JPS62166209A - Burner - Google Patents

Burner

Info

Publication number
JPS62166209A
JPS62166209A JP653086A JP653086A JPS62166209A JP S62166209 A JPS62166209 A JP S62166209A JP 653086 A JP653086 A JP 653086A JP 653086 A JP653086 A JP 653086A JP S62166209 A JPS62166209 A JP S62166209A
Authority
JP
Japan
Prior art keywords
furnace
air
tangential direction
virtual circle
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP653086A
Other languages
Japanese (ja)
Inventor
Toshio Haneda
羽田 寿夫
Masamichi Kashiwazaki
柏崎 正道
Kazusane Fukahori
深堀 和実
Takaharu Toyoda
豊田 隆治
Masayasu Sakai
正康 坂井
Kimiyo Tokuda
君代 徳田
Masaharu Oguri
正治 大栗
Shoichi Kai
甲斐 昭一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP653086A priority Critical patent/JPS62166209A/en
Publication of JPS62166209A publication Critical patent/JPS62166209A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C5/00Disposition of burners with respect to the combustion chamber or to one another; Mounting of burners in combustion apparatus
    • F23C5/08Disposition of burners
    • F23C5/32Disposition of burners to obtain rotating flames, i.e. flames moving helically or spirally

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion Of Fluid Fuel (AREA)

Abstract

PURPOSE:To reduce NOx by ejecting a fuel and primary air in the tangential direction of a primary virtual circle having a small radius and secondary air in the tangential direction of a secondary virtual circle having a large diameter. CONSTITUTION:A nozzle 8 for a fuel mixed gas is directed toward the tangential direction 14 of a primary virtual circle 12 of a small diameter within a planar section of a furnace 2, and secondary air nozzle 9 is directed toward the tangential direction 15 of a virtual circle 13 concentric with the virtual circle 12 and having a diameter larger than that of the circle 12. Further, air nozzles 10 and 11 are directed toward the tangential direction 17 of a virtual circle 16 concentric with the virtual circle 13 and having a diameter smaller than that of the circle 13. A region of a concentrated reducing atmosphere and a region 20 of an oxidation atmosphere encircling the region 19 are constituted in a space of the furnace by a turning fire ball 18. The reducing atmosphere region 19 is charged with air 11 for three-stage burning. The heat of a gas 22 generated by burning and forming an oxidizing atmosphere at the upper part 21 of the furnace 21 is recovered on the heat transfer surface within a flue 23 and contributes to the generation, overheating and reheating of vapor, thus reaching a boiler outlet 24. Hence, the increase of Nox is prevented by forming the reducing atmosphere at the central portion in the section of the furnace and the oxidation atmosphere in the periphery of the wall of the furnace.

Description

【発明の詳細な説明】 産業上の利用分野 発明 本1は、燃料として液体燃料、スラリー燃料;又は微粉
固体燃料等を使用し、蒸気発生装置や蒸気の発生を伴な
わない各種燃焼炉として利用される燃焼装置に関する。
Detailed Description of the Invention Industrial Field of Application Invention 1 uses liquid fuel, slurry fuel, or pulverized solid fuel as fuel, and is used as a steam generator or various combustion furnaces that do not generate steam. The present invention relates to combustion equipment.

従来の技術 NOXを低減する燃焼装置として、火炉の下部、中間部
および上部から夫々燃焼用空気を投入するようにしたも
のは従来から知られていた。このような燃焼装置は、火
炉の垂直方向での空気の分散投入により、火炉下部に還
元性燃焼域を作り、緩慢燃焼させることによって、低N
Ox化を実現しようとしたものである。
BACKGROUND OF THE INVENTION Combustion devices for reducing NOx have been known in the past, in which combustion air is introduced from the bottom, middle, and top of a furnace, respectively. This kind of combustion equipment creates a reducing combustion zone in the lower part of the furnace by distributing air in the vertical direction of the furnace, and achieves low N by slow combustion.
This was an attempt to realize oxygen conversion.

発明が解決しようとする問題点 ところで、従来の燃焼装置には、還元性火炎の火炉壁に
よる冷却あるいは火炉壁との接触によって未燃分が発生
し易く、従って火炉壁への未燃分や灰の付着および管の
腐食等の問題があり、結果的に0□を下げに((、NO
xの低減も十分には達成できないという難点があった。
Problems to be Solved by the Invention Incidentally, in conventional combustion devices, unburned matter is likely to be generated due to cooling of the reducing flame by the furnace wall or contact with the furnace wall, and therefore unburned matter and ash on the furnace wall are likely to be generated. There were problems such as adhesion of water and corrosion of the pipe, and as a result, 0□ was lowered ((,NO
There was also a drawback that a sufficient reduction in x could not be achieved.

また、燃料と空気の噴出流が旋回しながら垂直方向に円
筒状の流動壁を作っており、この流動壁と火炉壁との間
の空間に空気の供給が少ない場合には、この空間が火炉
中央部の旋回流領域に対し若干負圧化し、それにより火
炎が壁面に吸い寄せられて接触するいわゆるコアンダ効
果を生ずるという不具合を発生する恐れがあった。
In addition, the jet flow of fuel and air creates a vertical cylindrical fluid wall while swirling, and when there is little air supply in the space between this fluid wall and the furnace wall, this space becomes There was a risk that the swirling flow region in the center would become slightly negative pressure, resulting in the so-called Coanda effect, in which the flame was attracted to the wall surface and came into contact with it.

問題点を解決するための手段 上記の問題点を解決するために、本発明は、燃料と空気
とを火炉平断面内の仮想円の接線方向へ投入して、旋回
する火球な形成させながら燃焼を行なわせる燃焼装置に
おいて、燃料混合気と二次空気とを投入する投入口を備
え、この投入口には、燃料混合気が前記火炉の平断面内
の第1の仮想円の接線方向へ噴出するように燃料混合気
用ノズルを設けるとともに、二次空気が前記第1の仮想
円と同心でかつ直径がそれよりも大きい第2の仮想円の
接線方向へ噴出するように二次空気用ノズルを設けたも
のである。
Means for Solving the Problems In order to solve the above problems, the present invention injects fuel and air in the tangential direction of an imaginary circle in the flat section of the furnace, and burns it while forming a swirling fireball. The combustion apparatus is provided with an inlet for injecting a fuel mixture and secondary air, into which the fuel mixture is ejected in a tangential direction of a first imaginary circle in a planar cross section of the furnace. A fuel mixture nozzle is provided so that the fuel mixture nozzle It has been established.

作用 上記のように、燃料と一次空気とを小半径の一次仮想円
の接線方向に噴出させ、二次空気は大半に酸化性雰囲気
をつくって低NOX化をはかるとととに、火炉壁近傍の
酸化性雰囲気と火炎の壁への接触防止により未燃分の発
生、灰の付着、管の腐食等を防止することができる。
Effect As mentioned above, the fuel and primary air are ejected in the tangential direction of the primary imaginary circle with a small radius, and the secondary air creates an oxidizing atmosphere in most of the areas to reduce NOx. By preventing the oxidizing atmosphere and the flame from coming into contact with the wall, it is possible to prevent the generation of unburned matter, adhesion of ash, corrosion of pipes, etc.

実施例 以下本発明の実施例を第1図ないし第13図を参照して
詳細に説明する。
EXAMPLES Hereinafter, examples of the present invention will be described in detail with reference to FIGS. 1 to 13.

先ず、第1図ないし第3図は本発明の第1の実施例を示
したものであり、第1図は蒸気発生装置の側断面図、第
2図は第1図の■−■線に沿う断面図、第3図は第1図
のIII−III線に沿う断面図である。
First of all, FIGS. 1 to 3 show a first embodiment of the present invention. FIG. 1 is a side sectional view of the steam generator, and FIG. 3 is a sectional view taken along line III--III in FIG. 1.

蒸気発生装置lは燃料を燃焼させるための矩形断面垂直
筒形の火炉2を有し、その火炉壁3は多数の水冷管4あ
る(・は耐人材等で構成され外界と遮断されている。火
炉2の下部の四隅には燃料及び空気を投入する第1の投
入口5、中間部の四隅には空気のみを投入する第2の投
入口6、及び上部の四隅にも空気のみを投入する第3の
投入ロアが夫々設けられている。
The steam generator 1 has a furnace 2 with a vertical cylindrical rectangular cross section for burning fuel, and the furnace wall 3 has a large number of water-cooled pipes 4 (* is made up of personnel and the like and is isolated from the outside world. First inlet ports 5 are provided at the lower four corners of the furnace 2 for injecting fuel and air, second inlet ports 6 are provided at the four corners of the middle section for injecting only air, and only air is also injected into the four upper corners. A third input lower is provided respectively.

そして、第1の投入口5には、燃料と一次空気との混合
気を噴出する燃料混合気用ノズル8と、二次空気を噴出
する空気ノズル9とが垂直方向に間隔をおいて設けられ
ている。これらは交互に複数個配置されることもある。
A fuel mixture nozzle 8 for spouting a mixture of fuel and primary air and an air nozzle 9 for spouting secondary air are provided in the first inlet 5 at intervals in the vertical direction. ing. A plurality of these may be arranged alternately.

第2の投入口6には二次空気を噴出する空気ノズル10
が設けられており、このノズル10からの空気は、二段
燃焼用空気(オーバーファイアエア)として火炉2へ投
入される。更に、第3の投入ロアには二次空気を噴出す
る空気ノズル11が設けられており、このノズル11か
らの空気は、三段燃焼用空気(アディショナルエア)と
して火炉2へ投入される。
The second inlet 6 has an air nozzle 10 that blows out secondary air.
The air from this nozzle 10 is introduced into the furnace 2 as two-stage combustion air (overfire air). Further, the third input lower is provided with an air nozzle 11 that blows out secondary air, and the air from this nozzle 11 is input into the furnace 2 as air for three-stage combustion (additional air).

また、第1の投入口5の燃料混合気用ノズル8は、第2
図に示すように、火炉2の平断面内の小半径の一次仮想
円12の接線方向14へ向けて設置されており、ここか
ら燃料混合気が、−次仮想円12に接する方向(すなわ
ち接線方向14)へ噴出する。一方、二次空気ノズル9
は同じく第2図に示す一次仮想円12と同心でそれより
も直径の大きい二次仮想円13の接線方向15へ向けて
設置されており、ここから二次空気が二次仮想円13に
接する方向(すなわち接線方向15)へ噴出する。この
場合、平面上での接線14と接線:5とのなす角度は、
5度ないし45度の範囲内の任意の角度に設定するのが
よい。
Further, the fuel mixture nozzle 8 of the first input port 5 is connected to the second
As shown in the figure, it is installed toward the tangential direction 14 of the primary imaginary circle 12 with a small radius in the planar cross section of the furnace 2, and the fuel mixture flows from here in the direction tangent to the -dimensional imaginary circle 12 (i.e., along the tangential direction). It ejects in direction 14). On the other hand, the secondary air nozzle 9
is installed in the tangential direction 15 of a secondary imaginary circle 13 which is concentric with the primary imaginary circle 12 and has a larger diameter than the primary imaginary circle 12 shown in FIG. direction (ie, tangential direction 15). In this case, the angle between tangent 14 and tangent 5 on the plane is
It is preferable to set the angle to any angle within the range of 5 degrees to 45 degrees.

更に、中間部、上部の投入口6.7に設けた空気ノズル
10,11は、第3図に示すように、二次仮想円13と
同心で、この半径を越えない範囲内の任意の半径の仮想
円16の接線方向17へ向けて設置されており、このノ
ズル10.11がう空気が、仮想円16に接する方向(
すなわち接線方向17)へ噴出する。
Furthermore, the air nozzles 10 and 11 provided at the middle and upper inlets 6.7 are concentric with the secondary imaginary circle 13, as shown in FIG. The nozzle 10.11 is installed in the tangential direction 17 of the imaginary circle 16, and the air flowing through the nozzle 10.
That is, it ejects in the tangential direction 17).

なお、各ノズル8ないし11からの空気量は次のように
配分している。すなわち、下部の投入口5から供給され
る空気量は、全燃料の燃焼に必要な理論空気量よりも十
分少ない60ないし90q6の空気量とし、下部の投入
口5と中間部の投入口6から供給される合計の空気量は
、前記の理論空気量よりも若干少ないか理論空気量程度
例えば80ないし110チの空気量とし、最後に上部の
投入ロアから供給される空気量を加えた火炉全体の空気
量としては、理論空気量以上すなわち100%以上とな
るように調整している。
Note that the amount of air from each nozzle 8 to 11 is distributed as follows. In other words, the amount of air supplied from the lower inlet 5 is set to 60 to 90q6, which is sufficiently smaller than the theoretical air amount required for combustion of all the fuel, and the air amount supplied from the lower inlet 5 and the intermediate inlet 6 is The total amount of air supplied is either slightly less than the theoretical air amount or about the theoretical air amount, for example, 80 to 110 inches, and finally the total amount of air supplied from the upper input lower is added to the entire furnace. The air amount is adjusted to be at least the theoretical air amount, that is, at least 100%.

このような燃料、空気配分とその火炉への投入方法によ
り、火炉2の空間内の中央部には旋回する火球18によ
る濃燃料還元性雰囲気の領域19とそれを包む火炉壁3
近傍の酸化性雰囲気の領域20が構成され、かつ火炉中
央部の還元性雰囲気領域19は上部空気投入ロアかもの
三段燃焼用空気(アディショナルエア)11を投入され
た後の火炉上部21で終焉して最終的に理論空気量に対
する過剰投入空気に相当する酸化性雰囲気となった燃焼
生成ガス22が、火炉以降と後部煙道23を通り、図で
は省略しである煙道自伝熱面で熱回収されて蒸気の発生
、過熱、再熱に寄与した後低温となって、ボイラ出口2
4に到り、後流の排ガス系統へ導かれる。
Due to this fuel and air distribution and method of charging them into the furnace, a region 19 of a fuel-rich reducing atmosphere due to the rotating fireball 18 is created in the center of the space of the furnace 2, and a furnace wall 3 surrounding the region 19.
A nearby oxidizing atmosphere region 20 is formed, and a reducing atmosphere region 19 at the center of the furnace ends at the upper part 21 of the furnace after the third-stage combustion air (additional air) 11 is introduced from the upper air input lower part. The combustion generated gas 22, which has finally become an oxidizing atmosphere corresponding to the excess air input with respect to the theoretical air amount, passes through the furnace and the rear flue 23, and is heated by the flue autobiographical heat surface (not shown in the figure). After being recovered and contributing to steam generation, superheating, and reheating, it becomes low temperature and flows to the boiler outlet 2.
4 and is led to the downstream exhaust gas system.

本発明の実施例を矩形断面単−人球の場合について述べ
たが、本発明は第4図に示す如き複数火球な有する火炉
あるいは第5図に示す如き円形断面火炉等にも適用でき
る。(第4図、第5図は第1図、第2図、第3図に示す
実施例の第2図に相当する図である。) 次に、本発明の第2の実施例について第6図ないし第1
0図を参照しながら説明する。なお、これらの図におい
て、第1図ないし第5図と同一部分には同一符号を附し
であるので、その部分の説明は省略する。
Although the embodiment of the present invention has been described in the case of a single ball having a rectangular cross section, the present invention can also be applied to a furnace having a plurality of fireballs as shown in FIG. 4 or a furnace having a circular cross section as shown in FIG. 5. (FIGS. 4 and 5 are diagrams corresponding to FIG. 2 of the embodiment shown in FIGS. 1, 2, and 3.) Next, the sixth embodiment of the second embodiment of the present invention will be explained. Figure or first
This will be explained with reference to Figure 0. In these figures, the same parts as in Figs. 1 to 5 are given the same reference numerals, and therefore the explanation of those parts will be omitted.

この第2の実施例では、下部投入口5における火炉2へ
の燃料の投入を、濃燃料混合気と希薄燃料混合気の2種
類に分けて行なうことを特徴とし、希薄燃料混合気は火
炉断面内の第一の仮想円の接線方向に噴出し、濃燃料混
合気は第二の仮想円の接線方向に噴出し、両仮想円は同
心で第一の仮想円の直径は零から第二の仮想円の直径以
下の範囲としている。
This second embodiment is characterized in that the fuel is charged into the furnace 2 through the lower input port 5 in two types: a rich fuel mixture and a lean fuel mixture. The rich fuel mixture is ejected in the tangential direction of the first imaginary circle within the imaginary circle, and the rich fuel mixture is injected in the tangential direction of the second imaginary circle, both imaginary circles are concentric, and the diameter of the first imaginary circle is The range is less than or equal to the diameter of the virtual circle.

これにより、燃料に対する空気比率を平均値からずらす
こと、ならびに火炉空間内に燃料の濃淡領域あるいは還
元性、酸化性雰囲気領域を分離して形成すること釦より
、緩慢で低火炎温度燃焼を可能としてNOx発生量を低
減することができる。
This makes it possible to achieve slow and low flame temperature combustion by shifting the air to fuel ratio from the average value and by creating separate regions of concentrated fuel or reducing and oxidizing atmospheres within the furnace space. The amount of NOx generated can be reduced.

すなわち、下部投入口5には希薄燃料混合気を噴出する
希薄混合気用ノズル8aと、濃燃料混合気を噴出する濃
混合気用ノズル8bと、二次空気のみを噴出する空気ノ
ズル9とが、上下方向に交互に配置され、それらが複数
組で構成されて℃・る。
That is, the lower inlet 5 has a lean mixture nozzle 8a that spouts a lean fuel mixture, a rich mixture nozzle 8b that spouts a rich fuel mixture, and an air nozzle 9 that spouts only secondary air. , are arranged alternately in the vertical direction, and are composed of multiple sets.

希薄混合気用ノズル8aかもの噴流は、第7図に示すよ
うに小径の第1の仮想円12aの接線方向14aへ向く
ように、また濃混合気用ノズル8bからの噴流は、第1
の仮想円12aと同心でこれよりも半径の大きい第17
の仮想円12bの接線方向14bへ向くように、夫々各
ノ゛ズルBa、gbの向きが設定されている。そして、
空気ノズル9から噴出する二次空気流は、第11の仮想
円12bと同心でそれよりも半径の大きい第2の仮想円
13の接線方向15へ向けて噴出される。この場合、空
気ノズル9からの二次空気の噴出方向15と濃混合気ノ
ズル8bからの濃燃料混合気の噴出方向14bとのなす
角度は、平面上で5度ないし45度の範囲内の任意の角
度に設定するのがよい。
The jet from the lean mixture nozzle 8a is oriented in the tangential direction 14a of the first imaginary circle 12a with a small diameter, as shown in FIG.
The 17th circle is concentric with the virtual circle 12a and has a larger radius than the virtual circle 12a.
The orientation of each nozzle Ba, gb is set so as to face in the tangential direction 14b of the virtual circle 12b. and,
The secondary air flow ejected from the air nozzle 9 is ejected in a tangential direction 15 of a second virtual circle 13 that is concentric with the eleventh virtual circle 12b and has a larger radius than the eleventh virtual circle 12b. In this case, the angle between the jetting direction 15 of the secondary air from the air nozzle 9 and the jetting direction 14b of the rich fuel mixture from the rich mixture nozzle 8b is arbitrary within the range of 5 degrees to 45 degrees on the plane. It is best to set it at an angle of

なお、中間部の投入口6111:部の投入ロアの各ノズ
ル10,11からの空気流は、第8図に示すように、第
2の仮想円13と同心でそれよりも半径の小さい第3の
仮想円16の接線方向17へ向けて噴出される。
In addition, as shown in FIG. 8, the air flow from each nozzle 10, 11 of the input lower input port 6111 in the middle part is concentric with the second imaginary circle 13 and has a smaller radius than the third imaginary circle 13. It is ejected in the tangential direction 17 of the virtual circle 16.

かくして、火炉内は濃燃料混合気燃焼火炎の存在する円
環筒状還元性雰囲気領域19bとその内側の希薄混合気
燃焼火7炎の存在する若干空気リッチな領域19aと領
域19bの外側の火炉壁3近傍の二次空気が存在する酸
化性雰囲気領域20との3領域で構成される。燃料の投
入を濃燃料混合気と希薄燃料混合気に分けて夫々の空気
比率を平均値からずらすこと、ならびに前記のノズル8
a、sbからの噴流と空気ノズル9からの二次空気を火
炉断面上の夫々異なる方向に噴出して火炉中心から外側
へ希薄燃料領域−濃燃料領域一酸化性空気領域を交互に
配する効果とによってN Ox発生量を大巾に低減でき
るとともに。還元性火炎領域19bを内、外の空気リッ
チな雰囲気192.20で包囲することによって、燃料
の完全燃焼を促進して、低02運転を可能とし、かつ火
炉壁近傍に二次空気による酸化性雰囲気を作って火炎の
火炉壁への接触、未燃分、灰の付着を防止し、炉壁管の
腐食も防止し炉壁各部の熱負荷を均等にすることができ
る。領域19a、  19b、 20の火炎あるいは空
気は夫々旋回しながら全体としてはあたかも単一の火球
18の如く挙動しつつ火炉上部に到る。
Thus, the inside of the furnace consists of an annular cylindrical reducing atmosphere region 19b where a rich fuel mixture combustion flame exists, a slightly air-rich region 19a where a lean mixture combustion flame exists inside the region 19b, and a furnace outside the region 19b. It is composed of three regions: an oxidizing atmosphere region 20 near the wall 3 where secondary air exists; By dividing the fuel injection into a rich fuel mixture and a lean fuel mixture and shifting the respective air ratios from the average value, and the above-mentioned nozzle 8.
The effect of ejecting the jets from a and sb and the secondary air from the air nozzle 9 in different directions on the furnace cross section, and alternately arranging a lean fuel region, a rich fuel region, and a monoxidizing air region outward from the furnace center. As a result, the amount of NOx generated can be greatly reduced. By surrounding the reducing flame region 19b with an air-rich atmosphere 192.20 on the inside and outside, complete combustion of the fuel is promoted, low 02 operation is possible, and oxidizing properties due to secondary air are prevented near the furnace wall. By creating an atmosphere, it is possible to prevent flames from coming into contact with the furnace wall, to prevent unburned matter and ash from adhering to the furnace wall, to prevent corrosion of the furnace wall tubes, and to equalize the heat load on each part of the furnace wall. The flames or air in the regions 19a, 19b, and 20 reach the upper part of the furnace while rotating as a whole and behaving as if they were a single fireball 18.

なお、この第2の実施例の場合も、第1の実施例の場合
と同様に、第9図に示す如き複数火球を有する火炉及び
第10図に示す如き円形断面火炉に夫々本発明を適用で
きることは云うまでもない。
In the case of this second embodiment, as in the case of the first embodiment, the present invention is applied to a furnace having a plurality of fireballs as shown in FIG. 9 and a furnace with a circular cross section as shown in FIG. It goes without saying that it can be done.

また、この第2の実施例における希薄混合気用ノズル8
aと、濃混合気用ノズル8bと、二次空気ノズル9との
関係は、第11図に示す如きこれらのノズルsa、sb
及び9を有する投入口5を火炉2の垂直方向に複数段備
えている火炉にも第12図に示すように同様に熱用でき
る。そして、この場合には、同一投入口5における希薄
燃料火炎25及び濃燃料火炎26と二次空気とが、また
二次空気が隣接する他の投入口の燃料量と夫々干渉する
ことがなくなるので、 NOxの増大が防止される。
In addition, the lean mixture nozzle 8 in this second embodiment
The relationship between the nozzle a, the rich mixture nozzle 8b, and the secondary air nozzle 9 is as shown in FIG.
Similarly, a furnace having a plurality of inlet ports 5 having holes 5 and 9 in a vertical direction of the furnace 2 can be used for heating as shown in FIG. 12. In this case, the lean fuel flame 25 and the rich fuel flame 26 in the same input port 5 and the secondary air will not interfere with each other, and the secondary air will not interfere with the amount of fuel in other adjacent input ports. , an increase in NOx is prevented.

なお、この第11図(/I:示した火炉は一般にスラリ
ー燃料を使用するものに利用され、第13図に一般的に
知られているNOXと空気比λすように、NOXは空気
比λ+0.5 以下ではλの増大と共に増加し、λ+0
.5〜1.0の範囲では逆にλの増大と共に減少し、ま
たλ〉1.0ではNOxはλの増大と共に上昇する傾向
にあるので、濃燃料火炎2へはλ中0.1〜0.5に、
希薄燃料火炎25はλ+0.5〜1.0となるように一
次空気量及びスラリー燃料量を設定してNOxの抑制が
図られているものである。
The furnace shown in Fig. 11 (/I) is generally used for those that use slurry fuel, and as shown in Fig. 13, NOx has an air ratio of λ + 0, as shown in Fig. 13. Below .5, it increases as λ increases, and λ+0
.. In the range of 5 to 1.0, NOx decreases as λ increases, and when λ>1.0, NOx tends to increase as λ increases. At .5,
The lean fuel flame 25 is designed to suppress NOx by setting the amount of primary air and the amount of slurry fuel so that λ+0.5 to 1.0.

発明の効果 以上詳述したように、本発明によれば、火炉断面円中心
部に還元性雰囲気をまた火炉壁周辺に酸化性雰囲気をつ
くることにより、低NOx化を図ることができる。
Effects of the Invention As detailed above, according to the present invention, it is possible to reduce NOx by creating a reducing atmosphere at the center of the furnace cross-sectional circle and an oxidizing atmosphere around the furnace wall.

また、二次空気を火炉壁面寄りに投入することにより、
火炉壁周辺を酸化性雰囲気に保つことならびに負圧化を
防止してコアンダ効果による火炎の壁面への接触を妨げ
ることにより、火炉壁管の還元性腐食防止、未燃分・灰
の付着防止し、かつ火炉壁各部の熱吸収の均等化をはか
ることができる。
In addition, by injecting secondary air closer to the furnace wall,
By keeping the area around the furnace wall in an oxidizing atmosphere and preventing negative pressure from coming into contact with the flame wall due to the Coanda effect, it prevents reductive corrosion of the furnace wall tubes and prevents the adhesion of unburned matter and ash. , and it is possible to equalize heat absorption in each part of the furnace wall.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明が適用される蒸気発生装置の一実施例を
示す側断面図、第2図は本発明を説明するための第1図
の■−■線に沿う断面図、第:う図は同じく第1図のI
II−III線に?i=?5断面図、第4図!6よび第
5図は第1図ないし第3図に示した実施例における他の
実施態様を説明するために示した第2図に相当する断面
図、第6図は本発明の第2の実施例としての蒸気発生装
置の側断面図、第7図は第6図の■−■■線に沿う断面
図、第8図は第6図の■−■線に沿う断面図、第9図お
よび第10図は第2の実施例における他の実施態様を説
明するために示した第7図に相当する断面図、第11図
は本発明の第3実施例としての蒸気発生装置の側断面図
、第12図は第11図のxn −xn線に沿う断面図、
第13図はNOXと空気比との関係の一例を示す図であ
る。 2・・火炉、5・・第1の投入0.6・・第2の投入口
、7・・第3の投入口、、8・・燃料混合気用ノズル、
9,10,11・O空気ノズル、12゜13.16・・
仮想円。 を− (ほか7名) 第1図    第2図 第4図   第5図 2: 火′#             6: にざ孝
+シ昆゛8先mノ又ル5:第(J2kO9,+0,11
:仝先度ル6:第Z#1才夛入口     1乙13.
+6:[表−円7:第33程\口 第 9図     第10図
Fig. 1 is a side sectional view showing an embodiment of a steam generator to which the present invention is applied, Fig. 2 is a sectional view taken along the line ■-■ of Fig. 1 for explaining the present invention, and Fig. The figure is also I in Figure 1.
On the II-III line? i=? 5 sectional view, Figure 4! 6 and 5 are sectional views corresponding to FIG. 2 shown for explaining other embodiments of the embodiment shown in FIGS. 1 to 3, and FIG. 6 is a sectional view corresponding to a second embodiment of the present invention. A side cross-sectional view of a steam generator as an example, FIG. 7 is a cross-sectional view taken along the line ■-■■ in FIG. 6, FIG. 8 is a cross-sectional view taken along the line ■-■■ in FIG. 6, FIG. FIG. 10 is a sectional view corresponding to FIG. 7 shown for explaining another embodiment of the second embodiment, and FIG. 11 is a side sectional view of a steam generator as a third embodiment of the present invention. , FIG. 12 is a sectional view taken along the xn-xn line in FIG. 11,
FIG. 13 is a diagram showing an example of the relationship between NOx and air ratio. 2.Furnace, 5..First input 0.6..Second input port, 7..Third input port, 8..Nozzle for fuel mixture.
9,10,11・O air nozzle, 12゜13.16...
virtual circle. - (and 7 others) Figure 1 Figure 2 Figure 4 Figure 5 Figure 2: Fire'# 6: Nizataka + Shikun 8 ahead m no Mataru 5: No. (J2kO9, +0, 11
: First degree 6: No. Z#1 Entrance 1 Otsu 13.
+6: [Table - Circle 7: 33rd step\mouth Figure 9 Figure 10

Claims (1)

【特許請求の範囲】[Claims] 燃料と空気とを火炉平断面内の仮想円の接線方向へ投入
して、旋回する火球を形成させながら燃焼を行なわせる
燃焼装置において、燃料混合気と二次空気とを投入する
投入口を備え、この投入口には、燃料混合気が前記火炉
の平断面内の第1の仮想円の接線方向へ噴出するように
燃料混合気用ノズルを設けるとともに、二次空気が前記
第1の仮想円と同心でかつ直径がそれよりも大きい第2
の仮想円の接線方向へ噴出するように二次空気用ノズル
を設けたことを特徴とする燃焼装置。
A combustion device in which fuel and air are injected in the tangential direction of an imaginary circle in a flat cross section of a furnace to perform combustion while forming a swirling fireball, which includes an inlet into which a fuel mixture and secondary air are injected. , this inlet is provided with a fuel mixture nozzle so that the fuel mixture is ejected in the tangential direction of the first imaginary circle in the planar cross section of the furnace, and the secondary air is injected into the first imaginary circle in the plane section of the furnace. a second concentric and larger diameter
A combustion device characterized in that a secondary air nozzle is provided to eject secondary air in a tangential direction of a virtual circle.
JP653086A 1986-01-17 1986-01-17 Burner Pending JPS62166209A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP653086A JPS62166209A (en) 1986-01-17 1986-01-17 Burner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP653086A JPS62166209A (en) 1986-01-17 1986-01-17 Burner

Publications (1)

Publication Number Publication Date
JPS62166209A true JPS62166209A (en) 1987-07-22

Family

ID=11640909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP653086A Pending JPS62166209A (en) 1986-01-17 1986-01-17 Burner

Country Status (1)

Country Link
JP (1) JPS62166209A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05507140A (en) * 1990-10-31 1993-10-14 コンバッション エンヂニアリング インコーポレーテッド Collective concentric angular combustion system
WO2000037853A1 (en) * 1998-12-21 2000-06-29 Alstom Power Inc. Method of operating a tangential firing system
WO2001077583A1 (en) * 2000-04-12 2001-10-18 Saar Energie Gmbh Method for burning particulate fuel in a power station boiler
EP1323979A1 (en) * 1997-11-05 2003-07-02 Mitsubishi Heavy Industries, Ltd. Combustion apparatus
CN101852429A (en) * 2010-06-29 2010-10-06 哈尔滨工业大学 Wall-arranged direct-flow pulverized coal combustion device with side secondary air
CN102297422A (en) * 2011-09-21 2011-12-28 北京博惠通科技发展有限公司 Burn-out wind combustion device and method with low NOx emission
JP2012102931A (en) * 2010-11-09 2012-05-31 Mitsubishi Heavy Ind Ltd Boiler
CN102588955A (en) * 2011-10-06 2012-07-18 无锡荣成纸业有限公司 Combustion system for reducing nitrogen oxide emission
JP2015096789A (en) * 2013-11-15 2015-05-21 三菱日立パワーシステムズ株式会社 Boiler
JP2015117862A (en) * 2013-12-17 2015-06-25 三菱日立パワーシステムズ株式会社 Boiler
CN107289445A (en) * 2017-06-12 2017-10-24 沈阳化工大学 A kind of device for improving boiler of power plant fuel value

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5942202A (en) * 1982-08-31 1984-03-08 Hino Motors Ltd Cutting treatment

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5942202A (en) * 1982-08-31 1984-03-08 Hino Motors Ltd Cutting treatment

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05507140A (en) * 1990-10-31 1993-10-14 コンバッション エンヂニアリング インコーポレーテッド Collective concentric angular combustion system
EP1323979A1 (en) * 1997-11-05 2003-07-02 Mitsubishi Heavy Industries, Ltd. Combustion apparatus
WO2000037853A1 (en) * 1998-12-21 2000-06-29 Alstom Power Inc. Method of operating a tangential firing system
WO2001077583A1 (en) * 2000-04-12 2001-10-18 Saar Energie Gmbh Method for burning particulate fuel in a power station boiler
CN101852429A (en) * 2010-06-29 2010-10-06 哈尔滨工业大学 Wall-arranged direct-flow pulverized coal combustion device with side secondary air
JP2012102931A (en) * 2010-11-09 2012-05-31 Mitsubishi Heavy Ind Ltd Boiler
CN102297422A (en) * 2011-09-21 2011-12-28 北京博惠通科技发展有限公司 Burn-out wind combustion device and method with low NOx emission
CN102588955A (en) * 2011-10-06 2012-07-18 无锡荣成纸业有限公司 Combustion system for reducing nitrogen oxide emission
JP2015096789A (en) * 2013-11-15 2015-05-21 三菱日立パワーシステムズ株式会社 Boiler
JP2015117862A (en) * 2013-12-17 2015-06-25 三菱日立パワーシステムズ株式会社 Boiler
CN107289445A (en) * 2017-06-12 2017-10-24 沈阳化工大学 A kind of device for improving boiler of power plant fuel value
CN107289445B (en) * 2017-06-12 2020-06-30 沈阳化工大学 Device for improving combustion value of power plant boiler

Similar Documents

Publication Publication Date Title
CA2231403C (en) Combustion burner and combustion apparatus with the same
US5299929A (en) Fuel burner apparatus and method employing divergent flow nozzle
US5823769A (en) In-line method of burner firing and NOx emission control for glass melting
EP0022454A2 (en) Furnace with sets of nozzles for tangential introduction of pulverized coal, air and recirculated gases
US4715301A (en) Low excess air tangential firing system
JP2006017453A (en) Multi-stage combustion system having ignition support fuel lance
EP1219894B1 (en) Pulverized coal burner
JPS62166209A (en) Burner
CN102230623A (en) Flat combustion device
JPS61256107A (en) Method and device for burning fuel
CA1273248A (en) Low excess air tangential firing system
WO2010048796A1 (en) Burner and its gas distribution loop
JPH0147683B2 (en)
JP4132409B2 (en) Combustion device
WO2021043241A1 (en) Pulverized coal boiler with bottom combustor, and control method therefor
US4614492A (en) Burner for burning pulverulent fuel
JP2731794B2 (en) High performance overfire air system for NOx control
CN115013813A (en) Non-premixed burner for gas with ultra-low heat value
JP2023504084A (en) Combustor for fuel combustion and its combustion method
CN112377894A (en) Wind tangent circle pulverized coal combustion boiler
JPS62182507A (en) Burning device of boiler
JP3591058B2 (en) Gaseous fuel-oxygen burner
CN205447724U (en) Boiler
JPS556107A (en) Combustion device for furnace
RU2050507C1 (en) Combustion chamber