The stator blade 1 controls the flow to the rotor blade 2, and FIG. 1(b) shows the trailing edge shape 6 of the stator blade when viewed from the downstream side. The conventional stator blade trailing edge 6 is linear and is arranged radially from the center of the rotation axis. Therefore, the blade row that pushes the flow from the blade surface toward the blade root does not work, and in this case, as shown in Figure 2, the flow at the stationary blade outlet has a velocity component in the radial direction, and the flow 8 is directed toward the blade tip. becomes. Therefore, the flow flowing into the rotor blades has a radial velocity component, but the work done by the rotor blades is unrelated to the radial velocity component, and the value of the radial velocity component becomes a loss. . This phenomenon is particularly noticeable when the stator blade has a large flare angle. Conventionally, as a countermeasure, when the flare angle of a low-pressure turbine is large, as shown in Fig. 3, by installing the stator blades at an angle of θ in the rotor blade rotation direction 9, the blade roots are removed from the stator blades relative to the flow. It was done to generate a force that pushes in the direction. This θ is called the inclination angle when the blade is installed in the tangential direction, but in actual aircraft, the value is around 10'', and as shown in Figure 3, the value of θ remains constant in the radial direction, so the trailing edge of the blade Shape 6 was straight.This method improves the flow at the root of the stator blade, but on the other hand, the flow at the tip of the stator blade moves away from the wall, which causes an increase in secondary flow. In order to improve this problem, although at a laboratory level, as shown in Fig. 4, tangential blade installation changes the inclination angle at the stator blade root in the direction of rotor blade rotation, and at the stator blade tip in the direction of rotor blade rotation. An attempt was made to attach the rotor blades in the opposite direction to the rotating direction.This was reported in the Soviet thermal engineering magazine Chepro Energitchika CTQFVI3HePreTNKA 1964.5
) Ni post; M=F+J Ianie Zakurultkii Potoka Nahara C0rT, /TOF3blY p
E(IJ"; = TDK) S; 6 m sentence introduction. In the above literature, the tangential wing installation as shown in Fig. 1(b), Fig. 3, and Fig. 4 has an inclination angle of 1%. An experiment was conducted on a single stationary blade, and the loss distribution in the blade span direction was calculated, and the results are shown in Figure 5 (a).

(b)、(c)で表している。上記(a)(b)(c)
は各々、第1図(b)、第3図及び第4図に対応してい
る。
It is represented by (b) and (c). (a) (b) (c) above
correspond to FIG. 1(b), FIG. 3, and FIG. 4, respectively.

〔発明が解決とようとする問題点〕[Problems that the invention attempts to solve]

第5図によれば、静翼単体の円環翼列としての性能は、
第4図に示すような接線方向翼取付は傾き角が好ましい
ことになる。しかしながら、静翼と動翼を組合せた段落
流れの場合は、第4図に示す方法では、翼先端近傍での
半径方向速度成分を増加させる作用があり、動翼の仕事
量の観点からは好ましい解決策とはいえない。ここで、
このことを明らかにするために、段落内の3次元流動現
象を第6図に示し、動翼入口で半径方向速度成分の発生
する機構を説明する。第6図(、)は静翼後縁から流出
する流れ13が、動翼入口まで移動する様子を示し、第
6図(b)は静翼と動翼の位置関係と静翼出口から流出
した流れが動翼入口に到達するまでの幾何学的な関係を
示す。第6図(b)に示すように静翼出口からの流れ1
3は静翼と動翼の距離をX、流出角をαとすれば、動翼
入口に流れ13が到達するまでに、接線方向距離でn≒
x/cosαだけ移動する。従って第6図(a)に示す
ように、静翼出口で半径方向速度成分をもたない接線方
向の流れ13は、動翼人口14に達した時には、13′
に示すように半径方向の速度成分を有することになる。
According to Fig. 5, the performance of a single stator blade as a ring cascade is as follows:
A tangential wing attachment as shown in FIG. 4 would favor a tilt angle. However, in the case of a stage flow in which a stationary blade and a rotor blade are combined, the method shown in Fig. 4 has the effect of increasing the radial velocity component near the blade tip, which is preferable from the viewpoint of the amount of work of the rotor blade. It's not a solution. here,
In order to clarify this, the three-dimensional flow phenomenon within the paragraph is shown in FIG. 6, and the mechanism by which the radial velocity component is generated at the rotor blade inlet will be explained. Figure 6 (,) shows how the flow 13 flowing out from the trailing edge of the stator blade moves to the rotor blade inlet, and Figure 6 (b) shows the positional relationship between the stator blade and the rotor blade and the flow 13 flowing out from the stator blade outlet. It shows the geometrical relationship until the flow reaches the rotor blade inlet. As shown in Figure 6(b), flow 1 from the stationary blade outlet
3, if the distance between the stationary blade and the rotor blade is
Move by x/cosα. Therefore, as shown in FIG. 6(a), when the tangential flow 13 having no radial velocity component at the exit of the stationary blade reaches the moving blade population 14, the flow 13'
It has a velocity component in the radial direction as shown in .

勿論、実際にはダイヤプラム上壁4と下M3によって円
環状の流路を形成しているので、流れ13は幾分円環流
路に沿って流れるようにはなるが、円環流路の効果は翼
から流体に働く力の効果に比べて小さい。
Of course, in reality, the diaphragm upper wall 4 and lower M3 form an annular flow path, so the flow 13 flows somewhat along the annular flow path, but the effect of the annular flow path is It is small compared to the effect of the force acting on the fluid from the wing.

従って、半径方向の速度成分を減少するために。Therefore, to reduce the radial velocity component.

第3図に示すように、静翼を取付ける際に、動翼回転方
向に翼を傾けて設置することが行われていた。この時の
流れの様子を第7図に示すが、接線方向翼取付は傾き角
θをつけることにより、翼から流体を根元方向に押しつ
ける力が発生し、静翼出口においては、第7図(a)に
示すような負の半径方向速度成分を有する流れ13が発
生する。
As shown in FIG. 3, when installing stator blades, the blades were installed with the blades tilted in the rotating direction of the rotor blades. The state of the flow at this time is shown in Figure 7. By attaching the blade in the tangential direction at an angle of inclination θ, a force is generated that pushes the fluid from the blade toward the root, and at the exit of the stationary blade, as shown in Figure 7 ( A flow 13 is generated having a negative radial velocity component as shown in a).

この流れが動翼入口14に達すると、θを適切に選ぶこ
とにより、半径方向速度成分はほとんどない13′のよ
うな流れとなる。このような流れは。
When this flow reaches the rotor blade inlet 14, by appropriately selecting θ, it becomes a flow like 13' with almost no radial velocity component. This is the flow.

第7図(b)に示すように、動翼半径方向断面に対して
、はぼ2次元的に流入することになり、流体のもつエネ
ルギを有効に動翼のなす仕事に変換することができる。
As shown in Fig. 7(b), the fluid flows into the rotor blade in a radial direction in a nearly two-dimensional manner, and the energy of the fluid can be effectively converted into work performed by the rotor blade. .

これに対して前記のソ連文献では静翼単体のみについて
の対策である故に、上記のような動翼を含めた段落とし
ての問題点について対策はなされず、従ってこれを実際
のタービンの静翼に適用することは不適当である。又、
同じく前記第3図に示すような接線方向翼取付は傾き角
0を一定にすること即ち翼後縁形状を直線状となすこと
は翼先端部において流体の流れを壁面から離し、二次流
れを増大するなどの欠点を有することは前述の通りであ
る。
On the other hand, in the above-mentioned Soviet literature, since the countermeasures are only for a single stator blade, no countermeasures are taken for the problem as a paragraph that includes the rotor blade, and therefore, it is not possible to apply this to the stator blade of an actual turbine. It is inappropriate to apply. or,
Similarly, when installing a tangential blade as shown in Figure 3, keeping the inclination angle 0 constant, that is, making the trailing edge shape of the blade straight, directs the fluid flow away from the wall surface at the blade tip and reduces the secondary flow. As mentioned above, it has disadvantages such as increased size.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の第一は静翼群と動翼群で構成される軸流流体機
械の段落において、静翼の接線方向取付け傾き角を静翼
根元から同先端に向って次第に減少させ、しかも先端に
おいても正なる傾き角を有するようにしたことを特徴と
するものである。
The first aspect of the present invention is to gradually reduce the tangential mounting angle of the stator blades from the root to the tip of the stator blade in an axial flow machine consisting of a stator blade group and a rotor blade group. It is also characterized in that it has a positive inclination angle.

本発明の第二は静翼の接線方向取付は傾き角θを動翼回
転方向を正とし、静翼翼長方向の各断面における半径位
置をRで表した場合、上記傾き角θをRθ”をRθ≒k
(kは定数)の条件で変化させるようにしたことを特徴
とするものである。
The second aspect of the present invention is that when the stator blade is mounted in the tangential direction, the inclination angle θ is set as positive in the rotating direction of the rotor blade, and the radial position in each cross section in the span direction of the stator blade is expressed as R. Rθ≒k
(k is a constant).

傾き角が減少するのでその部分における翼根元方向への
押付は力が過大とならず、従って静翼先端附近で流れが
外周壁面から離されることがなくなる。又傾き角を負と
することにより流れに半径方向の速度成分を発生させる
ことがない。
Since the inclination angle is reduced, the force applied toward the root of the blade at that portion will not become excessive, and the flow will not be separated from the outer peripheral wall surface near the tip of the stator blade. Furthermore, by making the inclination angle negative, no radial velocity component is generated in the flow.

又、本発明によれば、上記のようにθをROをRθ≒k
(kは定数)の条件で変化させることによって静翼の半
径方向位置における望ましい傾き角が得※ られその結果して半径方向のすべての位置において動翼
に到達した流れに半径方向に速度成分を生するごとがな
くなる。
Further, according to the present invention, as described above, θ and RO are Rθ≒k
By varying the condition (k is a constant), a desired inclination angle at the radial position of the stationary blade can be obtained.* As a result, the velocity component in the radial direction is added to the flow reaching the rotor blade at all positions in the radial direction. There will be no life left.

〔実施例〕〔Example〕

第8図は本発明を適用した時の静翼後縁6の形状を示す
ものである。接線方向翼取付は傾き角θは翼根光でθr
、翼先端でOtとなり、動翼回転方向9に傾けた場合を
正とした時に、θ、〉Ot〉0の関係を保持することを
特徴としている。上記の静翼の接線方向翼取付は傾き角
θは第9図に示すようなRとθの関係で規定され、半径
方向にθは漸次変化する。前述したように、動翼入口で
半径方向速度成分を除去するためには、第61i!jに
示すように、静翼と動翼の翼間距離Xと静翼出口の流出
角αに密接に関係する。ところで第6図(b)に示す接
線方向移動距離Qは半径位置をRとし静翼出口から動翼
入口までの角度Oに換算すると幾何学的にfi:Rθの
関係で定義することができる。そして一つの静翼につい
てはΩはほぼ一定と見て差支えがないのでこれによって
算出された角度θを接線方向翼取付は傾き角とすれば、
動翼入口で、半径方向速度成分をほぼ除去することがで
きる。
FIG. 8 shows the shape of the stator blade trailing edge 6 when the present invention is applied. For tangential blade installation, the inclination angle θ is θr in the blade root light.
, Ot at the tip of the blade, and when tilted in the rotor blade rotation direction 9 is positive, the relationship θ,〉Ot〉0 is maintained. In the above-mentioned tangential blade attachment of the stationary blade, the inclination angle θ is defined by the relationship between R and θ as shown in FIG. 9, and θ gradually changes in the radial direction. As mentioned above, in order to remove the radial velocity component at the rotor blade inlet, the 61i! As shown in j, it is closely related to the distance between the stator blade and the moving blade, X, and the outflow angle α at the exit of the stator blade. By the way, the tangential movement distance Q shown in FIG. 6(b) can be geometrically defined by the relationship fi:Rθ when the radial position is R and it is converted into the angle O from the stationary blade outlet to the rotor blade inlet. For one stationary blade, it can be assumed that Ω is almost constant, so if the angle θ calculated from this is the inclination angle when the blade is installed in the tangential direction, then
At the rotor blade inlet, the radial velocity component can be substantially eliminated.

又、第6図(b)より明らかなようにQ≒x/eO8α
の関係があるので静翼と動翼の翼間層1IIlxと静翼
出口の流出角αからQを求めることが出来る。ここでX
及びαは設計値であるからこれによって予めρを知り従
ってθを予め算出することができる。このXやαの値い
は蒸気タービンについ求めて図表化したのが第9図であ
る。即ちRθ=20とRθ=6で囲まれる範囲が実機に
適用して好適なものである。第10図は第8図に示した
本発明の実施例と同等の効果を発生させることのできる
静翼の後縁形状を示す図である。第10図は第8図に示
すような連続的に接線方向翼取付は傾き角を変化させる
のではなく、半径方向位置を複数個に分割し、断続的に
接線方向翼取付は傾き角を変化させる方法を示す。しか
し、第10図でも第8図と同様にθ、〉Ot>Oの関係
は保たれて゛・′いる。第10図の特徴は、第8図の本
実施例と同(lO) 程度の半径方向速度成分を除去する効果を発生すること
ができ、しかも、第8図の本実施例よりも製作が容易と
いう効果がある。
Also, as is clear from Fig. 6(b), Q≒x/eO8α
Since there is the following relationship, Q can be determined from the interblade layer 1IIlx between the stator blade and rotor blade and the outflow angle α at the exit of the stator blade. Here X
Since and α are design values, it is possible to know ρ in advance and therefore calculate θ in advance. Figure 9 shows the values of X and α determined for a steam turbine and graphed. That is, the range surrounded by Rθ=20 and Rθ=6 is suitable for application to an actual machine. FIG. 10 is a diagram showing the shape of the trailing edge of the stationary blade that can produce the same effect as the embodiment of the present invention shown in FIG. 8. Figure 10 shows that the radial position is divided into multiple parts, instead of changing the inclination angle continuously when the blade is installed tangentially as shown in Figure 8, and the angle is changed intermittently when the blade is installed tangentially. We will show you how to do this. However, in FIG. 10 as well as in FIG. 8, the relationship θ, >Ot>O is maintained. The feature of FIG. 10 is that it can produce the same effect of removing the radial velocity component as (lO) as this embodiment of FIG. 8, and it is easier to manufacture than this embodiment of FIG. 8. There is an effect.

〔発明の効果〕〔Effect of the invention〕

本発明によれば流体のもつエネルギを動翼で有効に仕事
に変換できるので軸流流体機械の効率を向上させること
が出来る。
According to the present invention, the energy of the fluid can be effectively converted into work by the rotor blades, so that the efficiency of the axial flow fluid machine can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)はタービン段落の子午面形状図、第1図(
b)は静翼の後縁形状図、第2図は静翼出口の流れを示
す図、第3図、第4図は接線方向翼取付は傾き角のある
場合の静翼後縁形状図、第5図は静翼の損失分布図、第
6図は静翼出口から動翼入口に至るまでの流れの図、第
7図は接線方向翼取付は傾き角をつけた時の流れの図、
第8図は本発明の一実施例の静翼後縁形状図、第9図は
本発明の接線方向翼取付は傾き角の半径方向分布図、−
4!5@、第10図(a)(b)は本発明の他(11)
      (ほか1名) 第1図 第2図 第30 第4図 生 c’−q 第5図 (α)        (b)      (C)1嘴
入         (臀大     榎天第6図 (aン 牛 (t)) 箋70 (cL) (ト) 第80 C岬9 ゛第7図 θ−
Figure 1(a) is a meridional plane shape diagram of the turbine stage;
b) is a diagram of the trailing edge shape of the stator blade, Figure 2 is a diagram showing the flow at the exit of the stator blade, Figures 3 and 4 are diagrams of the trailing edge shape of the stator blade when the tangential blade is installed with an inclination angle, Figure 5 is a loss distribution diagram of the stator blade, Figure 6 is a flow diagram from the stator vane outlet to the rotor blade inlet, Figure 7 is a diagram of the flow when the blade is installed tangentially and at an angle of inclination.
FIG. 8 is a profile diagram of the trailing edge of a stationary blade according to an embodiment of the present invention, and FIG. 9 is a diagram of the radial distribution of the inclination angle of the tangential blade installation of the present invention.
4!5@, Figures 10 (a) and (b) are other than the present invention (11)
(1 other person) Figure 1 Figure 2 Figure 30 Figure 4 Raw c'-q Figure 5 (α) (b) (C) 1 mouth (buttocks large Enokiten Figure 6 (a n cow (t) )) Note 70 (cL) (G) No. 80 C Cape 9 ゛Figure 7 θ-

Claims (1)

【特許請求の範囲】 1、静翼群と動翼群で構成される軸流流体機械の段落に
おいて、上記静翼後縁の接線方向取付け傾き角θを動翼
回転方向を正とし、静翼根元の傾き角をθ_r、同先端
の傾き角をθ_tで表した場合、θ_r>θ_t>0と
なるように静翼後縁の接線方向取付け傾き角θを静翼根
元から同先端に向つて次第に減少させ、しかも先端にお
いても正なる傾き角を有するようにしたことを特徴とす
る軸流流体機械の静翼。 2、静翼群と動翼群で構成される軸流流体機械の段落に
おいて、上記静翼後縁の接線方向取付け傾き角θを動翼
回転方向を正とし、静翼翼長方向の各断面における半径
位置をRで表した場合、上記傾き角θをRθ≒k(kは
定数)の条件で変化させるようにしたことを特徴とする
軸流流体機械の静翼。 3、特許請求の範囲第2項において、静翼流出角をα、
静翼と動翼の軸方向翼間距離をxで表した場合、k≒x
/cosαの関係となるようにしたことを特徴とする軸
流流体機械の静翼。 4、特許請求の範囲第2項において、k=6〜20とす
るようにしたことを特徴とする軸流流体機械の静翼。
[Claims] 1. In the paragraph of an axial flow fluid machine composed of a stator blade group and a rotor blade group, the tangential installation inclination angle θ of the stator blade trailing edge is positive with respect to the rotating direction of the rotor blade, and the stator blade If the inclination angle at the root is expressed as θ_r and the inclination angle at the tip is expressed as θ_t, then the mounting inclination angle θ in the tangential direction of the trailing edge of the stator blade is gradually increased from the root of the stator blade toward the tip so that θ_r>θ_t>0. A stationary blade for an axial flow fluid machine, characterized in that the blade has a positive inclination angle even at its tip. 2. In the paragraph of an axial flow fluid machine consisting of a stator blade group and a rotor blade group, the tangential installation inclination angle θ of the stator blade trailing edge is defined as positive in the rotor blade rotation direction, and in each cross section in the stator blade span direction. A stationary blade for an axial flow fluid machine, characterized in that when the radial position is represented by R, the above-mentioned inclination angle θ is changed under the condition that Rθ≈k (k is a constant). 3. In claim 2, the stator blade outflow angle is α,
If the axial distance between the stator blade and rotor blade is expressed as x, then k≒x
A stationary blade for an axial flow fluid machine characterized by having a relationship of /cosα. 4. A stationary blade for an axial fluid machine, characterized in that k=6 to 20 as set forth in claim 2.
JP61012015A 1986-01-24 1986-01-24 Axial flow fluid machine Expired - Lifetime JPH0689651B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61012015A JPH0689651B2 (en) 1986-01-24 1986-01-24 Axial flow fluid machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61012015A JPH0689651B2 (en) 1986-01-24 1986-01-24 Axial flow fluid machine

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2067115A Division JPH0692723B2 (en) 1990-03-19 1990-03-19 Axial flow fluid machine

Publications (2)

Publication Number Publication Date
JPS62170707A true JPS62170707A (en) 1987-07-27
JPH0689651B2 JPH0689651B2 (en) 1994-11-09

Family

ID=11793767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61012015A Expired - Lifetime JPH0689651B2 (en) 1986-01-24 1986-01-24 Axial flow fluid machine

Country Status (1)

Country Link
JP (1) JPH0689651B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01106903A (en) * 1987-10-21 1989-04-24 Toshiba Corp Turbine nozzle
JPH03189304A (en) * 1990-03-19 1991-08-19 Hitachi Ltd Stationary blade for axial-flow fluid machinery
JPH04124406A (en) * 1990-09-17 1992-04-24 Hitachi Ltd Axial flow turbine stationary blade device and axial flow turbine
EP1710397A2 (en) 2005-03-31 2006-10-11 Kabushiki Kaisha Toshiba Bowed nozzle vane
JP2007127132A (en) * 2005-03-31 2007-05-24 Hitachi Ltd Axial turbine
EP2362063A3 (en) * 2005-03-31 2012-08-29 Hitachi Ltd. Axial turbine
WO2020194901A1 (en) * 2019-03-26 2020-10-01 株式会社Ihi Stationary blade segment of axial turbine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50111403A (en) * 1974-02-15 1975-09-02
JPS5144706A (en) * 1974-10-14 1976-04-16 Tokyo Shibaura Electric Co TAABINBANE

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50111403A (en) * 1974-02-15 1975-09-02
JPS5144706A (en) * 1974-10-14 1976-04-16 Tokyo Shibaura Electric Co TAABINBANE

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01106903A (en) * 1987-10-21 1989-04-24 Toshiba Corp Turbine nozzle
JPH0478803B2 (en) * 1987-10-21 1992-12-14 Tokyo Shibaura Electric Co
JPH03189304A (en) * 1990-03-19 1991-08-19 Hitachi Ltd Stationary blade for axial-flow fluid machinery
JPH04124406A (en) * 1990-09-17 1992-04-24 Hitachi Ltd Axial flow turbine stationary blade device and axial flow turbine
JP2753382B2 (en) * 1990-09-17 1998-05-20 株式会社日立製作所 Axial flow turbine vane device and axial flow turbine
JP2007127132A (en) * 2005-03-31 2007-05-24 Hitachi Ltd Axial turbine
EP1710397A2 (en) 2005-03-31 2006-10-11 Kabushiki Kaisha Toshiba Bowed nozzle vane
EP1710397A3 (en) * 2005-03-31 2008-03-12 Kabushiki Kaisha Toshiba Bowed nozzle vane
EP2362063A3 (en) * 2005-03-31 2012-08-29 Hitachi Ltd. Axial turbine
US8308421B2 (en) 2005-03-31 2012-11-13 Hitachi, Ltd. Axial turbine
WO2020194901A1 (en) * 2019-03-26 2020-10-01 株式会社Ihi Stationary blade segment of axial turbine
JPWO2020194901A1 (en) * 2019-03-26 2021-10-21 株式会社Ihi Axial turbine vane segment
US11661854B2 (en) 2019-03-26 2023-05-30 Ihi Corporation Stator vane segment of axial turbine

Also Published As

Publication number Publication date
JPH0689651B2 (en) 1994-11-09

Similar Documents

Publication Publication Date Title
US4289450A (en) Rotor for operation in a flow medium
JPH10169405A (en) Turbine nozzle
JP2001132696A (en) Stationary blade having narrow waist part
JP2002339703A (en) Turbine moving blade
JP2002213202A (en) Gas turbine blade
JPS62170707A (en) Static blade for axial flow fluid machine
JPH0692723B2 (en) Axial flow fluid machine
JP2007056824A (en) Stationary blade and moving blade for axial flow turbine, and axial flow turbine provided with same
US4022544A (en) Turbomachine rotor wheel
JPH10131707A (en) Blade group of axial flow turbine
JP2000018003A (en) Turbine moving blade
JPH10318117A (en) Impeller of fluid machine
JPS5941024B2 (en) Francis type runner
JP3402176B2 (en) Blades for turbomachinery
JPH07332007A (en) Turbine stationary blade
JPH04287802A (en) Steam turbine nozzle
JP2004263602A (en) Nozzle blade, moving blade, and turbine stage of axial-flow turbine
JPS5851121B2 (en) Turbine paragraph structure
JP2000204903A (en) Axial turbine
JPH11173104A (en) Turbine rotor blade
JP2001221005A (en) Three-dimensional axial flow turbine stage
JP2000104501A (en) Turbine moving blade, gas turbine and steam turbine
JPH09133095A (en) Moving blade for radial turbine and diagonal flow turbine
JPS588203A (en) Diaphragm for axial flow turbine
JPH11241601A (en) Axial flow turbine

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term