JPS62166098A - Flux-cored wire for gas shielded arc welding - Google Patents

Flux-cored wire for gas shielded arc welding

Info

Publication number
JPS62166098A
JPS62166098A JP519486A JP519486A JPS62166098A JP S62166098 A JPS62166098 A JP S62166098A JP 519486 A JP519486 A JP 519486A JP 519486 A JP519486 A JP 519486A JP S62166098 A JPS62166098 A JP S62166098A
Authority
JP
Japan
Prior art keywords
flux
welding
weld metal
wire
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP519486A
Other languages
Japanese (ja)
Inventor
Kozo Yamashita
山下 砿三
Motohiro Otawa
太田和 基弘
Tsukasa Yoshimura
司 吉村
Takeo Adachi
足立 武夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP519486A priority Critical patent/JPS62166098A/en
Publication of JPS62166098A publication Critical patent/JPS62166098A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the reliability of a weld zone by filling a flux contg. specific ratio of BaF2 and 1 or >=2 kinds among CaF2, etc., Mn, Si, Ni, 1 or 2 kinds among Ti, Al, etc., metallic oxide and metallic carbonate into a tubular wire. CONSTITUTION:The compsn. of the flux contains 4.5-10.3wt% BaF2, 0.2-3.0% 1 or 2 kinds among CaF2, MgF2, AlF3, and LiF, 0.6-3.0% Mn, 0.1-2.5% Si, 0.2-3.0% Ni, 0.3-2.0% 1 or >=2 kinds among Ti, Al, Mg and Zr, 0.2-3.0% metallic oxide and 0.2-2.5% metallic carbonate. A flux-cored wire is produced by using a mild steel for a sheath material. the oxygen content of the weld metal is considerably decreased by using such flux-cored wire, by which good low-temp. toughness is obtd. and the reliability of the weld zone is obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、海洋構造物など低温靭性が要求される構造物
を製造する際のガスシールドアーク溶接に用いるフラッ
クス入シワイヤに関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a flux-cored shear wire used in gas-shielded arc welding when manufacturing structures requiring low-temperature toughness such as offshore structures.

(従来の技術) 最近の石油開発は、より寒冷域で進められるようになり
、それに伴って石油掘削用の海洋構造物は大形化し、溶
接部の靭性はより低温で要求されるようになってきた。
(Prior art) Recently, oil development has been proceeding in colder regions, and as a result, offshore structures for oil drilling have become larger and toughness of welds is required at lower temperatures. It's here.

このような要求に対しては、これまで被覆アーク溶接棒
あるいは潜弧浴接材料が適用されてきた。
To meet such requirements, coated arc welding rods or submerged arc bath welding materials have so far been applied.

一方、自動、半自動溶接材料としてのガスシールドアー
ク溶接用ワイヤ、とりわけフラックス入シワイヤの最近
の伸長は著しく、鉄骨、橋梁、造船など様々な分野で用
いられている。それはフラックス入りワイヤがすみ肉溶
接、立向き溶接などあらゆる溶接姿勢で溶接作業性が良
好で、しかも高能率の得られる溶接材料だからである。
On the other hand, gas-shielded arc welding wires as automatic and semi-automatic welding materials, especially flux-cored shear wires, have recently expanded significantly and are used in various fields such as steel frames, bridges, and shipbuilding. This is because flux-cored wire has good welding workability in all welding positions, including fillet welding and vertical welding, and is a welding material that provides high efficiency.

このガスシールドアーク溶接用フランクス入すワイヤは
、溶接作業性を特に重視しているため、チタニャ系フラ
ックスを充填している。このチタニャ系スラックス入り
ワイヤはアークが安定してスパッターが少なく、スラグ
のはぐり性が良く、ビード形状が良好である等あらゆる
溶接姿勢で良好な作業性が得られる。
This wire for gas-shielded arc welding is filled with titania-based flux because welding workability is particularly important. This titania-based slack-cored wire has a stable arc, less spatter, good slag removal properties, and a good bead shape, providing good workability in all welding positions.

(発明が解決しようとする問題点) しかしながら、チタニャ系フラックス入りワイヤは、溶
接作業性は良好であるが低温における靭性が充分ではな
い。チタニャ系フラックス人シワイヤの改良はこれまで
に種々なされてきておシ、特開昭56−39193号で
は、チタニャ系7ラツクスに金属弗化物、金属炭酸塩を
添加してフラックスを塩基性寄りにし、更に強膜酸剤も
添加して溶着金属の酸素量の低下を図っているが、溶着
金属の酸素量は依然高く、−20℃以下の低温での靭性
は得られていなく、また特開昭58−16796号公報
に記載のワイヤではチタニャ系フラックスに強膜酸性元
素としてMgを添加しているが、低水素系被覆アーク溶
接棒で得られる低酸素量(200〜400ppm程度)
の溶着金属は得られず、溶接入熱が高い場合、溶接金属
の靭性が低くなり易いという問題は解決されてない。
(Problems to be Solved by the Invention) However, titania-based flux-cored wires have good welding workability, but do not have sufficient toughness at low temperatures. Various improvements have been made to the titania-based flux shear wire, and in JP-A-56-39193, metal fluorides and metal carbonates are added to the titania-based 7 lux to make the flux more basic. In addition, a sclera acid was added to reduce the amount of oxygen in the weld metal, but the amount of oxygen in the weld metal was still high, and toughness at low temperatures below -20°C was not achieved. In the wire described in Publication No. 58-16796, Mg is added to the titania-based flux as a sclera acidic element, but the amount of oxygen obtained with a low-hydrogen coated arc welding rod is low (about 200 to 400 ppm).
However, the problem that the toughness of the weld metal tends to decrease when the welding heat input is high has not been solved.

本発明は上記問題を解決し、全姿勢溶接が可能で、かつ
低温靭性の良好なガスシールドアーク溶接用フラックス
入りワイヤの提供を目的とする。
The present invention aims to solve the above problems and provide a flux-cored wire for gas-shielded arc welding that is capable of welding in all positions and has good low-temperature toughness.

(問題点を解決するための手段) 本発明の要旨は、鋼を外皮鞘とする管状ワイヤに、ワイ
ヤ重量比で BaF2         : 4.5〜10.3%C
aR* Mg Fz + AZF3 * LiF  の
1種又は2種以上:0.2〜3.0% Mn          : 0.6〜3.0%Si 
         :0.1〜2.5%Ni     
     :0.2〜3.0%T i 、 Al、 M
g 、 Z r の1種又は2種以上二0.3〜2.0
% 金属酸化物     二0.2〜3.0%金属炭酸塩 
    :0.2〜2.5%を含有するフラックスを充
填してなることを特徴とするガスシールドアーク溶接用
フラッフス人シワイヤにある。
(Means for Solving the Problems) The gist of the present invention is to provide a tubular wire having an outer sheath made of steel, and a wire weight ratio of BaF2: 4.5 to 10.3%C.
one or more of aR* Mg Fz + AZF3 * LiF: 0.2 to 3.0% Mn: 0.6 to 3.0% Si
:0.1~2.5%Ni
:0.2-3.0% Ti, Al, M
One or more of g and Z r 20.3 to 2.0
% Metal oxide 20.2-3.0% Metal carbonate
: A fluff shear wire for gas shielded arc welding characterized by being filled with flux containing 0.2 to 2.5%.

チタニャ系フラックス入りワイヤは、全姿勢で溶接作業
性が良好であるが、低温靭性が十分でないことの1つの
理由は次のようなことであると考えられる。チタニャ系
フラックスはチタニャ(二酸化チタン、Ti02)を多
く含み、かつ溶接作業性を調整するために、他の金属酸
化物が種々添加されている。従ってチタニャ系フラック
ス人シワイヤのアーク雰囲気中は酸素に富み、そのため
溶接金属中の酸素量が高ぐなる。溶接金属中の酸素量が
高いということは溶接金属中に色々な酸化物が多いとい
うことである。溶接金属の低温靭性を高めるためには 
溶接金属の清浄度が高いことが必要だが、酸素量が多く
酸化物が多いということは清浄度が低いことであシ、十
分な借温靭性が得られない。チタニャ系フラックス入り
ワイヤの溶接金属中の酸素量は600〜900 ppm
程度であり、低温靭性の良好な螢石(CaFz)−炭酸
石灰(CaCO3)系の低水素系、V覆アーク溶接棒の
溶接金属中の酸素量200〜400 ppm程度と比べ
て格段に多い。
Titania-based flux-cored wire has good welding workability in all positions, but one reason for its insufficient low-temperature toughness is thought to be as follows. Titania-based flux contains a large amount of titania (titanium dioxide, Ti02), and various other metal oxides are added to adjust welding workability. Therefore, the arc atmosphere of the titania-based flux shear wire is rich in oxygen, which increases the amount of oxygen in the weld metal. A high amount of oxygen in the weld metal means that there are many various oxides in the weld metal. To improve the low-temperature toughness of weld metal
It is necessary for the weld metal to be highly clean, but a high amount of oxygen and oxides means that the cleanliness is low, and sufficient borrowing temperature toughness cannot be obtained. The amount of oxygen in the weld metal of titania flux-cored wire is 600 to 900 ppm.
The amount of oxygen in the weld metal of a low-hydrogen V-covered arc welding rod such as fluorite (CaFz)-lime carbonate (CaCO3), which has good low-temperature toughness, is much higher than the 200 to 400 ppm.

本発明者らは、フラックス入りワイヤにおいてチタニャ
系フラックスで溶接金属の酸素量を下げることには限界
があること、低温靭性向上効果のあるニッケルを多量添
加することは充填率(全ワイヤ重量に対する7ラツクス
の重量%)と経済性の面から問題があることを考慮し、
チタニャ系以外のフラックス系を種々検討した。その結
果、全姿勢の溶接作業性と低温靭性が良好なりaFz 
 を主体゛とする7ラツクス系を見い出した。
The present inventors found that there is a limit to lowering the oxygen content of the weld metal using titania-based flux in flux-cored wires, and that adding a large amount of nickel, which has the effect of improving low-temperature toughness, is effective at filling ratio (7% relative to the total wire weight). Considering that there is a problem in terms of weight percent of Lux) and economic efficiency,
Various flux systems other than the titania system were investigated. As a result, welding workability in all positions and low-temperature toughness are good.aFz
We have discovered a 7-lux system consisting mainly of .

表1はこの間の実験結果を示すものである。外皮材とし
ては軟鋼(C:0.65%、 St : 0.01%。
Table 1 shows the experimental results during this period. Mild steel (C: 0.65%, St: 0.01%) was used as the outer skin material.

Mn : 0.32%、P : 0.010%、S :
 0.009%)を用い、ワイヤの共通成分として、脱
酸性元素はMn : 1.7 z% 、  St : 
1.0%、Ti、A/−およびMg :0.8%をワイ
ヤ重量あたり含有せしめ、各種金属弗化物と金属酸化物
、金属炭酸塩との組み合せを種々変えた1、6φのフラ
ックス人シワイヤを製造した。溶接は下記の条件で実施
し、溶接作業性と溶接金属のシャルピー衝撃靭性を調査
した。
Mn: 0.32%, P: 0.010%, S:
0.009%), and the deoxidizing elements were Mn: 1.7 z% and St: as common components of the wire.
1.0%, Ti, A/-, and Mg: 0.8% per wire weight, and 1 and 6φ flux shear wires with various combinations of various metal fluorides, metal oxides, and metal carbonates. was manufactured. Welding was carried out under the following conditions, and the welding workability and Charpy impact toughness of the weld metal were investigated.

〔溶接条件〕[Welding conditions]

試験鋼板 ・・・・・・・・・・・・・・・  5M−
50B、20m’開先形状 ・・・・・・・・・・・・
・・・  60°、V開先溶接姿勢 ・・・・・・・・
・・・・・・・  立向溶接電流 ・・・・・・・−・
・−・・−23OA溶接電圧 ・・・・・・・・・・・
・・・・   25V溶接人熱 ・・・・・・・・・・
・・・・・   35 KJ/anシールドガス、流量
・・・・・CO,,201/分表1に示すように、溶接
作業性が良好であったのは、随4〜凰6のBaFz  
を主フラックス成分とするワイヤのみで、CaFz4る
いはMgF、を主フラックス成分とする随1〜1m3.
 N[L7,1m8はいずれも溶接作業性が悪かった。
Test steel plate ・・・・・・・・・・・・・・・ 5M-
50B, 20m' groove shape ・・・・・・・・・・・・
...60°, V groove welding posture...
・・・・・・ Vertical welding current ・・・・・・・−・
・−・・−23OA welding voltage ・・・・・・・・・・・・・
・・・・25V welding heat ・・・・・・・・・・
...35 KJ/an shielding gas, flow rate...CO,,201/min As shown in Table 1, the welding workability was good for BaFz No. 4 to No. 6.
A wire whose main flux component is CaFz4 or MgF is about 1 to 1 m3.
Both N[L7 and 1m8 had poor welding workability.

また、BaFzを主フラックス成分とするワイヤで溶接
した溶接金属の靭性はvE−20℃≧10kyrttr
t が得られ良好であった。
In addition, the toughness of weld metal welded with a wire whose main flux component is BaFz is vE-20℃≧10kyrttr
t was obtained, which was good.

次に本発明の各構成要件の作用と数値限定理由について
述べる。
Next, the effects of each component of the present invention and the reasons for limiting the numerical values will be described.

(作 用) BaF2は本発明ワイヤの主要なフシックス成分であり
、溶接金属を被包してビード形状を整え、立向溶接姿勢
でビードが垂れないように支える作用がある。BaF2
が4.5%未満ではこれらの効果が得られず、10.3
%を超えるとスラグ過多となってビード形状が悪化しか
つスラグのはぐυ性が悪くなる。従って、BaFzは4
65〜10,3%の範囲がよい。
(Function) BaF2 is the main fusic component of the wire of the present invention, and has the effect of enveloping the weld metal, adjusting the bead shape, and supporting the bead so that it does not sag in the vertical welding position. BaF2
If it is less than 4.5%, these effects cannot be obtained, and 10.3%
%, there will be too much slag, resulting in poor bead shape and poor slag repellency. Therefore, BaFz is 4
A range of 65 to 10.3% is preferable.

Ca F2 、 MgF2 、 AlF2 、 L I
 F  などの金属弗化物は溶融スラグの粘度や融点を
変えてその流動性を調整するだめのものであり、これら
金属弗化物の1種又は2種以上を添加することによりよ
り良いビード形状が得られる。CaF2 、 MgF2
 、 AlF2 、 LI Fの1種又は2種以上が0
.2%未満ではそれらの効果がなく、3.0%を超えて
添加すると、アークが不安定となってスパッターが多く
なるので帆2〜3.0%が良い。
CaF2, MgF2, AlF2, LI
Metal fluorides such as F are used to adjust the fluidity of molten slag by changing its viscosity and melting point, and by adding one or more of these metal fluorides, a better bead shape can be obtained. It will be done. CaF2, MgF2
, AlF2, LIF, one or more types are 0
.. If it is less than 2%, there is no effect, and if it exceeds 3.0%, the arc becomes unstable and spatter increases, so 2 to 3.0% is preferable.

Mnは脱酸剤および合金剤としての役割があるが、Mn
 が0.6%未満であると脱酸が不十分となってピット
が発生し易く、かつ溶接金属の焼入れ性が低下して溶接
金属の組織が粗くなって十分な低温靭性が得られない。
Mn has a role as a deoxidizing agent and an alloying agent, but Mn
If it is less than 0.6%, deoxidation is insufficient and pits are likely to occur, and the hardenability of the weld metal decreases and the structure of the weld metal becomes coarse, making it impossible to obtain sufficient low-temperature toughness.

Mnを3.0%を超えて添加すると、焼入れ性が高くな
り、溶接金属は硬くなって割れ易くなったり、低温靭性
が劣化する。従って、Mn の添加範囲は0.6〜3.
0%とする。
When Mn is added in an amount exceeding 3.0%, the hardenability becomes high, the weld metal becomes hard and easily cracked, and the low-temperature toughness deteriorates. Therefore, the addition range of Mn is 0.6 to 3.
Set to 0%.

SiはMnよりも強い脱酸剤であるが、ビード形状を整
えたり、アークを改善して溶接作業性を良くする作用が
ある。それらの効果は0.1%未満の添加では得られず
、2.5%を超えると溶接金属中にSiが過剰に歩留っ
て溶接金属が硬くなシ、低温靭性が劣化するので0.1
〜2.5%の添加が良い。
Although Si is a stronger deoxidizing agent than Mn, it has the effect of adjusting the bead shape and improving arcing to improve welding workability. These effects cannot be obtained by adding less than 0.1%, and if it exceeds 2.5%, excessive Si remains in the weld metal, making the weld metal less hard and deteriorating low-temperature toughness. 1
It is best to add up to 2.5%.

Ni は低温靭性をよシ高めるために添加するが、0.
2%未満では低温靭性の向上効果がなく、3.0%を超
えると溶接金属が硬くなって引張強さが高くなりすぎた
り、割れ易くなるのでNi の添加量は0,2〜3.0
%とする。
Ni is added to improve low-temperature toughness, but 0.
If it is less than 2%, there is no effect of improving low-temperature toughness, and if it exceeds 3.0%, the weld metal becomes hard, the tensile strength becomes too high, and it becomes easy to break. Therefore, the amount of Ni added is 0.2 to 3.0%.
%.

T1 + A 4 Mg 、 Z r、などの強膜酸剤
は、アーク雰囲気あるいは溶融金属中の酸素と強力に化
合してスラグ化し、溶接金属中の酸素を低下させる。ま
た、Ti、 Al、 Zrの一部は溶接金属中に歩留っ
て溶接金属の組織を微細化して低温靭性を高める作用が
ある。Ti、 At、 Mg、 Zrの1種又は2種以
上がO,aX未満では脱酸が不十分と々ってピットが発
生し易くなったり、低温靭性が劣化したりする。
A strong film oxidizing agent such as T1+A4Mg, Zr, etc. strongly combines with oxygen in the arc atmosphere or molten metal to form a slag, thereby reducing the oxygen content in the weld metal. In addition, some of Ti, Al, and Zr remain in the weld metal and have the effect of refining the structure of the weld metal and improving its low-temperature toughness. If the content of one or more of Ti, At, Mg, and Zr is less than O and aX, deoxidation is insufficient and pits are likely to occur and low-temperature toughness is deteriorated.

2.0%を昭え−ご添加するとアークが不安定となりス
パッターが多くなったり、スラグのはぐり性が劣化する
。従ってT i、 kA、 Mg、 Z r、の1種又
は2種以上の添加範囲は0.3〜2.0%とする。
If 2.0% is added, the arc becomes unstable, spatter increases, and slag removability deteriorates. Therefore, the addition range of one or more of Ti, kA, Mg, and Zr is 0.3 to 2.0%.

金、4酸化物としてはS i 02 、 At203 
、 T i 02 。
Gold, 4 oxides include S i 02 , At203
, T i 02 .

ZrO2、MgO,Fed、 K20  などがあI)
スラグの粘性を調整してビードの形状を整えたり、アー
クを安定化させたり、アークの強さを調整したりするた
めに添加するものである。金シ【酸化物の添加量が0.
2%未満であるとそのような効果が得られず、3.0%
を超えると、アーク雰囲気中の酸素が多くなって溶接金
属中の酸素が増し、低温W性が劣化するので金属酸化物
は0.2〜3.0%の範囲が良い。
ZrO2, MgO, Fed, K20 etc.)
It is added to adjust the viscosity of the slag to shape the bead, stabilize the arc, and adjust the strength of the arc. Gold [The amount of oxide added is 0.
If it is less than 2%, no such effect will be obtained, and if it is less than 3.0%
If it exceeds 0.2%, the amount of oxygen in the arc atmosphere increases and the oxygen in the weld metal increases, deteriorating the low-temperature W properties, so the metal oxide content is preferably in the range of 0.2 to 3.0%.

金属炭酸塩としては、、  L T2 CO3、Na2
 CO3、MgCO3。
As metal carbonates, L T2 CO3, Na2
CO3, MgCO3.

Ca CO3、S r CO3、BaCO3fkどがあ
るが、これらはアークを安定化し、ワイヤの先端で生成
した溶滴の溶融池への移行性を良好にする作用がある。
These include CaCO3, SrCO3, BaCO3fk, etc., and these have the effect of stabilizing the arc and improving the transferability of droplets generated at the tip of the wire to the molten pool.

金属炭酸塩の添加量が0.2%未満ではそれらの効果は
得られず、2.5%を超えるとスパッターが多くなるの
で、金属炭酸塩の添加は0.2〜2.5%とする。
If the amount of metal carbonate added is less than 0.2%, these effects will not be obtained, and if it exceeds 2.5%, spatter will increase, so the amount of metal carbonate added should be 0.2 to 2.5%. .

本発明ワイヤの主要構成は上記した通りであるが、更に
0.1〜2,5%程度のMoあるいは/およびCr  
を添加すれば強度、高温強度を向上させることができる
。また耐候性改善のために適量のCu。
The main composition of the wire of the present invention is as described above, but it also contains about 0.1 to 2.5% Mo or/and Cr.
By adding , strength and high temperature strength can be improved. Also, an appropriate amount of Cu is added to improve weather resistance.

Cr  を添加することもできる。Cr can also be added.

ワイヤ外皮としては、通常軟鋼を用いるが用途に応じて
低合金鋼、高合金鋼をも用いることができる。
Mild steel is usually used for the wire sheath, but low alloy steel or high alloy steel can also be used depending on the application.

まだ本発明ワイヤの断面形状は外皮円周部に合ずれでも
よいが、特にクローズドシームワイヤは充填フラックス
が吸湿することがないので、溶接金属の拡散性水素量が
少なく、低温割れの面で有利であり、又ワイヤ表面に銅
メッキが施せるため、通電性や送給性にすぐれる利点が
ある。
Although the cross-sectional shape of the wire of the present invention may not match the circumference of the outer skin, the closed seam wire in particular does not absorb moisture from the filling flux, so the amount of diffusible hydrogen in the weld metal is small, which is advantageous in terms of low-temperature cracking. Moreover, since the surface of the wire can be plated with copper, it has the advantage of excellent current conductivity and feeding performance.

本発明を更に具体的に説明するために以下に実施例を述
べる。
Examples will be described below to further specifically explain the present invention.

(実施例) 外皮材として軟鋼(C: 0.0ヰ5%、 St : 
0.01%、 Mn : 0.32%、p : o、o
xoH,S:0.009%)を用い、表2に示すような
ワイヤ径1.6φのフラックス人シワイヤを製造した。
(Example) Mild steel (C: 0.0ヰ5%, St:
0.01%, Mn: 0.32%, p: o, o
xoH, S: 0.009%), a flux wire with a wire diameter of 1.6φ as shown in Table 2 was manufactured.

溶接は下記の条件で実施し、溶接作業性と溶接金属の性
能を調査した。
Welding was carried out under the following conditions, and the welding workability and performance of the weld metal were investigated.

〔溶接条件〕[Welding conditions]

試験鋼板       5M−50B、20m’開先形
状  ・・・・・・・・・・・・  60;V開先溶接
姿勢  ・・・・・・・・・・・・  立向溶接電流 
 ・・・・−・・・・・・・  230A溶接電圧  
・・・・・・・・・・・・  25V溶接人熱    
   35KJ/cmシールドガス、流量・・・・・・
CO2,20t/分表2に示すように、本発明ワイヤ鳩
1〜麹10け、チタニャ系フラックス入りワイヤと較べ
て溶接金属中の酸素量が格段に低く、溶接金属の衝撃値
についてはVE−20℃≧11.1 吟f、m 、かつ
vE−40℃≧7.lk7f0mで良好である。また溶
接作業性についてもNIILI〜曵10の本発明ワイヤ
は良好であった。
Test steel plate 5M-50B, 20m' groove shape ・・・・・・・・・・・・ 60; V groove welding posture ・・・・・・・・・ Vertical welding current
・・・・・・・・・・・・・・・ 230A welding voltage
・・・・・・・・・・・・ 25V welding heat
35KJ/cm shielding gas, flow rate...
CO2, 20t/min As shown in Table 2, the amount of oxygen in the weld metal for the wires of the present invention is much lower than that of titania-based flux-cored wires, and the impact value of the weld metal is VE- 20℃≧11.1 ginf, m, and vE-40℃≧7. lk7f0m is good. In addition, the wires of the present invention of NIILI to 10 had good welding workability.

次に比較ワイヤについて説明する。Next, the comparison wire will be explained.

Na1lけB a F2が少なく 、CaF2. Mg
F2. AtF3+LiFが過剰のため、立向溶接でス
ラグの流動性が過多で溶接金属が垂れ易く、溶接作業性
に難点がある。
There is less Na1l, B a F2, and CaF2. Mg
F2. Due to the excess amount of AtF3+LiF, the fluidity of the slag is excessive during vertical welding, and the weld metal tends to sag, creating difficulties in welding workability.

随12は、BaF2が過剰でSiが少ない場合であるが
、ビード形状が凸となり、まだスラグのはぐり性が悪化
してやはり溶接作業性の面に難点がある。
Case 12 is a case where BaF2 is excessive and Si is small, but the bead shape becomes convex and the slag peeling property is still deteriorated, so there is still a problem in terms of welding workability.

随13は、Mnが過剰のために1溶接金属の焼入れ性が
高1って溶接金属が硬化し、衝撃値が低下した。
In No. 13, the hardenability of the weld metal was high due to excess Mn, which caused the weld metal to harden and the impact value to decrease.

N[Li2は、Sl が多いために、Siが溶接金属に
過剰に走留って溶接金属が硬化し、衝撃値が低下した。
Since N[Li2 contains a large amount of Sl, Si excessively ran into the weld metal, hardening the weld metal and reducing the impact value.

又金属酸化物が少ないために、立向溶接でスラグが流れ
易くなシ、溶接金属が垂れ易い。
Also, since there is little metal oxide, slag does not flow easily during vertical welding, and weld metal tends to drip.

階15は、Mn が少ないために、溶接金属の焼入れ性
が不足して衝撃値が低く、かつ、Ti、Az。
Floor 15 has a low impact value due to insufficient hardenability of the weld metal due to low Mn, and also contains Ti and Az.

Mg、Zrが過剰のためKそれらの酸化物がスラグ中に
多く生成され、スラグのはくシ性が悪化した。
Due to the excess of Mg and Zr, a large amount of K and their oxides were produced in the slag, and the slag's deformability deteriorated.

またスパッターも多発した。Also, spatter occurred frequently.

随16は、T i 、 A 4 M g 、 Z r 
カ少’l イタa6 K 溶接金属の酸素量が多くなっ
て、衝撃値が低い。又、CaF2. MgF2. At
F3. LiFが少ないだめに、スラグの流動性が悪く
、ビード形状が凸となった。
Encyclopedia 16 is T i , A 4 M g , Z r
A6 K The amount of oxygen in the weld metal increases, resulting in a low impact value. Also, CaF2. MgF2. At
F3. Since the LiF content was low, the fluidity of the slag was poor and the bead shape became convex.

随17は金属酸化物が多いために溶接金属中の酸素量が
増加して衝撃値が低い。又炭6ツ塩が少ないために安定
したアークと溶滴の移行が得られない。
No. 17 has a large amount of metal oxide, so the amount of oxygen in the weld metal increases and the impact value is low. In addition, stable arc and droplet transfer cannot be obtained due to the small amount of charcoal salt.

随18は、金属炭酸塩が過剰のために、スパッターが多
発し、寸たスラグの粘性が大きくなってピードが凸とな
り形状が悪化した。更に溶接金属の衝撃値はNiが少な
いために低い。
In No. 18, due to excessive metal carbonate, spatter occurred frequently, the viscosity of the slag increased, the peads became convex, and the shape deteriorated. Furthermore, the impact value of the weld metal is low due to the low Ni content.

順19はNi  が多いために溶接金属が硬くなって引
張強さが70 kりf /−を超え、M[の引張強さと
のバランスが悪い。またNiが多い割に衝撃値の向上効
果が少なく、Ni粉が高価であることを考えると不経済
である。
In No. 19, the weld metal becomes hard due to the large Ni content, and the tensile strength exceeds 70 kf/-, which is poorly balanced with the tensile strength of M[. Furthermore, although the amount of Ni is large, the effect of improving the impact value is small, and considering that Ni powder is expensive, it is uneconomical.

(発明の効果) 以上説明したように、本発明フラックス入りワイヤによ
れば、溶接金属の酸素量が格段に低減して良好な低温靭
性が得られ、溶接部の信頼性向上に貢献するものである
(Effects of the Invention) As explained above, according to the flux-cored wire of the present invention, the amount of oxygen in the weld metal is significantly reduced, good low-temperature toughness is obtained, and this contributes to improving the reliability of the welded joint. be.

代理人 弁理士 秋 沢 政 光 他2名Agent Patent Attorney Masaaki Akizawa 2 others

Claims (1)

【特許請求の範囲】[Claims] (1)鋼を外皮鞘とする管状ワイヤに、ワイヤ重量比で
、 BaF_2:4.5〜10.3% CaF_2、MgF_2、AlF_3、LiFの1種又
は2種以上:0.2〜3.0% Mn:0.6〜3.0% Si:0.1〜2.5% Ni:0.2〜3.0% Ti、Al、Mg、Zrの1種又は2種以上:0.3〜
2.0% 金属酸化物:0.2〜3.0% 金属炭酸塩:0.2〜2.5 を含有するフラックスを充填してなることを特徴とする
ガスシールドアーク溶接用フラックス入りワイヤ。
(1) A tubular wire with a steel outer sheath, wire weight ratio: BaF_2: 4.5 to 10.3%, one or more of CaF_2, MgF_2, AlF_3, and LiF: 0.2 to 3.0 % Mn: 0.6-3.0% Si: 0.1-2.5% Ni: 0.2-3.0% One or more of Ti, Al, Mg, and Zr: 0.3-
A flux-cored wire for gas-shielded arc welding, characterized in that it is filled with a flux containing 2.0% metal oxide: 0.2-3.0% and metal carbonate: 0.2-2.5%.
JP519486A 1986-01-14 1986-01-14 Flux-cored wire for gas shielded arc welding Pending JPS62166098A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP519486A JPS62166098A (en) 1986-01-14 1986-01-14 Flux-cored wire for gas shielded arc welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP519486A JPS62166098A (en) 1986-01-14 1986-01-14 Flux-cored wire for gas shielded arc welding

Publications (1)

Publication Number Publication Date
JPS62166098A true JPS62166098A (en) 1987-07-22

Family

ID=11604402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP519486A Pending JPS62166098A (en) 1986-01-14 1986-01-14 Flux-cored wire for gas shielded arc welding

Country Status (1)

Country Link
JP (1) JPS62166098A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01271098A (en) * 1988-04-21 1989-10-30 Nippon Steel Corp Flux cored wire for gas shielded arc welding
JP2006187805A (en) * 2005-01-03 2006-07-20 Lincoln Global Inc Cored electrode for reducing diffusible hydrogen
CN100457372C (en) * 2007-04-27 2009-02-04 北京工业大学 Refractory steel alkaline flux-cored wire with excellent removability of slag
US8907248B2 (en) 2007-05-03 2014-12-09 Illinois Tool Works Inc. Aluminum deoxidizing welding wire
US9517523B2 (en) 2010-04-09 2016-12-13 Illinois Tool Works Inc. System and method of reducing diffusible hydrogen in weld metal
WO2017013965A1 (en) * 2015-07-17 2017-01-26 株式会社神戸製鋼所 Wire containing flux for gas shield arc welding
US9700955B2 (en) 2011-04-04 2017-07-11 Illinois Tool Works Inc. Systems and methods for using fluorine-containing gas for submerged arc welding
US9700954B2 (en) 2012-03-27 2017-07-11 Illinois Tool Works Inc. System and method for submerged arc welding

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01271098A (en) * 1988-04-21 1989-10-30 Nippon Steel Corp Flux cored wire for gas shielded arc welding
JP2006187805A (en) * 2005-01-03 2006-07-20 Lincoln Global Inc Cored electrode for reducing diffusible hydrogen
CN100457372C (en) * 2007-04-27 2009-02-04 北京工业大学 Refractory steel alkaline flux-cored wire with excellent removability of slag
US9604315B2 (en) 2007-05-03 2017-03-28 Illinois Tool Works Inc. Aluminum deoxidizing welding wire
US9162323B2 (en) 2007-05-03 2015-10-20 Illinois Tool Works Inc. Aluminum deoxidizing welding wire
US8907248B2 (en) 2007-05-03 2014-12-09 Illinois Tool Works Inc. Aluminum deoxidizing welding wire
US9517523B2 (en) 2010-04-09 2016-12-13 Illinois Tool Works Inc. System and method of reducing diffusible hydrogen in weld metal
US9700955B2 (en) 2011-04-04 2017-07-11 Illinois Tool Works Inc. Systems and methods for using fluorine-containing gas for submerged arc welding
US9764409B2 (en) 2011-04-04 2017-09-19 Illinois Tool Works Inc. Systems and methods for using fluorine-containing gas for submerged arc welding
US9700954B2 (en) 2012-03-27 2017-07-11 Illinois Tool Works Inc. System and method for submerged arc welding
US9821402B2 (en) 2012-03-27 2017-11-21 Illinois Tool Works Inc. System and method for submerged arc welding
WO2017013965A1 (en) * 2015-07-17 2017-01-26 株式会社神戸製鋼所 Wire containing flux for gas shield arc welding
JP2017024032A (en) * 2015-07-17 2017-02-02 株式会社神戸製鋼所 Flux-cored wire for gas shielded arc welding
KR20180016569A (en) 2015-07-17 2018-02-14 가부시키가이샤 고베 세이코쇼 Flux cored wire for gas shield arc welding
CN107848082A (en) * 2015-07-17 2018-03-27 株式会社神户制钢所 Flux-cored wire for gas-shielded arc welding
CN107848082B (en) * 2015-07-17 2020-09-04 株式会社神户制钢所 Flux-cored wire for gas-shielded arc welding

Similar Documents

Publication Publication Date Title
KR880002508B1 (en) Flux cored wire for gas shielded arc welding
JP4986562B2 (en) Flux-cored wire for titania-based gas shielded arc welding
JP3476125B2 (en) Flux-cored wire for duplex stainless steel welding
US6713723B2 (en) Basic flux cored wire with excellent weldability
JP6953869B2 (en) Flux-cored wire for gas shielded arc welding and welding joint manufacturing method
JPS62166098A (en) Flux-cored wire for gas shielded arc welding
JPH09277087A (en) Flux cored wire for arc welding
JP2614969B2 (en) Gas shielded arc welding titania-based flux cored wire
KR100265097B1 (en) Flux-cored wire for arc welding
JPH0420720B2 (en)
JP7231499B2 (en) Flux-cored wire and welding method
JP2019025525A (en) Flux-cored wire for gas-shielded arc welding, and manufacturing method of welded joint
JP2756084B2 (en) Flux-cored wire for gas shielded arc welding
JPH09253886A (en) Flux cored wire for gas shielded metal arc welding for 690mpa class high tensile steel
EP0414481B1 (en) Flux cored wire for use in stainless steel welding
JPH11207491A (en) Flux cored wire for co2 gas shielded arc welding using dc straight polarity and welding method thereof
JPH0545360B2 (en)
JPH09262693A (en) Flux cored wire for arc welding
JPH09277088A (en) Flux cored wire for gas shielded metal-arc welding
JPH01271098A (en) Flux cored wire for gas shielded arc welding
JPH0899193A (en) Flux cored wire for gas shielded arc welding
CN111886110B (en) Flux-cored wire
JP7401345B2 (en) Ni-based alloy flux-cored wire
JPH0371237B2 (en)
JPH04356397A (en) Self-shielded arc welding composite wire