JPS6217041A - Glass composition for fiber - Google Patents

Glass composition for fiber

Info

Publication number
JPS6217041A
JPS6217041A JP15632985A JP15632985A JPS6217041A JP S6217041 A JPS6217041 A JP S6217041A JP 15632985 A JP15632985 A JP 15632985A JP 15632985 A JP15632985 A JP 15632985A JP S6217041 A JPS6217041 A JP S6217041A
Authority
JP
Japan
Prior art keywords
glass
temperature
composition
devitrification
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15632985A
Other languages
Japanese (ja)
Other versions
JPH0444624B2 (en
Inventor
Kaoru Ikeda
薫 池田
Keihachiro Tanaka
田仲 啓八郎
Takahiro Iwai
岩井 孝宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP15632985A priority Critical patent/JPS6217041A/en
Publication of JPS6217041A publication Critical patent/JPS6217041A/en
Publication of JPH0444624B2 publication Critical patent/JPH0444624B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

PURPOSE:To form the titled glass composition for fibers having heat resistance and incombustibility and suitable for obtaining glass stable fibers by a rotary gas jet method by specifying the composition. CONSTITUTION:The composition contains, by weight, 35-47% SiO2, 9-15% Al2O3, 15-30% CaO, 0-7% MgO, 17-22% Na2O and 0-4% K2O (wherein the total of Na2O and K2O is regulated to 18-22%) and 3-6% B2O3. The content of SiO2 is preferably regulated to 36-42wt% and the content of Al2O3 is preferably controlled to 12-14wt%.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は繊維用ガラス組成物に係り、特に旋回ガスジェ
ットをガラス溶融物に作用させてガラス短繊維を得るの
に適し、且つ不燃性に優れた繊維用ガラス組成物に関す
る。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a glass composition for fibers, which is particularly suitable for producing short glass fibers by applying a swirling gas jet to a glass melt, and is nonflammable. This invention relates to an excellent glass composition for fibers.

[従来の技術] ガラス等の熱軟化性物質を細くして繊維化する方法とし
て、近年、いわゆる旋回ガスジェット法(RGJ法)が
提案された(特公昭58−57374号)、この方法は
、熱軟化性物質の円柱状溶融物流に、その進行方向に対
する横断面の外周の接線方向成分を有するガス流を、溶
融物が横方向に変位するのを防げるように接触させなが
ら高速で回転させ、細線化された糸状物質を遠心力によ
って引き出す方法である。この旋回ガスジーット法は、
従来の火炎法や遠心法等に比し、生産効率、得られる製
品品質の面で極めて有利であることが明らかになってき
ており、注目を集めている。
[Prior Art] In recent years, the so-called rotating gas jet method (RGJ method) has been proposed as a method for thinning and forming fibers from heat-softening materials such as glass (Japanese Patent Publication No. 58-57374). Rotating the cylindrical melt stream of the thermosoftening substance at high speed while contacting it with a gas flow having a component tangential to the outer periphery of the cross section with respect to its traveling direction in such a way as to prevent the melt from being displaced in the lateral direction; This method uses centrifugal force to pull out thin filamentous substances. This swirling gas jet method is
It has become clear that this method is extremely advantageous in terms of production efficiency and product quality compared to conventional flame methods, centrifugal methods, etc., and is attracting attention.

この旋回ガスジェット法は、粘度約30〜70ポアズの
溶融物に適用することが好ましい。また、旋回ガスジェ
ット法によってガラス繊維を製造する場合、白金ないし
白金合金製の溶融ポットが使用されるが、このポットの
損傷を防止するために、ガラスの溶融作業温度(溶融ポ
ット内の最高温度で規定する)は1400℃以下である
ことが必要であり、特にポットの寿命をより長期化する
点から、作業温度は132O℃以下であることが望まし
い。
This swirling gas jet process is preferably applied to melts with a viscosity of about 30 to 70 poise. Furthermore, when producing glass fiber by the swirling gas jet method, a melting pot made of platinum or platinum alloy is used. ) is required to be 1400° C. or less, and in particular, from the viewpoint of prolonging the life of the pot, it is desirable that the working temperature be 1320° C. or less.

このため、旋回ジェット法に適切なガラス組成物は13
2O℃以下の温度において30〜70ポアズの粘度を有
することが望まれるのである。
Therefore, a suitable glass composition for the swirling jet method is 13
It is desired to have a viscosity of 30 to 70 poise at temperatures below 2O<0>C.

このような旋回ガスジェット法に適するガラス組成物と
して、先に、特開昭56−5352に、重量百分率にし
て、SiO2:35〜47、A12Oa : 9〜l 
5.Cao : 15〜40、MgO: O〜7.Na
2O: O〜l 9、K 2O :0〜19、ただしN
a2O及びK2Oの合計量=2〜19、B2O3:3〜
8からなる繊維用ガラス組成物が提案された。上記繊維
用ガラス組成物は、旋回カスジェット法に適切な高温粘
度特性を有し、しかも安価な原料の使用が可能であり、
耐湿性にも優れている。
As a glass composition suitable for such a swirling gas jet method, previously published in Japanese Patent Application Laid-Open No. 56-5352, SiO2: 35-47, A12Oa: 9-1 in weight percentage.
5. Cao: 15-40, MgO: O-7. Na
2O: O~l 9, K2O: 0~19, however, N
Total amount of a2O and K2O = 2 ~ 19, B2O3: 3 ~
A fiberglass composition consisting of 8 was proposed. The above-mentioned glass composition for fibers has high temperature viscosity characteristics suitable for the swirling gas jet method, and allows the use of inexpensive raw materials.
It also has excellent moisture resistance.

[発明が解決しようとする問題点] しかるに、特開昭56−5352に提示された組成範囲
を満たす組成物の中には、不燃性に優れていないものが
あることが判明した。
[Problems to be Solved by the Invention] However, it has been found that some compositions satisfying the composition range proposed in JP-A-56-5352 do not have excellent nonflammability.

即ち、材料の持つ不燃性は1通常、建設省告示第182
8号(昭和45年12月28日)に定められた不燃試験
によって評価され、該試験に合格した材料が不燃材料と
しての指定を受けることができる。この不燃試験は、基
材試験と表面試験とからなるが、前掲の特開昭56−5
352に規定された組成範囲を満たす種々の組成物より
作製した短繊維ボードをこの不燃試験に供したところ、
必ずしも全組成範囲にわたって合格し得る特性を具備す
る訳ではないことが見出された。
In other words, the nonflammability of the material is 1.
8 (December 28, 1970), and materials that pass the test can be designated as noncombustible materials. This nonflammability test consists of a base material test and a surface test, and is
When short fiber boards made from various compositions satisfying the composition range specified in 352 were subjected to this nonflammability test,
It has been found that the composition does not necessarily have acceptable properties over the entire composition range.

このガラス組成物の不燃性は、一般のグラスウール断熱
材や保温材等で不燃材料の用途に用いないものに対して
は規制されない。従って、この場合には、不燃性に優れ
ていないガラス組成物でも使用可能である。
The nonflammability of this glass composition is not regulated for general glass wool insulation materials, heat insulating materials, etc. that are not used for noncombustible purposes. Therefore, in this case, even a glass composition that is not excellent in flame resistance can be used.

しかしながら、不燃性でないガラス組成物では製品の用
途が制限され、例えば不燃性と熱抵抗性の両特性を必要
とする用途には使用できないなど、使用上の不都合が生
ずる。
However, non-flammable glass compositions have disadvantages in use, such as the limited use of the product and, for example, the inability to use them in applications that require both non-flammability and heat resistance.

このため、熱抵抗性等の数多くの品質性能と共に不燃性
を具備する、旋回ガスジェット法に適切なta維用ガラ
ス組成物の出現が強く望まれていた。
For this reason, there has been a strong desire for a TA fiber glass composition suitable for the swirling gas jet method, which has numerous quality properties such as heat resistance and is nonflammable.

[問題点を解決するための手段] 本発明のガラス組成物は、 それぞれ重量百分率で表わして、 SiO2   :  35〜47 A旦2O3:   9〜15 CaO:15〜30 Mg0   ・  0〜7 Na2O  :  17〜22 K 2O−0〜4 (ただし N a 2O及びK2Oの合計量:18〜2
2) B2Oに3〜6 を含むことを特徴とする。
[Means for Solving the Problems] The glass composition of the present invention has the following components, each expressed in weight percentage: SiO2: 35-47 A2O3: 9-15 CaO: 15-30 Mg0.0-7 Na2O: 17 ~22 K2O-0~4 (however, total amount of Na2O and K2O: 18~2
2) It is characterized by containing 3 to 6 in B2O.

本発明において、SiO2は47重量%(以下、巾に%
と記載する。)を超えると、ガラスの溶融温度が高くな
り、作業温度が上昇して繊維系が太くなるなどの不都合
を生じる。また、35%より少ないと、失透傾向が必要
以上に大きくなり、しかも耐湿性も悪くなる。好ましい
5iOz配合割合は36〜42%である。
In the present invention, SiO2 is 47% by weight (hereinafter referred to as % in width).
It is written as ), the melting temperature of the glass becomes high, causing problems such as an increase in working temperature and thickening of the fiber system. On the other hand, if it is less than 35%, the tendency to devitrify becomes greater than necessary, and moisture resistance also deteriorates. The preferred blending ratio of 5iOz is 36 to 42%.

A fL 2O3は9%未満では耐湿性が箸しく低下し
、また15%を超えると液相温度が上昇するので好まし
くない、好ましいA l 2O :lの配合割合は12
〜14%である。
If A fL 2O3 is less than 9%, the moisture resistance will drop significantly, and if it exceeds 15%, the liquidus temperature will rise, which is undesirable.The preferred blending ratio of A l 2O :l is 12
~14%.

CaOは、その配合割合が多くなるにつれて耐湿性が向
上するのであるが、30%を超えると失透傾向が必要以
上に大きくなるので繊維製造上好ましくない、また、1
5%より少ないと耐湿性は    □良いが、耐水性が
著しく低くなって不都合であ    )る。
Moisture resistance of CaO improves as its blending ratio increases, but if it exceeds 30%, the tendency to devitrify increases more than necessary, which is undesirable for fiber production.
If it is less than 5%, the moisture resistance is good, but the water resistance becomes extremely low, which is inconvenient.

MgOはその配合割合が少ない方が、耐湿性が良い傾向
を示す。MgOが7%を超えると作業温度は低くなる反
面液相温度が上昇し、しかも耐湿性が著しく悪くなる。
The smaller the blending ratio of MgO, the better the moisture resistance tends to be. If the MgO content exceeds 7%, the working temperature will decrease, but the liquidus temperature will increase, and the moisture resistance will deteriorate significantly.

従ってMgOの配合割合は0〜7%以下とする。Therefore, the blending ratio of MgO is set to 0 to 7% or less.

Na2O及びK2Oは、いずれも作業温度を低下せしめ
るので、ガラス成分として相当量を含有させることが好
ましい、優れた不燃性を得るのに、有効な失透を生成す
るために、N a 2Oは17〜22%、K2Oは0〜
4%以下とする。なお、N a 2O及びK2Oの合計
量は18=22である。N a 2O + K 2Oが
18%未満であると失透生成量が少なく不燃性の向上効
果が低く、また22%を超えるととくに耐湿性が低下し
て好ましくない。N a 2Oとに’2Oの合計量の好
ましい範囲は19%を超え22%以下である。
Since both Na2O and K2O lower the working temperature, it is preferable to include a considerable amount as a glass component.In order to obtain excellent nonflammability and to generate effective devitrification, Na2O is 17 ~22%, K2O is 0~
4% or less. Note that the total amount of N a 2O and K2O is 18=22. When N a 2 O + K 2 O is less than 18%, the amount of devitrification generated is small and the effect of improving nonflammability is low, and when it exceeds 22%, moisture resistance particularly decreases, which is not preferable. A preferable range of the total amount of Na 2O and 2O is more than 19% and less than 22%.

B2O3は作業温度及び液相温度のいずれも低下させる
効果を有する。B2O3の配合割合が3%未満ではその
効果は小さく、6%を超えると失透傾向が小さくなりす
ぎ、またガラスm雄の耐酸性を非常に低下させ、かつガ
ラスが高価になるので好ましくない。従って、B2O]
の配合割合は3〜6%とする。
B2O3 has the effect of lowering both the working temperature and the liquidus temperature. If the blending ratio of B2O3 is less than 3%, the effect will be small, and if it exceeds 6%, the tendency to devitrify will be too small, the acid resistance of the glass will be greatly reduced, and the glass will become expensive, which is not preferable. Therefore, B2O]
The blending ratio is 3 to 6%.

なお、S 4m2.Alp 03 、CaO及びMgO
を1成分とするガラス組成物は、安価な原料として代表
的な珪砂、アプライド11石灰石、ドロマイトを適宜に
組合せて利用することにより得られる。さらには、溶鉱
炉から多量に廃残物として発生する高炉スラグや鹿児島
地方に無尽に埋蔵しているシラス等の、近年安価な原料
として注目されているものを使用することもできる。従
って、S i 02  A l 2O3 、 Ca O
M g O系を基本組成に選ぶことによって、使用原料
を廉価にすることができ、経済的に有利である。
In addition, S 4m2. Alp 03 , CaO and MgO
A glass composition having as one component can be obtained by appropriately combining typical silica sand, applied 11 limestone, and dolomite as inexpensive raw materials. Furthermore, it is also possible to use materials that have recently attracted attention as inexpensive raw materials, such as blast furnace slag, which is generated in large quantities as waste residue from blast furnaces, and whitebait, which is found in limitless reserves in the Kagoshima region. Therefore, S i 02 A l 2O3 , Ca O
By selecting M g O system as the basic composition, the raw materials used can be made inexpensive, which is economically advantageous.

本発明においては、ガラスに付与される失透性の程度に
応じて、その他の配合成分及び各々の配合割合が限定さ
れる。即ち、不燃性を向上させるためには、失透生成量
が多い方が望ましいが、失透生成量が必要以上に増加し
た場合には、繊維化装置のノズル詰りを発生させるなど
m雄製造上の障害が発生する原因となるので好ましくな
い、また、液相温度の上昇も同様の理由から好ましくな
い。従って、失透生成量は不燃性にとって必要かつ十分
なだけの量であることが好ましく、この量よりも少ない
と不燃性が低下し、逆に多すぎたり、液相温度が上昇す
ると、繊m製造上の障害となり、好ましくない。
In the present invention, other blending components and their respective blending ratios are limited depending on the degree of devitrification imparted to the glass. In other words, in order to improve nonflammability, it is desirable to have a large amount of devitrification produced, but if the amount of devitrification produced increases more than necessary, it may cause problems in manufacturing, such as clogging of the nozzle of the fiberizing equipment. This is undesirable because it causes trouble in the process, and an increase in liquidus temperature is also undesirable for the same reason. Therefore, it is preferable that the amount of devitrification generated is necessary and sufficient for non-flammability.If it is less than this amount, the non-flammability will decrease, and if it is too large or the liquidus temperature increases, the fiber m This is undesirable as it causes problems in manufacturing.

[作用] 本発明の繊維用ガラス組成物によれば、得られるガラス
に適度な量の失透が生成し、このため、ガラスの粘性を
上げることなく、m維の溶融や軟化による変形を防止し
、これにより短繊維ボードの溶融や亀裂の発生を防止し
、不燃性を向上させることが可能である。
[Function] According to the glass composition for fibers of the present invention, an appropriate amount of devitrification is generated in the resulting glass, thereby preventing deformation due to melting and softening of m-fibers without increasing the viscosity of the glass. However, this prevents the short fiber board from melting and cracking, and improves its nonflammability.

なお、以下に失透による作用について説明する。Note that the effect of devitrification will be explained below.

溶融や軟化による繊維の変形を防止して、ガラス組成物
に不燃性をもたせるには、粘性の高いガラス材料とすれ
ば良いのであるが、この場合には、通常、作業温度も上
昇するので製造上好ましくない。そこで、粘性を上げる
ことなくm雄の変形を防止するべく鋭意検討を重ねた結
果、短繊維ボードではある種の失透を生ずるガラス組成
物が効果的であることが見出された。
In order to prevent the deformation of the fibers due to melting and softening and to make the glass composition nonflammable, it would be better to use a glass material with high viscosity, but in this case, the working temperature would also usually rise, so manufacturing Not good. Therefore, as a result of intensive studies in order to prevent the deformation of the glass without increasing the viscosity, it was discovered that a glass composition that causes a certain type of devitrification is effective for short fiber boards.

ガラスが失透すると脆性が上がるために強度が低下する
が、結晶化の程度によっては、逆にガラスの機械的強度
を高めかつ軟化温度を高め、耐熱性を向上せしめること
が知られている。
When glass becomes devitrified, its strength decreases due to increased brittleness, but it is known that depending on the degree of crystallization, it can conversely increase the mechanical strength and softening temperature of the glass, thereby improving its heat resistance.

一般に、単位時間当りの失透生成量と温度との関係は、
第1rgJのように示され、最も失透を生じさせ易い温
度範囲があるので、この温度にガラスを保持することに
より失透を効率良く生じさせることができる。
Generally, the relationship between the amount of devitrification produced per unit time and temperature is as follows:
Since there is a temperature range shown as the first rgJ in which devitrification is most likely to occur, devitrification can be efficiently caused by maintaining the glass at this temperature.

第2図は、種々の組成のガラスについて行った実験によ
り求められた各ガラスの失透生成量と温度との関係を示
すグラフである。なお、失透生成量はガラスの白濁の程
度で示している。第2図において■は不燃試験(表面試
験)に不合格な組成ガラス、■■は合格する組成ガラス
であり、■は■より繊維の溶融や変形量が少なく、不燃
性に優れたものである。
FIG. 2 is a graph showing the relationship between the amount of devitrification produced and temperature for each glass, which was determined through experiments conducted on glasses of various compositions. Note that the amount of devitrification produced is indicated by the degree of cloudiness of the glass. In Figure 2, ■ indicates a composition glass that fails the nonflammability test (surface test), ■■ indicates a composition glass that passes, and ■ indicates a composition glass that has less melting and deformation of fibers than ■, and has excellent noncombustibility. .

なお、用いた各組成のガラスの温度、粘度特性を調べた
ところ、カラス組成による差は殆どなかった。本発明組
成のガラスは、いずれも■、■の組成のガラスと同じよ
うな失透生成能を有する。
In addition, when the temperature and viscosity characteristics of the glasses of each composition used were investigated, there were almost no differences depending on the glass composition. The glasses with the compositions of the present invention both have the same devitrification-generating ability as the glasses with the compositions (1) and (2).

即ち、本発明組成のガラス繊維は、500〜1000℃
の温度範囲(不燃試験時の試験体表面温度は、はぼこの
温度となる。)にて速やかに失透を生じさせる。そして
、軟化温度が高く、しかも高強度であり、ボードに成形
したときに不燃性に優れ、熱溶融や熱亀裂を生じさせ難
いものとなる。
That is, the glass fiber having the composition of the present invention has a temperature of 500 to 1000°C.
(The surface temperature of the test piece during the nonflammability test is the temperature of the bubble.) Promptly causes devitrification. Moreover, it has a high softening temperature and high strength, and when formed into a board, it has excellent nonflammability and is difficult to cause thermal melting or thermal cracking.

[実施例] 以下、実施例及び比較例について説明する。[Example] Examples and comparative examples will be described below.

第1表に示す原料組成の試料番号1−15のガラス試料
又はガラス繊維試料を、各々次のようにして作製した。
Glass samples or glass fiber samples with sample numbers 1-15 having the raw material compositions shown in Table 1 were each produced as follows.

ガラス量として400gになるように原料を調合し、1
350℃の電気炉内で4時間溶融した後、鉄板上に流し
出した。このガラスを冷却した後、1cm角以下の大き
さに粉砕したものをガラス試料とした。
Mix the raw materials so that the amount of glass is 400g,
After melting in an electric furnace at 350°C for 4 hours, it was poured onto an iron plate. After this glass was cooled, it was crushed to a size of 1 cm square or less, which was used as a glass sample.

また、このガラス試料を、底面に内径1.8mm、長さ
6mmのノズルのついた約100ccに白金ポットに投
入し、白金ポットの電気抵抗加熱により溶融した。白金
ポットのノズルから流出した溶融ガラスを、旋回ガスジ
ェット法により。
Further, this glass sample was placed in a platinum pot of approximately 100 cc with a nozzle having an inner diameter of 1.8 mm and a length of 6 mm on the bottom, and was melted by electrical resistance heating of the platinum pot. The molten glass flowing out from the nozzle of the platinum pot is processed using the swirling gas jet method.

直径約7JLの繊維に成形したものをガラス繊維試料と
した。
A glass fiber sample was formed into a fiber having a diameter of about 7 JL.

各試料を用いて、各々、不燃性、耐湿性、作業温度、軟
磁性を調べた。結果を第1表に示す、なお各々の特性の
測定及び評価方法は下記に示す通りである。
Each sample was examined for nonflammability, moisture resistance, working temperature, and soft magnetism. The results are shown in Table 1, and the measurement and evaluation methods for each characteristic are as shown below.

五二五 前述の不燃試験結果とガラス失透生成量との関係を調べ
る実験(第2図参照)より、■、■、■を標準試料とし
、失透生成量の多いもの(不燃性に優れたもの)からO
,O,Xの順に3段階に分ける。ここでは0以上で不燃
試験合格となる。木実流側で得られたガラス試料につい
ても前述の実験方法と同様の方法で失透を生成させ、そ
の失透生成量を標準試料と目視で比較し、不燃性を評価
した。
525 From the experiment to investigate the relationship between the above-mentioned non-flammability test results and the amount of glass devitrification produced (see Figure 2), we used ■, ■, and ■ as standard samples, and found that ) to O
, O, and X in the order of three stages. Here, if it is 0 or more, it passes the nonflammability test. For the glass sample obtained on the wood flow side, devitrification was also generated in the same manner as the above-mentioned experimental method, and the amount of devitrification produced was visually compared with the standard sample to evaluate the nonflammability.

耐」L性 ガラスtafi!試料2Ogを縦横各々2Omm、厚さ
50mmのマット状に成形し、縦横250mm、厚さ3
mmの2枚の鉄板の間に挿入し、ボルトとナツトを用い
てマットの厚みが5mmになるように圧縮して固定する
。これを気温40℃、相対湿度70%にコントロールさ
れた恒温恒湿槽内に5日間放置する。その後、これを取
り出して鉄板をとり外し、マットを無加重で約1時間室
内に放置した後、厚みを測定する。得られた厚みの測定
結果を互いに比較して、厚みの大きいもの(耐湿性のよ
いもの)から01O1Δ、×の順に4段階で評価した。
"Resistance" L-resistant glass tafi! A sample of 20 g was formed into a mat shape of 20 mm in length and width and 50 mm in thickness.
Insert the mat between two steel plates with a diameter of 5 mm, and use bolts and nuts to compress and fix the mat to a thickness of 5 mm. This was left in a constant temperature and humidity chamber controlled at a temperature of 40° C. and a relative humidity of 70% for 5 days. Thereafter, the mat was taken out, the iron plate was removed, and the mat was left unloaded indoors for about 1 hour, and then the thickness was measured. The obtained thickness measurement results were compared with each other and evaluated on a four-level scale in the order of 01O1Δ and × from the largest thickness (the one with the best moisture resistance).

1呈11 白金ポット(ガラス繊維試料の作製に用いたと同一のも
の)に、準備したカレー21を投入し、白金ポットの電
気加熱により溶融し、ノズルより流出するガラス量が4
2O g / h rになったときのポット内最高温度
を作業温度とし、その値を示した。この温度はその時の
ポット内のガラス粘度がほぼ30ポアズとなる温度であ
ることが、温度、粘度特性が既知のガラスでのテストか
ら確かめら゛れている。
1 Presentation 11 Put the prepared curry 21 into a platinum pot (the same one used to prepare the glass fiber sample), and melt it by electric heating of the platinum pot until the amount of glass flowing out from the nozzle is 4.
The maximum temperature inside the pot when the temperature reached 2Og/hr was taken as the working temperature, and the value is shown. It has been confirmed from tests using glasses whose temperature and viscosity characteristics are known that this temperature is the temperature at which the viscosity of the glass in the pot at that time is approximately 30 poise.

吹」1性 上記白金ポットに旋回ガスジェット用のエアーノズルを
取付けて、ガラス溶融物をm酸化したときの、失透によ
るノズルの詰りぐあい、流出量の安定性から判断したも
のであり、安定性のよいものから順に@、O,Δ、×、
××の5段階で示した。×中以下は繊維化ができなかっ
たものである。
Air nozzle for a swirling gas jet is attached to the above platinum pot to oxidize the glass melt.This is determined from the clogging of the nozzle due to devitrification and the stability of the flow rate. In descending order of gender: @, O, Δ, ×,
It was shown in 5 stages of XX. * Medium and below are those in which fiberization was not possible.

第1表から明らかなように1本発明の実施例に係る繊維
用ガラス組成物の試料は、いずれも優れた不燃性を有し
、しかも吹繊性にも優れ、作業温度も1230℃以下と
低く、且つ耐湿性も十分良好であると判断できるもので
あり、繊維用ガラス組成物として極めて有用である。
As is clear from Table 1, all of the samples of the glass composition for fibers according to Examples of the present invention have excellent nonflammability, excellent blowability, and a working temperature of 1230°C or less. It can be judged that the moisture resistance is low and that the moisture resistance is sufficiently good, making it extremely useful as a glass composition for fibers.

し効果] 以上詳述した通り、本発明の繊維用ガラス組成物により
得られるガラス組成物は、約500〜t o o o 
’cの温度にて速やかに失透を生じ、高軟化温度、高強
度となる。従って、かかるガラス繊維により製造される
ボード等のガラス#Ira成形体は、熱溶融や熱亀裂が
極めて生じにくく、不燃性に優れる。
Effect] As detailed above, the glass composition obtained by the glass composition for fibers of the present invention has a
At a temperature of 'c, devitrification occurs rapidly, resulting in a high softening temperature and high strength. Therefore, glass #Ira molded bodies such as boards manufactured using such glass fibers are extremely unlikely to undergo thermal melting or thermal cracking, and are excellent in nonflammability.

また、本発明組成のガラスは、 ■ 極めて低廉価の原料から得られる。Furthermore, the glass having the composition of the present invention is ■ Obtained from extremely low-cost raw materials.

■ 低い作業温度でM&維を製造することができる。■M&F can be produced at low working temperatures.

■ 耐湿性、吹繊性等の特性にも優れる。■ It also has excellent properties such as moisture resistance and blowability.

等の利点を有する。It has the following advantages.

本発明のガラス組成物は旋回ガスジェット法に供する原
料ガラスとして極めて好適である。
The glass composition of the present invention is extremely suitable as a raw material glass to be subjected to the swirling gas jet method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は一般的なガラスの失透生成量と温度との定性的
な関係を示すグラフであり、第2図は失透生成量と温度
の測定結果を示すグラフである。
FIG. 1 is a graph showing the qualitative relationship between the amount of devitrification produced in a general glass and temperature, and FIG. 2 is a graph showing the measurement results of the amount of devitrification produced and temperature.

Claims (2)

【特許請求の範囲】[Claims] (1)それぞれ重量百分率で表わして、 SiO_2:35〜47 Al_2O_3:9〜15 CaO:15〜30 MgO:0〜7 Na2O:17〜22 K_2O:0〜4 (ただしNa_2O及びK_2Oの合計量:18〜22
) B_2O_3:3〜6 を含むことを特徴とする繊維用ガラス組成物。
(1) Each expressed in weight percentage: SiO_2: 35-47 Al_2O_3: 9-15 CaO: 15-30 MgO: 0-7 Na2O: 17-22 K_2O: 0-4 (however, the total amount of Na_2O and K_2O: 18 ~22
) B_2O_3:3-6 A glass composition for fibers.
(2)SiO_2の含有率が36〜42重量%、Al_
2O_3の含有率が12〜14重量%である特許請求の
範囲第1項に記載の繊維用ガラス組成物。
(2) Content of SiO_2 is 36-42% by weight, Al_
The glass composition for fibers according to claim 1, wherein the content of 2O_3 is 12 to 14% by weight.
JP15632985A 1985-07-16 1985-07-16 Glass composition for fiber Granted JPS6217041A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15632985A JPS6217041A (en) 1985-07-16 1985-07-16 Glass composition for fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15632985A JPS6217041A (en) 1985-07-16 1985-07-16 Glass composition for fiber

Publications (2)

Publication Number Publication Date
JPS6217041A true JPS6217041A (en) 1987-01-26
JPH0444624B2 JPH0444624B2 (en) 1992-07-22

Family

ID=15625402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15632985A Granted JPS6217041A (en) 1985-07-16 1985-07-16 Glass composition for fiber

Country Status (1)

Country Link
JP (1) JPS6217041A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2883864A1 (en) * 2005-04-01 2006-10-06 Saint Gobain Isover Sa COMPOSITIONS FOR GLASS FIBERS
JP2012526036A (en) * 2009-05-08 2012-10-25 セリン イ Silica sand non-combustible material for asbestos substitution and its manufacturing method
JPWO2014002344A1 (en) * 2012-06-29 2016-05-30 ニチアス株式会社 Heat resistant inorganic fiber

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS565352A (en) * 1979-06-22 1981-01-20 Nippon Sheet Glass Co Ltd Glass composition for fiber

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS565352A (en) * 1979-06-22 1981-01-20 Nippon Sheet Glass Co Ltd Glass composition for fiber

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2883864A1 (en) * 2005-04-01 2006-10-06 Saint Gobain Isover Sa COMPOSITIONS FOR GLASS FIBERS
WO2006103376A3 (en) * 2005-04-01 2007-01-18 Saint Gobain Isover Glass fibre compositions
US7704902B2 (en) 2005-04-01 2010-04-27 Saint-Gobain Isover Glass fibre compositions
JP2012526036A (en) * 2009-05-08 2012-10-25 セリン イ Silica sand non-combustible material for asbestos substitution and its manufacturing method
JPWO2014002344A1 (en) * 2012-06-29 2016-05-30 ニチアス株式会社 Heat resistant inorganic fiber

Also Published As

Publication number Publication date
JPH0444624B2 (en) 1992-07-22

Similar Documents

Publication Publication Date Title
US5108957A (en) Glass fibers decomposable in a physiological medium
US5250488A (en) Mineral fibers decomposable in a physiological medium
US3929497A (en) Crystallizable glass suitable for fiber production
US4824806A (en) Glass fibers having low dielectric constant
US4363878A (en) Alkali- and heat-resistant inorganic fiber
JP3121374B2 (en) Mineral fiber decomposed in physiological media and heat and sound insulation products containing the same
CA1271785A (en) Inorganic fiber composition
CA1335297C (en) Hollow glass spheres
US4461840A (en) Heat resistant glass fiber composition
JPH0459257B2 (en)
EP2379460A1 (en) Composition for high performance glass fibers and fibers formed therewith
US3081179A (en) Glass fiber composition
KR20000029668A (en) Biosoluble, high temperature mineral wools
USRE35557E (en) Mineral fibers decomposable in a physiological medium
JPH06219780A (en) Glass fiber of low dielectric constant
JPS5999653A (en) Glass enclosure for tungsten-halogen bulb
US3484259A (en) High strength-high modulus glass fibers
AU741801B2 (en) Artificial mineral wool composition
CA1106413A (en) Glass composition for fiberization
JPS6299B2 (en)
US4187115A (en) Anorthite glass-ceramics
US3408213A (en) Glass fiber compositions
JPH08511760A (en) Inorganic fiber composition
JPS6217041A (en) Glass composition for fiber
US2756158A (en) Glass composition