JPS62167217A - Production of lead titanate - Google Patents

Production of lead titanate

Info

Publication number
JPS62167217A
JPS62167217A JP1076686A JP1076686A JPS62167217A JP S62167217 A JPS62167217 A JP S62167217A JP 1076686 A JP1076686 A JP 1076686A JP 1076686 A JP1076686 A JP 1076686A JP S62167217 A JPS62167217 A JP S62167217A
Authority
JP
Japan
Prior art keywords
titanium
lead
oxalate
aqueous solution
oxalic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1076686A
Other languages
Japanese (ja)
Other versions
JPH0559846B2 (en
Inventor
Kunimasa Takahashi
高橋 邦昌
Michiko Oda
享子 織田
Haruo Shibatani
柴谷 治雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
Original Assignee
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP1076686A priority Critical patent/JPS62167217A/en
Publication of JPS62167217A publication Critical patent/JPS62167217A/en
Publication of JPH0559846B2 publication Critical patent/JPH0559846B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To eliminate the need for such constraint in a conventional method that a nitric acidic titanium oxide aq. soln. is stored by refrigeration and tightly stoppered by adding oxalic acid of the specified amount to the nitric acidic titanium oxide aq. soln. and converting it into oxalate compd. stable for a long period and soluble in water. CONSTITUTION:About 1.5mol oxalic acid per 1mol nitric acidic titanium oxide is added to a nitric acidic titanium oxide aq. soln. and it is converted into oxalate compd. stable for a long period and soluble in water. This soln. is brought into contact with an aq. soln. contg. lead compd. equivalent to nitric acidic titanium oxide to produce precursor precipitate of lead titanate. Lead titanate is produced by subjecting the precursor precipitate to pyrolysis in an oxygen atmosphere.

Description

【発明の詳細な説明】 本発明はチタン酸鉛の製造方法に関するものである。更
に具体的には本発明は微細な粉末状のチタン酸鉛の前駆
体沈殿をしゅう酸塩として得る方法において、硝酸酸化
チタン水溶液に硝酸酸化チタン1モル当り、約1.5モ
ルのしゅう酸を加えて、チタンのしゅう酸塩を可溶化せ
しめて得たチタン含有水溶液を硝酸酸化チタンと当量の
鉛化合物を含有する水溶液と接触せしめて該前駆体沈殿
を生成せしめることに特徴をもつチタン酸鉛の製造方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing lead titanate. More specifically, the present invention provides a method for obtaining a fine powdery lead titanate precursor precipitate as oxalate, in which approximately 1.5 moles of oxalic acid is added to an aqueous solution of titanium oxide in nitric acid per mole of titanium oxide. In addition, lead titanate is produced by contacting a titanium-containing aqueous solution obtained by solubilizing titanium oxalate with an aqueous solution containing a lead compound in an amount equivalent to titanium nitrate oxide to form the precursor precipitate. The present invention relates to a manufacturing method.

チタン酸鉛は焦電体材料や高周波領域の圧電センサー等
として広く使用されている。また、各種固溶体の出発原
料としても使用されている。
Lead titanate is widely used as a pyroelectric material and piezoelectric sensors in the high frequency range. It is also used as a starting material for various solid solutions.

これらの材料の殆んどは、その粉末を焼き固めた焼結体
として製品化されている。その場合の品質は焼結の度合
で著しく左右されるものであり、従って良好な焼結体を
与えるべき原材料として粉体特性の優れた粉末が望まれ
ている。
Most of these materials are commercialized as sintered bodies obtained by baking and solidifying their powders. In this case, the quality is significantly influenced by the degree of sintering, and therefore, a powder with excellent powder properties is desired as a raw material for producing a good sintered body.

先兵狭止 チタン酸鉛の製造方法については種々の提案がなされて
いるが、製造方法の特徴別に分類すると、(1)  各
成分の酸化物粉末を混合し、高温に加熱して固相反応で
合成する方法、 (2)鉛およびチタンのしゅう酸塩を沈殿せしめてこれ
を熱分解して合成する方法、 (3)アルコキシドの混合物もしくは複塩を加水分解に
よって各成分元素を共沈せしめ、この共沈加水分解物を
熱分解する方法、 (4)鉛およびチタンのしゅう酸塩の沈殿合成時にエタ
ノールやプロパツールなどのアルコール類を共存させる
方法、 (5)鉛の酸化物を合成し、これをチタン化合物と水熱
反応せしめる方法、 などをその代表例として挙げることができる。
Various proposals have been made regarding the manufacturing method of lead titanate, but the manufacturing methods can be categorized according to their characteristics: (1) oxide powders of each component are mixed, heated to high temperature, and subjected to solid phase reaction; (2) A method of precipitating oxalate of lead and titanium and thermally decomposing the same. (3) A method of co-precipitating each component element by hydrolyzing a mixture or double salt of alkoxide. (4) A method of coexisting alcohols such as ethanol and propatool during the precipitation synthesis of lead and titanium oxalate; (5) A method of synthesizing lead oxide and Typical examples include a method in which titanium is subjected to a hydrothermal reaction with a titanium compound.

しかしながら、これらの方法にもそれぞれ何等かの問題
点があり、不断の改良研究が継続されている。
However, each of these methods has some problems, and continuous improvement research is being continued.

本発明者らは(2)のしゅう酸塩法及び(4)のしゅう
酸−アルコール法に着目して一連の技術改良を成し遂げ
て来た。
The present inventors have achieved a series of technical improvements by focusing on (2) the oxalate method and (4) the oxalic acid-alcohol method.

本発明者らおよび山村は、(4)のしゅう酸−エタノー
ル法で合成されるチタン酸塩の仮焼粉末の融着現象が、
出発原料イオンの混合水溶液中に少量残存する塩素イオ
ンに起因していることを見出し、塩素イオン濃度を所定
値以下に下げることで融着を抑止できることを見出した
(特願昭60−13910号明細書)。
The present inventors and Yamamura discovered that the fusion phenomenon of calcined titanate powder synthesized by the oxalic acid-ethanol method (4)
They found that this is caused by a small amount of chlorine ions remaining in the mixed aqueous solution of starting material ions, and found that fusion can be suppressed by lowering the chlorine ion concentration to a predetermined value or less (Japanese Patent Application No. 13910/1982). book).

更に、本発明者らは、使用するエタノール量を激減せし
めることで製造コストを著しく低下せしめ得る方法(特
願昭60−77234号明細書)や、エタノールをイン
プロパツール及びノルマルプロパツールに代替して更に
製造コストを低減する方法(特願昭60−77’ 23
5号明細書)を提示した。
Furthermore, the present inventors have developed a method that can significantly reduce manufacturing costs by drastically reducing the amount of ethanol used (Japanese Patent Application No. 77234/1982), and a method of replacing ethanol with in-proper tool and normal-proper tool. A method for further reducing manufacturing costs (Patent Application 1986-77'23
Specification No. 5) was presented.

〒 ′符における問題点と解“策 本発明者らは、しゅう酸・アルコール系でのチタン酸鉛
を含むペロブスカイト型酸化物の前駆体合成の各種改良
方法のいずれにおいても沈殿構成元素の存在比率の制御
が重要な課題であることに注目し、鋭意検討を加えて以
下のような新しい方法を提案して来た。
〒 ``Problems and Solutions for ``Measures'' The present inventors have investigated the abundance ratio of precipitate constituent elements in all of the various improved methods for synthesizing precursors of perovskite-type oxides containing lead titanate in an oxalic acid/alcohol system. Focusing on the important issue of controlling

しゅう酸塩沈殿中に塩素を含有しないようにする為には
、可溶性塩として硝酸塩を選ぶことが好まれる。この場
合、Tiが反応後再溶解する現象が起きる。
In order to avoid the inclusion of chlorine in the oxalate precipitation, it is preferred to choose nitrate as the soluble salt. In this case, a phenomenon occurs in which Ti is redissolved after the reaction.

Tiの水溶液への再溶解現象についてはしゅう酸塩共沈
物の生成で母液中に高濃度の硝酸が生じ、これが例えば
しゅう酸チタニル鉛と反応して次式に従って多量のTi
を母液中に残存させる可能性が和久らの研究(電気通信
研究所・研究実用化報告別冊28号(1975))など
で知られている。
Regarding the redissolution phenomenon of Ti in an aqueous solution, a high concentration of nitric acid is generated in the mother liquor due to the formation of oxalate coprecipitate, which reacts with, for example, titanyl lead oxalate, and a large amount of Ti is dissolved according to the following equation.
It is known from the research of Kazuhisa et al. (Telecommunications Research Institute, Research and Practical Application Report Special Issue No. 28 (1975)) that it is possible to cause the remaining in the mother liquor.

PbTi0(Cz 0a)z +2HNO3→P b 
C2Oa + T i O(N 03)z + HzC
204この現象を回避する為に、本発明者らは特願昭6
0−77236号明細書において、反応生成液中へ乾燥
アンモニアガスを吹き込む方法を提示した。該方法によ
って構成元素の存在比率を制御することが可能となった
PbTi0(Cz 0a)z +2HNO3→P b
C2Oa + T i O(N 03)z + HzC
204 In order to avoid this phenomenon, the present inventors filed a patent application in
No. 0-77236 proposed a method of blowing dry ammonia gas into the reaction product liquid. This method made it possible to control the abundance ratio of the constituent elements.

更に、本発明者らは炭素数が4から15のアルコールを
用いてペロブスカイト型酸化物の前駆体としてのしゅう
酸塩沈殿反応を硝酸鉛と硝酸酸化チタンを含む水溶液に
ついて試みたところ、仕込み原料で設定したT i /
 P b比(原子比)が、沈殿を焼成して得られたPb
Ti0+においてほぼ完全に再現されるという、エタノ
ールやプロパツールでは求め得なかった予想外の良好な
結果が得られることを開示した(特願昭60−7723
7号明細書)。
Furthermore, the present inventors attempted an oxalate precipitation reaction as a precursor of a perovskite-type oxide using an alcohol having a carbon number of 4 to 15 on an aqueous solution containing lead nitrate and titanium nitrate oxide, and found that the raw materials used were The set T i /
The Pb ratio (atomic ratio) is the Pb obtained by firing the precipitate.
It was disclosed that an unexpectedly good result that could not be obtained with ethanol or propatool could be obtained, which was almost completely reproduced with Ti0+ (Patent Application No. 7723/1983).
7 specification).

該方法に開示した条件下では上記効果が確認されたが、
しゅう酸添加終了後も長時間攪拌を継続したり、濾過操
作に長時間を要したりした場合にはTiの再溶解がおき
ることがその後の検討で見出され、生成沈殿の経時安定
性に問題点のあることが判った。
Although the above effects were confirmed under the conditions disclosed in the method,
Subsequent studies have found that if stirring is continued for a long time after the addition of oxalic acid is finished, or if the filtration operation takes a long time, re-dissolution of Ti will occur, and this will affect the stability of the formed precipitate over time. It turned out that there was a problem.

本発明者らはしゅう酸塩沈殿の反応液中での安定性を確
保すべく鋭意検討を加えたところ、アルコール共存系に
おいてはしゅう酸塩の沈殿に関して従来一般則として認
められていた、しゅう酸/Ti=1/1(モル比)なる
量論比ではなく、しゅう酸/Ti−1/2(モル比)な
る量論比において定量的な沈殿形成がなされる事実を先
行特許出Wi(特願昭60−211704号明細書)に
て開示した。該出願においてエタノールやプロパツール
などを添加しない水溶液中ではTiのしゅう酸塩沈殿の
回収率は最高でも65重景%であり、水溶液中の硝酸酸
化チタンの濃度の増加とともに回収率が著しく低下する
ことを開示した。
The present inventors conducted extensive studies to ensure the stability of oxalate precipitation in the reaction solution, and found that oxalate, which was previously accepted as a general rule regarding precipitation of oxalate in an alcohol-coexisting system, The fact that a quantitative precipitate is formed at the stoichiometric ratio of oxalic acid/Ti-1/2 (molar ratio) rather than the stoichiometric ratio of /Ti = 1/1 (molar ratio) was disclosed in the prior patent publication Wi (Special It was disclosed in Japanese Patent Application No. 60-211704). In this application, the recovery rate of Ti oxalate precipitation in an aqueous solution without the addition of ethanol or propatool is at most 65%, and the recovery rate decreases significantly as the concentration of titanium nitrate oxide in the aqueous solution increases. I disclosed that.

本発明者らは水溶液中の硝酸酸化チタンからのしゅう酸
塩の挙動について更に詳しく検討を加えたところ、硝酸
鉛と硝酸酸化チタンが共存する水溶液に、Pb1モルに
対してしゅう酸1モル、Ti1モルに対して理論量とし
てしゅう酸0.5モルの比率を保持するしゅう酸水溶液
を接触せしめる時にはpbとTiの存在比率が略1:1
の沈殿を形成し得ることを見出し、先願発明(特願昭6
0−211705号明細書)を完成した。
The present inventors conducted a more detailed study on the behavior of oxalate from titanium nitrate oxide in an aqueous solution, and found that in an aqueous solution in which lead nitrate and titanium nitrate oxide coexist, 1 mol of oxalate per 1 mol of Pb, 1 mol of Ti1 When brought into contact with an oxalic acid aqueous solution that maintains a ratio of 0.5 mol of oxalic acid as a theoretical amount to mol, the abundance ratio of PB and Ti is approximately 1:1.
It was discovered that it is possible to form a precipitate of
0-211705) was completed.

本発明者らは先願の2発明で開示した硝酸酸化チタンか
らのしゅう酸塩の沈殿生成挙動に関して更に詳しく検討
を加え、硝酸酸化チタン水溶液中の硝酸酸化チタン1モ
ルに対して1モル以上、好ましくは1.5モル程度のし
ゅう酸を加えると、硝酸酸化チタンは長期間に亘って非
常に安定な水に可溶なしゅう酸塩化合物に転化すること
を見出した。
The present inventors conducted a more detailed study on the precipitation formation behavior of oxalate from titanium nitrate oxide disclosed in the two previous inventions, and found that 1 mol or more of oxalate per 1 mol of titanium nitrate oxide in an aqueous solution of titanium nitrate oxide, It has been found that by adding preferably about 1.5 moles of oxalic acid, the titanium nitrate oxide is converted to a water-soluble oxalate compound which is very stable over a long period of time.

沈殿として析出することを見出した。It was found that it precipitates as a precipitate.

しゅう酸の理論添加量を鉛1モル及びチタン1モルに対
して1.5モルとした時に形成される共沈殿物はチタン
酸鉛の前駆体沈殿として望ましい特性を有することを見
出して、本発明を完成するに至った。
It has been discovered that the coprecipitate formed when the theoretical addition amount of oxalic acid is 1.5 mol per mol of lead and 1 mol of titanium has desirable characteristics as a precursor precipitate of lead titanate, and the present invention I was able to complete it.

オ虜」坏す1見性 本発明は、硝酸酸化チタンの水溶液にしゅう酸を添加す
ると、硝酸酸化チタン1モル当り1モル以上好ましくは
1.5モルのしゅう酸を添加したものが、水溶液中にお
いて極めて安定な可溶性化合物を形成するという新規な
発見に基盤をもつ。理論モル量論比をT i / P 
b = 1 / 1 、 Lゆう酸/(Ti+Pb)=
1.5に設定した、しゅう酸可溶化チタン水溶液と硝酸
鉛水溶液との反応で得られるチタン酸鉛前駆体沈殿を焼
成して得られるチタン酸鉛粉末において、T i / 
P b = 1 / 1の元素存在比を保持し得るとい
う発見にも新規性がある。
According to the present invention, when oxalic acid is added to an aqueous solution of titanium nitrate oxide, 1 mol or more preferably 1.5 mol of oxalic acid is added to the aqueous solution per 1 mol of titanium nitrate oxide. It is based on the novel discovery that it forms extremely stable soluble compounds. The theoretical molar stoichiometric ratio is T i / P
b = 1 / 1, L oxalic acid / (Ti + Pb) =
T i /
The discovery that the element abundance ratio of P b = 1/1 can be maintained is also novel.

更には、反応温度20℃で合成した該前駆体を110℃
で乾燥した後のX線回折、螢光X線回折1、元素分析、
示差熱重量分析、熱分解ガスの質量分析、ラマンスペク
トル分析等による解析に基いて、乾燥前駆体沈殿は Pt)CtOaと(T i 0)z(NO3)(OH)
CzO4とから成り立つことを示唆できる点においても
発明の新規性がある。
Furthermore, the precursor synthesized at a reaction temperature of 20°C was heated to 110°C.
X-ray diffraction after drying, fluorescent X-ray diffraction 1, elemental analysis,
Based on analysis by differential thermogravimetry, mass spectrometry of pyrolysis gas, Raman spectroscopy, etc., the dried precursor precipitate is composed of Pt)CtOa and (T i 0)z(NO3)(OH).
The invention is also novel in that it can be suggested that it is composed of CzO4.

四−玉 本発明の方法に従えば、次のような効果が期待できる。Four balls If the method of the present invention is followed, the following effects can be expected.

(11チタン/しゅう酸=1/1.5(モル比)の化合
物は水溶液中にて極めて安定であり、室温下数週間密栓
放置しても変化を生じない。従って、本発明者らが先行
特許出願にて実施して来た硝酸酸化チタン水溶液の冷蔵
密栓貯蔵および調製後7−10日以内での使用という従
来法での制約がまったく不要となる。
(11 The compound of titanium/oxalic acid = 1/1.5 (molar ratio) is extremely stable in an aqueous solution, and does not change even if left in a sealed container at room temperature for several weeks. Therefore, the present inventors There is no need for the conventional method of storing an aqueous solution of titanium nitrate oxide in a sealed container in a refrigerated container and using it within 7 to 10 days after preparation, which was implemented in the patent application.

(2)  硝酸酸化チタン水溶液を50℃以上に加熱し
て攪拌すると30分程で分解反応をおこして白色沈殿を
形成する為、本発明者らの先行出願においては、反応温
度の上限を40℃という比較的長時間に亘って硝酸酸化
チタンが安定に存在し得る点に設定せざるを得なかった
が、本発明の方法によれば、硝酸鉛水溶液の温度はその
沸点近くまで高めることが可能であり、該可溶性化合物
も50−80℃の加温条件下でも比較的長時間にわたっ
て安定なので、30−100℃の反応温度も容易に設定
できる。
(2) When a titanium nitrate oxide aqueous solution is heated to 50°C or higher and stirred, a decomposition reaction occurs in about 30 minutes and a white precipitate is formed. Therefore, in the inventors' previous application, the upper limit of the reaction temperature was set at 40°C. However, according to the method of the present invention, the temperature of the lead nitrate aqueous solution can be raised to near its boiling point. Since the soluble compound is also stable for a relatively long period of time even under heating conditions of 50-80°C, the reaction temperature of 30-100°C can be easily set.

(3)  生成した沈殿の母液への再溶解の恐れがない
ので、反応時間、濾過時間等を工業生産レベルで最適領
域に設定することができる。
(3) Since there is no fear that the generated precipitate will be redissolved in the mother liquor, the reaction time, filtration time, etc. can be set in the optimum range at the industrial production level.

鉛は塩化物以外の塩、特に硝酸塩として供給されること
が好ましい。酢酸鉛や蟻酸鉛等も用いることができる。
Preferably, the lead is supplied as a salt other than chloride, especially as a nitrate. Lead acetate, lead formate, etc. can also be used.

硝酸鉛の水溶液中濃度は0.01−0.5モル/1、好
ましくは0.05−0.3モル/lに設定することがで
きる。
The concentration of lead nitrate in the aqueous solution can be set at 0.01-0.5 mol/1, preferably 0.05-0.3 mol/l.

共−迭 チタン酸鉛の前駆体沈殿は好ましくは硝酸鉛の水溶液に
、しゅう酸で可溶化したチタン含有水溶液を接触せしめ
ることで鉛およびチタンのしゅう酸塩の共沈殿体として
得られる。
The co-precipitated lead titanate precursor is preferably obtained as a coprecipitate of lead and titanium oxalate by contacting an aqueous solution of lead nitrate with an aqueous solution containing titanium solubilized with oxalic acid.

本発明の達成に必要なしゅう酸は硝酸酸化チタン水溶液
に所要量を全量添加することができるが、硝酸鉛水溶液
からしゅう酸鉛が析出しない範囲内かつしゅう酸可溶化
チタン水溶液の安定性を損わない範囲内で所要量の一部
を予め硝酸鉛水溶液中に添加せしめる方法を用いること
もできる。
The required amount of oxalic acid required to achieve the present invention can be added to the titanium oxide nitric acid aqueous solution in its entirety, but within a range in which lead oxalate does not precipitate from the lead nitrate aqueous solution and does not impair the stability of the oxalic acid solubilized titanium aqueous solution. It is also possible to use a method in which a part of the required amount is added in advance to the lead nitrate aqueous solution within a range that does not exceed the above.

硝酸酸化チタン水溶液中のTi濃度は0.01−3モル
/1好ましくは0.05−1モル/1の範囲でとること
ができる。
The Ti concentration in the aqueous titanium nitrate oxide solution can be set in the range of 0.01-3 mol/1, preferably 0.05-1 mol/1.

硝酸酸化チタン水溶液への所定量のしゅう酸の添加は、
しゅう酸無水物又はしゅう酸2水和物を常温もしくは1
0℃近傍に冷却した硝酸酸化チタン水溶液へゆっくりと
加えてもよいし、しゅう酸水溶液を加える方法を用いて
もよい。初期段階では沈殿が形成されるが所定量の1/
3を越えた時点から沈殿量の減少が始まり、全量投入に
よって完全な均一溶液が形成される。しゅう酸の投入量
は、理論量としてチタン/しゅう酸(モル1モル)=1
/1.5であるが、本発明にいうチタン/しゅう酸(モ
ル1モル)=l/約1.5とは、このモル比が1/1.
47〜1/1.53であることが好ましく、更に該モル
比が1/1.485〜1/1.515であることがより
好ましいことを意味するものである。但し、この量比が
例えば1 / 1.6になれば、生成する沈殿において
T i / P b < 1となり、焼成して得られる
チタン酸鉛は本発明が目標とする低温での焼成温度域(
〜800℃)では、鉛過剰の赤色酸化物を与えるととも
に、個々の粒子の成長と相互融着現象をもたらす。
Addition of a predetermined amount of oxalic acid to a nitric acid titanium oxide aqueous solution is as follows:
Oxalic acid anhydride or oxalic acid dihydrate at room temperature or
It may be added slowly to a titanium oxide nitric acid aqueous solution cooled to around 0° C., or a method of adding an oxalic acid aqueous solution may be used. At the initial stage, a precipitate is formed, but 1/2 of the predetermined amount
The amount of precipitate begins to decrease when the amount exceeds 3, and a completely homogeneous solution is formed by adding the entire amount. The amount of oxalic acid added is the theoretical amount of titanium/oxalic acid (1 mole) = 1
/1.5, but titanium/oxalic acid (1 mole) = l/about 1.5 in the present invention means that this molar ratio is 1/1.
This means that the molar ratio is preferably 47 to 1/1.53, and more preferably 1/1.485 to 1/1.515. However, if this quantitative ratio is, for example, 1/1.6, T i / P b < 1 in the generated precipitate, and the lead titanate obtained by firing falls within the low-temperature firing temperature range targeted by the present invention. (
~800° C.) gives a red oxide with an excess of lead, as well as the growth of individual grains and interfusion phenomena.

一方この量比が1.47未満の場合には反応収率の低下
が大となる。
On the other hand, if this quantitative ratio is less than 1.47, the reaction yield will decrease significantly.

反応温度は硝酸鉛水溶液の硝酸鉛析出温度近傍から沸点
近傍迄の任意の温度を選ぶことができる。
The reaction temperature can be selected from any temperature from around the lead nitrate precipitation temperature of the lead nitrate aqueous solution to around the boiling point.

例えば0℃から100℃の反応温度を選ぶことができる
For example, a reaction temperature of 0°C to 100°C can be chosen.

チタンのしゅう酸塩溶液は、0℃近傍から80℃付近ま
での温度を選ぶことができるが、好ましくは常温から5
0℃を選ぶことができる。
The temperature of the titanium oxalate solution can be selected from around 0°C to around 80°C, but preferably from room temperature to 5°C.
You can choose 0℃.

反応は硝酸鉛水溶液を所定の液温に保持して激しく攪拌
している中に、チタンのしゅう酸塩溶液を所定温度のも
とで滴下することで進めることができる。
The reaction can proceed by dropping the titanium oxalate solution dropwise at a predetermined temperature while the aqueous lead nitrate solution is maintained at a predetermined temperature and vigorously stirred.

滴下終了後直ちに濾過操作に入ってもよいが、後反応を
適切な時間おこなった後に濾過操作に入ることもできる
The filtration operation may be started immediately after the completion of the dropwise addition, but it is also possible to start the filtration operation after performing a post-reaction for an appropriate period of time.

υ 沈殿をが過によって分別し、口色ケーキを得、反応によ
って生成した硝酸を除くためにも、水で適切な洗浄を行
って沈殿中に残留する母液を可能な限り取り除いてから
洗液を炉別して白色ケーキを得ることができる。洗浄回
数は適宜定めることができる。
υ The precipitate is separated by filtration to obtain a pale-colored cake, and in order to remove the nitric acid produced by the reaction, the washing solution is washed with water to remove as much of the mother liquor remaining in the precipitate as possible. A white cake can be obtained by furnace separation. The number of times of washing can be determined as appropriate.

得られた白色ケーキは乾燥後、砕解してペロプスカイト
型酸化物前駆体粉体とする。この段階で懺 の砕解は、後に続く1焼に際して、適切な量の酸素の流
通を確保する上で重要である。なお〜乾燥ケーキは弱い
磨砕力で容易に微粉化できるし、この段階で粒子を完全
分散状態にする必要もないので、砕解手段からの不純物
の混入の恐れはない。
The obtained white cake is dried and then crushed to obtain a perovskite-type oxide precursor powder. The crushing of the slag at this stage is important in ensuring the flow of an appropriate amount of oxygen during the subsequent firing. Note that the dry cake can be easily pulverized by a weak grinding force, and there is no need to completely disperse the particles at this stage, so there is no risk of contamination with impurities from the pulverizing means.

退 1000℃、で1焼する。このか焼温度は低温であるこ
とが望ましいが、重量変化が最早認められ炉 ない温度で4焼を行なうことが必要である。500−8
00℃での1焼が鉛の昇華をより少なく抑制する上でも
好ましい。
Bake at 1000℃ for 1 time. Although it is desirable that the calcination temperature be low, it is necessary to carry out the fourth calcination at a temperature that does not cause any weight change to be observed. 500-8
Baking at 00°C is also preferable in terms of suppressing sublimation of lead.

イ゛焼は酸素の存在下でおこなうことが必要であるが、
マツフル炉のような強制流通機構を有しなとることがで
きるが好ましくは0.5−20℃/分をとることができ
る。しゅう酸塩の分解が終る400℃近傍までの昇温速
度は余り大きくとらない方が好ましい。
It is necessary to carry out firing in the presence of oxygen,
A forced flow mechanism such as a Matsufuru furnace can be used, but preferably the flow rate can be 0.5-20°C/min. It is preferable that the rate of temperature increase up to around 400° C., at which the decomposition of oxalate ends, is not too high.

以下実験例をもって本発明の内容を更に具体的に説明す
る。
The content of the present invention will be explained in more detail below using experimental examples.

叉慧炭 実施例1 市販のテトライソプロピルチタン250+++Ilを蒸
留水3500mj!に滴下して水酸化物を得、これを濾
過した後、純水500111で3回洗浄を繰返して水酸
化チタンを得た。これを氷冷した市販特級濃硝酸100
mj!に加え、昼夜放置後濾過して、硝酸酸化チタン溶
液を得た。Ti濃度をTi(hとして重量分析法で決定
して、0.1257 g −Ti/mj!の結果が得ら
れた。硝酸酸化チタン溶液20mJを純粋243n+1
に混合し、これにしゅう酸2永和物(純度99.5%)
9.979gを室温にて溶かしてチタン濃度0.2モル
/1、Ti/(COO’H) t = 1/ 1.5 
(モル1モル)の水溶液を得た。
Charcoal Example 1 Commercially available tetraisopropyl titanium 250 +++ Il was mixed with 3500 mj of distilled water! was added dropwise to obtain hydroxide, which was filtered and washed three times with pure water 500111 to obtain titanium hydroxide. Commercially available special grade concentrated nitric acid 100
mj! In addition, the solution was left to stand for a day and night and then filtered to obtain a titanium oxide nitric acid solution. The Ti concentration was determined by gravimetric analysis as Ti (h), and a result of 0.1257 g -Ti/mj! was obtained.
Mix this with oxalic acid dihydrate (purity 99.5%)
Melt 9.979g at room temperature, titanium concentration 0.2 mol/1, Ti/(COO'H) t = 1/ 1.5
An aqueous solution of (1 mol) was obtained.

市販の特級硝酸鉛(純度99.5%)17.478gを
純水263nlに溶かして鉛濃度0.2モル/lの反応
液を調製し85℃に保持し、激しく攪拌している中に室
温に保持された該水溶液を滴下炉斗を用いて、10mj
!/分の速度で滴下した。更に85℃の湯浴中、79℃
から82℃の液温で2時間攪拌し、反応を完結せしめた
。38℃迄冷却した後ブフナーが斗を用いて母液を吸引
濾過して白色ケーキを得た。
A reaction solution with a lead concentration of 0.2 mol/l was prepared by dissolving 17.478 g of commercially available special grade lead nitrate (purity 99.5%) in 263 nl of pure water. Using a dropping furnace, the aqueous solution held in
! It was added dropwise at a rate of 1/min. Further, in a hot water bath at 85°C, 79°C
The reaction was completed by stirring for 2 hours at a liquid temperature of 82°C. After cooling to 38° C., the mother liquor was suction filtered using a Buchner funnel to obtain a white cake.

得られた白色ケーキを純水263n+j!に投入して砕
解・洗浄を15分間行ない、ブフナーが斗を用いて洗液
を分離した。この操作を3回繰返して白色ケーキを得た
Pour the resulting white cake into pure water 263n+j! The mixture was crushed and washed for 15 minutes, and Buchner separated the washing liquid using a funnel. This operation was repeated three times to obtain a white cake.

得られた白色ケーキを110℃で16時間空気浴オーブ
ン中で乾燥した後、メノウ乳鉢で砕解して、チタン酸鉛
前駆体粉末を得た。
The obtained white cake was dried in an air bath oven at 110° C. for 16 hours, and then crushed in an agate mortar to obtain a lead titanate precursor powder.

皿里生班末皇定且 前駆体粉末がどの様な化合物から成り立っているかを種
々の分析手段によって調べた。
By using various analytical methods, we investigated what kind of compounds the precursor powder was composed of.

前駆体粉末をX線回折にて分析したところしゆう酸鉛の
存在が確認された。チタンに由来する化合物の同定はで
きなかった。
Analysis of the precursor powder by X-ray diffraction confirmed the presence of lead oxalate. No compounds derived from titanium could be identified.

前駆体粉末を空気流通下、10℃/分の速度で昇温して
熱重量分析に供したところ、800℃までの昇温で仕込
み重量に対して31.7重量%の重量減少が認められた
When the precursor powder was heated at a rate of 10°C/min under air circulation and subjected to thermogravimetric analysis, a weight loss of 31.7% by weight relative to the charged weight was observed when the temperature was raised to 800°C. Ta.

前駆体粉末をHe流通下、10℃/分の速度で昇温分解
し脱離ガスの質量分析を行なった(QMASS)ところ
、N Oxの発生が確認された。また、前駆体粉末の元
素分析によって、鉛1原子に比して炭素3.2原子、窒
素0.29原子の存在比を認めた。
When the precursor powder was heated and decomposed at a rate of 10° C./min under He flow, and the desorbed gas was subjected to mass spectrometry (QMASS), the generation of NOx was confirmed. Furthermore, elemental analysis of the precursor powder revealed an abundance ratio of 3.2 atoms of carbon and 0.29 atoms of nitrogen to 1 atom of lead.

前駆体粉末をラマン分光に供したところ、結合NO8に
由来するピークの存在が確認され、その存在量は先行特
許出願(特願昭60−211704号明細書において(
T i O)z (N 03)2 Ct 04の存在が
推察されたチタン酸鉛前駆体で認められたピーク高さの
略1/2であった。
When the precursor powder was subjected to Raman spectroscopy, the presence of a peak derived from bonded NO8 was confirmed, and its abundance was reported in the previous patent application (Japanese Patent Application No. 60-211704).
The peak height was approximately 1/2 of the peak height observed in the lead titanate precursor in which the presence of T i O) z (N 03) 2 Ct 04 was presumed.

上記各種分析結果を総合的に結びつけると、本発明の方
法で得られる前駆体粉末は、 PbCzOaと(T i 0)Z(N 03)(OH)
 C2O4なる組成物の共沈殿体から形成されている可
能性が高いことが推察された。
Comprehensively combining the above various analysis results, the precursor powder obtained by the method of the present invention has the following properties: PbCzOa and (T i 0) Z (N 03) (OH)
It was inferred that there is a high possibility that it was formed from a coprecipitate of the composition C2O4.

PbTi0:+の合 前駆体粉末をマツフル炉で1.5℃/分の昇温速度で7
00℃に昇温し、2時間保持後徐冷し、目的とする酸化
物を仕込み原料を基準として94重量%の収率で得た。
PbTi0:+ synthesis precursor powder was heated in a Matsufuru furnace at a heating rate of 1.5°C/min.
The temperature was raised to 00°C, maintained for 2 hours, and then slowly cooled to obtain the desired oxide in a yield of 94% by weight based on the charged raw materials.

螢光X線回折法で酸化物のT i / P b比(原子
比)1.00を得た。X線回折によって正方晶PbTi
0zの生成のみが確認され、その結晶粒径は280人で
あった。BET法表面積は2.7n(/gであった。こ
れより平均粒径0.28μmが求められた。
The Ti/Pb ratio (atomic ratio) of the oxide was obtained by fluorescence X-ray diffraction method of 1.00. Tetragonal PbTi by X-ray diffraction
Only the formation of 0z was confirmed, and its crystal grain size was 280. The BET method surface area was 2.7 n(/g). From this, an average particle size of 0.28 μm was determined.

該酸化物を超音波振動装置を用いて水中に分散せしめ、
マイクロトラックDR粒度分析計で粒度分布を測定し、
第1図に示す結果を得た。超音波振動装置で酸化物を水
中に分散し、走査型電子顕微鏡で粒子形状を観察したと
ころ、0.1〜0.2μmの粒子から成り立っているこ
とが判った。これらの粒子がところどころ弱く結合して
いるものが多く観察された。
Dispersing the oxide in water using an ultrasonic vibration device,
Measure the particle size distribution with a Microtrac DR particle size analyzer,
The results shown in FIG. 1 were obtained. When the oxide was dispersed in water using an ultrasonic vibrator and the particle shape was observed using a scanning electron microscope, it was found that the particles were composed of particles of 0.1 to 0.2 μm. Many of these particles were observed to be weakly bonded in places.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、P b T i O3の粒子の粒度分布を示
す図である。
FIG. 1 is a diagram showing the particle size distribution of P b T i O3 particles.

Claims (1)

【特許請求の範囲】[Claims] 1、硝酸酸化チタン水溶液に硝酸酸化チタン1モル当り
、約1.5モルのしゅう酸を加えて、チタンのしゅう酸
塩を可溶化せしめて得たチタン含有水溶液を硝酸酸化チ
タンと当量の鉛化合物を含有する水溶液と接触せしめて
チタン酸鉛の前駆体沈殿を生成せしめたる後、該前駆体
沈殿を酸素雰囲気にて熱分解することを特徴とするチタ
ン酸鉛の製造方法。
1. Add about 1.5 mol of oxalic acid per 1 mol of titanium nitrate oxide to a titanium nitrate oxide aqueous solution to solubilize the titanium oxalate. A method for producing lead titanate, which comprises contacting with an aqueous solution containing lead titanate to form a precursor precipitate of lead titanate, and then thermally decomposing the precursor precipitate in an oxygen atmosphere.
JP1076686A 1986-01-21 1986-01-21 Production of lead titanate Granted JPS62167217A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1076686A JPS62167217A (en) 1986-01-21 1986-01-21 Production of lead titanate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1076686A JPS62167217A (en) 1986-01-21 1986-01-21 Production of lead titanate

Publications (2)

Publication Number Publication Date
JPS62167217A true JPS62167217A (en) 1987-07-23
JPH0559846B2 JPH0559846B2 (en) 1993-09-01

Family

ID=11759449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1076686A Granted JPS62167217A (en) 1986-01-21 1986-01-21 Production of lead titanate

Country Status (1)

Country Link
JP (1) JPS62167217A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4929436A (en) * 1987-03-26 1990-05-29 Solvay & Cie (Societe Anonyme) Process for the manufacture of a powder of mixed metal oxides, and mixed metal oxide powders

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0717443U (en) * 1993-08-31 1995-03-28 株式会社ディスコ Blade auto changer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4929436A (en) * 1987-03-26 1990-05-29 Solvay & Cie (Societe Anonyme) Process for the manufacture of a powder of mixed metal oxides, and mixed metal oxide powders

Also Published As

Publication number Publication date
JPH0559846B2 (en) 1993-09-01

Similar Documents

Publication Publication Date Title
JP5361190B2 (en) Fine powder lead zirconate titanate, titanium zirconate hydrate, zirconium titanate and process for producing the same
KR101442835B1 (en) Fine-particled alkaline-earth titanates and method for the production thereof using titan oxide particles
JPH07232923A (en) Method for synthesizing crystalline ceramic powder of perovskite compound
GB2163142A (en) A process for producing a composition which includes perovskite compound
JP2726439B2 (en) Method for producing ceramic powder having perovskite structure
JPH1179746A (en) Perovskite composite oxide and its production
JP7471829B2 (en) Method for producing vanadium dioxide
JP6903387B2 (en) Manufacturing method of lithium titanium phosphate
JPH06305729A (en) Fine powder of perovskite type compound and its production
Bel-Hadj-Tahar et al. Structural development and kinetic analysis of PbTiO3 powders processed at low-temperature via new sol-gel approach
JPS62167217A (en) Production of lead titanate
RU2467983C1 (en) Method of producing nanocrystalline powder and ceramic materials based on mixed oxides of rare-earth elements and subgroup ivb metals
US3352632A (en) Production of lead titanate and lead zirconate for ceramic bodies
JPH06144837A (en) Synthesis of columbite-type niobic acid salt and synthesis of perovskite-type compound using the salt
JPH0246531B2 (en)
JP2004026641A (en) Raw material powder for barium titanate sintered compact
JP2747916B2 (en) Potassium titanate long fiber and method for producing titania fiber using the same
JP5147573B2 (en) Method for producing perovskite complex oxide
KR100420276B1 (en) Preparation of ZnO Powder by Pyrophoric Synthesis Method
JPH10236824A (en) Titania-zirconia multiple oxide fine powder and its production
RU2273603C1 (en) Method of preparing powders of bivalent metal titanate or zirconate and of solid solution based thereon
JP7155924B2 (en) Method for producing barium titanate
JPH0262496B2 (en)
WO2020170917A1 (en) Titanium oxide
JPS61251516A (en) Production of perovskite type oxide