JPS6216439A - Production of phosphatidylcholine - Google Patents

Production of phosphatidylcholine

Info

Publication number
JPS6216439A
JPS6216439A JP15565985A JP15565985A JPS6216439A JP S6216439 A JPS6216439 A JP S6216439A JP 15565985 A JP15565985 A JP 15565985A JP 15565985 A JP15565985 A JP 15565985A JP S6216439 A JPS6216439 A JP S6216439A
Authority
JP
Japan
Prior art keywords
fatty acids
unsaturated fatty
highly unsaturated
acid
gpc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15565985A
Other languages
Japanese (ja)
Inventor
Yasuhisa Noguchi
野口 泰久
Hidehiko Hibino
日比野 英彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NOF Corp
Original Assignee
Nippon Oil and Fats Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil and Fats Co Ltd filed Critical Nippon Oil and Fats Co Ltd
Priority to JP15565985A priority Critical patent/JPS6216439A/en
Publication of JPS6216439A publication Critical patent/JPS6216439A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To obtain easily in high yield the titled compound containing a highly unsaturated fatty acid by a simple reaction process, by decomposing egg york phospholipid, taking out selectively a highly unsaturated fatty acids as a raw material and reacting the fatty acids with glycerophosphorylcholine. CONSTITUTION:Egg york phospholipid is brought into contact with an alcohol containing a quaternary alkylammonium hydroxide such as tetrahydroammonium hydroxide, etc., subjected to alcoholysis and decomposed to give a composition containing glycerophosphorylcholine (GPC for short) and highly unsaturated fatty acids. The highly unsaturated fatty acids such as arachidonic acid, docosahexaenoic acid, etc., are taken out from the composition and they are reacted with GPC obtained by the decomposition, to give the aimed compound. EFFECT:Since egg york phospholipid is efficiently decomposed and resynthesized, the aimed compound effectively useful as drugs, foods, etc., having a clear structure and high physiologically active action is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高度不飽和脂肪酸を含有するホスファチジルコ
リン(以下、PCと記す)の新しい製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a new method for producing phosphatidylcholine (hereinafter referred to as PC) containing highly unsaturated fatty acids.

〔従来の技術〕[Conventional technology]

リン脂質は細胞の生体膜の成分として存在しており、生
体膜では2分子構造を持った二重層膜を形成し、タンパ
ク質、コレステロール等とともに物質の透過1選択的輸
送等の生命現象に欠くことのできない機能を果している
。そして細胞に対して何らかの刺激が与えられると、リ
ン脂質からその結合した不飽和脂肪酸が遊離してプロス
タグランジン等の生理活性物質へと変換される。
Phospholipids exist as components of biological membranes of cells, and in biological membranes, they form a bilayer membrane with a bimolecular structure, and together with proteins, cholesterol, etc., they are essential for biological phenomena such as selective transport of substances. It performs functions that cannot be performed. When some stimulus is applied to the cells, the bound unsaturated fatty acids are released from the phospholipids and converted into physiologically active substances such as prostaglandins.

生体中には主にPC,ホスファチジルエタノールアミン
、ホスファチジルセリン、ホスファチジルイノシトール
、スフィンゴミエリン等のリン脂質が存在し、このうち
PCは一般にレシチンと呼ばれ、生体中に最も多く存在
し、特にその重要性が認められている。
Phospholipids such as PC, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, and sphingomyelin mainly exist in living organisms. Among these, PC is generally called lecithin, and is the most abundant in living organisms, and its importance is particularly important. is recognized.

天然のリン脂質は工業的には、その界面活性作用を利用
して天然乳化剤として食品、化粧品業界等で利用される
一方、その生理活性作用を利用した医薬、健康食品への
展開が行われている。加えて最近リン脂質は水中で2分
子構造をとった2重層膜を持つリボソームと呼ばれる閉
鎖小胞体を形成することが知られ、その用途が種々考え
られている。たとえば医学、薬学分野においては薬剤運
搬体、人工血液等へ、また工学的分野においては人工細
胞への展開が考えられてい−る。
Industrially, natural phospholipids are used as natural emulsifiers in the food and cosmetics industries by taking advantage of their surfactant properties, while they are also being used in pharmaceuticals and health foods by making use of their physiologically active properties. There is. In addition, it has recently been known that phospholipids form closed endoplasmic reticulum called ribosomes, which have a bilayer membrane in a bimolecular structure in water, and various uses for this are being considered. For example, in the medical and pharmaceutical fields, development is being considered into drug carriers, artificial blood, etc., and in the engineering field, development into artificial cells is being considered.

しかしながら、いずれの用途においても現在は天然リン
脂質が用いられており、リン脂質がその脂肪酸あるいは
そのリン酸基部に種々の組成を持った混合物であるため
、再現性が悪く、1ジン脂質本来の機能を工業的に応用
するに至っていない。
However, natural phospholipids are currently used for both purposes, and because phospholipids are mixtures with various compositions in their fatty acids or phosphate groups, reproducibility is poor and the original phospholipid Its functions have not yet been applied industrially.

これらの用途に応用するために種々の試みがなされてい
る。たとえばリン脂質を薬剤運搬体用リポソームとして
用いるために、脂肪酸が明確なホスファチジルコリンで
あるジパルミトイルホスファチジルコリン、ジオレイル
ホスファチジルコリンなどが製造されている。
Various attempts have been made to apply it to these uses. For example, in order to use phospholipids as liposomes for drug carriers, dipalmitoyl phosphatidylcholine, dioleyl phosphatidylcholine, etc., whose fatty acids are clearly phosphatidylcholines, are produced.

このようなPCの合成法としては全合成法、半合成力が
知られているが(Baerら、JACS 61 (4)
Total synthesis method and semi-synthesis method are known as methods for synthesizing such PC (Baer et al., JACS 61 (4)
.

761 (1939)、 J、 Biol、 Chew
、 230.’ 447 (1958)。
761 (1939), J. Biol, Chew
, 230. '447 (1958).

JACS 72.942 (1950))、全合成法は
工程数が多く工業化は困難である。半合成法はグリセロ
ホスホリルコリン(以下、GPCと記す)と活性脂肪酸
とからPCを合成する方法であり、GPCとしてはカド
ミウム塩等の重金属塩を使用している。活性化脂肪酸と
しては、(1)脂肪酸を酸クロリド化して用いる方法(
Can、 J、 Biochem、 Physiol、
 37゜953 (1959))、(2)脂肪酸をイミ
ダゾール塩として用いる方法(特開昭5191213.
 Chem、 Phys。
JACS 72.942 (1950)), the total synthesis method requires a large number of steps and is difficult to industrialize. The semi-synthetic method is a method of synthesizing PC from glycerophosphorylcholine (hereinafter referred to as GPC) and active fatty acids, and a heavy metal salt such as a cadmium salt is used as GPC. Activated fatty acids include (1) a method of converting fatty acids into acid chlorides and using them (
Can, J., Biochem, Physiol,
37°953 (1959)), (2) Method of using fatty acids as imidazole salts (Japanese Patent Application Laid-Open No. 5191213.
Chem, Phys.

Lipids 1981.28.111)、および(3
)脂肪酸を酸無水物として用いる方法(Regenら、
JACS (1982)。
Lipids 1981.28.111), and (3
) A method using fatty acids as acid anhydrides (Regen et al.
JACS (1982).

104、791)などが知られている。104, 791), etc. are known.

このうち酸クロリドを用いる方法は脂肪酸をチオニルク
ロリド等でクロリド化するとき二重結合が塩素化される
可能性がある。イミダゾール塩を用いる方法はイミダゾ
ール化試薬が高価な上に金属ナトリウムの使用など不便
なことが多い。これらに比較して酸無水物を原料に用い
る方法は合成がマイルドであり、副生成物も少ない。ま
た穏やかな酸無水物化法としてはN、N’−ジシクロヘ
キシルカルボジイミドを用いる方法(Ringsdor
fら。
Among these methods, in the method using acid chloride, double bonds may be chlorinated when fatty acids are chloridized with thionyl chloride or the like. Methods using imidazole salts are often inconvenient, such as the imidazolization reagent being expensive and the use of metallic sodium. Compared to these methods, methods using acid anhydrides as raw materials require milder synthesis and produce fewer by-products. In addition, as a mild acid anhydride method, a method using N,N'-dicyclohexylcarbodiimide (Ringsdor et al.
f et al.

JACS (1984)月頃、 1627)、エチルク
ロロホルメートを用いる方法(Ragenら、JACS
 (1982)、 104゜791)などが知られてい
る。
JACS (1984), 1627), method using ethyl chloroformate (Ragen et al., JACS
(1982), 104°791) are known.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

以上のような方法により構造明確なホスファチジルコリ
ンを脂肪酸およびGPCから合成することができるが、
従来はパルミチン酸、オレイン酸等の入手しやすい脂肪
酸を原料とする場合に限られていた。生理活性作用を持
った脂肪酸として。
Although phosphatidylcholine with a clear structure can be synthesized from fatty acids and GPC by the method described above,
Conventionally, it was limited to cases where easily available fatty acids such as palmitic acid and oleic acid were used as raw materials. As a fatty acid with bioactive effects.

リノール酸、γ−リルン酸、ジホモ−γ−リルン酸、ア
ラキドン酸(以下、AAと記す)、エイコサペンタエン
酸、ドコサヘキサエン酸(以下、DMAと記す)などの
不飽和脂肪酸があり、これらの脂肪酸を原料とすると生
理活性作用をもすPCを製造することができるが、これ
らの脂肪酸はリノール酸を除いて天然には少なく、そこ
から分離するには非常に困難なものが多い。特にAAは
2型プロスタグランジンの前駆体となる生体にとって非
常に重要な脂肪酸であるが、AAをはじめとする高度不
飽和脂肪酸は生体内においてはリン脂質などの極性脂質
に主に含まれており、これらの脂肪酸を含んだリン脂質
を純度よく取り出すことは困難である。
There are unsaturated fatty acids such as linoleic acid, γ-lylunic acid, dihomo-γ-lylunic acid, arachidonic acid (hereinafter referred to as AA), eicosapentaenoic acid, and docosahexaenoic acid (hereinafter referred to as DMA). When used as a raw material, it is possible to produce PC that has physiologically active effects, but these fatty acids, with the exception of linoleic acid, are rare in nature and are often very difficult to separate from them. In particular, AA is a very important fatty acid for living organisms as it is a precursor of type 2 prostaglandin, but polyunsaturated fatty acids including AA are mainly contained in polar lipids such as phospholipids in living organisms. Therefore, it is difficult to extract phospholipids containing these fatty acids with high purity.

従来このような脂肪酸のうちγ−リルン酸は月見草油か
ら、エイコサペンタエン酸およびDHAは魚油から、A
Aは血液、肝臓などから得られてきたが、複雑な工程を
必要とし、PCの原料とするには難点があった。またこ
れらの中でAAは特にその資源が少なく、しかも純粋な
ものを取り出すのは非常に困難であった。
Conventionally, among these fatty acids, γ-lylunic acid has been obtained from evening primrose oil, eicosapentaenoic acid and DHA have been obtained from fish oil, and A
A has been obtained from blood, liver, etc., but it requires a complicated process and is difficult to use as a raw material for PC. Furthermore, among these, AA resources are particularly scarce, and it is extremely difficult to extract pure AA.

従って従来は生理活性作用を有する高度不飽和脂肪酸を
原料として、生理活性作用の高いpcを工業的に製造す
ることは困難であるという問題点があった。
Therefore, there has been a problem in the past that it has been difficult to industrially produce PC with high physiological activity using polyunsaturated fatty acids that have bioactive activity as raw materials.

〔問題点を解決するための手段〕[Means for solving problems]

この発明は上記問題点を解消するためのもので、卵黄リ
ン脂質から高度不飽和脂肪酸を取り出してPCの原料と
することにより、容易に高度不飽和脂肪酸を利用でき、
生理活性作用の高いpcを簡車な工程で高収率に得るこ
とができるPCの製造方法を提案することを目的として
いる。
This invention is intended to solve the above problems, and by extracting highly unsaturated fatty acids from egg yolk phospholipids and using them as raw materials for PC, highly unsaturated fatty acids can be easily utilized.
The purpose of this study is to propose a method for producing PC that can produce PC with high bioactivity in a simple process and in high yield.

この発明は、卵黄リン脂質を分解し、得られた高度不飽
和脂肪酸含有組成物から高度不飽和脂肪酸を選択的に取
り出し、これをグリセロホスホリルコリンと反応させる
ことを特徴とするホスファチジルコリンの製造方法であ
る。
This invention is a method for producing phosphatidylcholine, which comprises decomposing egg yolk phospholipids, selectively extracting polyunsaturated fatty acids from the resulting polyunsaturated fatty acid-containing composition, and reacting the polyunsaturated fatty acids with glycerophosphorylcholine. .

本発明ではまず卵黄リン脂質を分解して高度不飽和脂肪
酸含有組成物を得る。卵黄リン脂質は卵黄から得られる
リン脂質で、卵黄レシチンなどがある。卵黄リン脂質は
粗のものを使用してもよいが、分離精製によりリン脂質
の純度を高めるのが好ましい。卵黄リン脂質の分離精製
はシリカゲルカラム、活性アルミナカラム等を用い、ク
ロロホルム/メタノール系混合溶媒等で溶出させて行わ
れる。
In the present invention, first, egg yolk phospholipids are decomposed to obtain a highly unsaturated fatty acid-containing composition. Egg yolk phospholipids are phospholipids obtained from egg yolks, and include egg yolk lecithin. Although crude egg yolk phospholipids may be used, it is preferable to increase the purity of the phospholipids by separation and purification. Separation and purification of egg yolk phospholipids is carried out using a silica gel column, activated alumina column, etc., and elution with a chloroform/methanol mixed solvent.

卵黄リン脂質の分解は一般にGPCの製造のために行わ
れている操作と同様であり、卵黄リン脂質を分解してG
PCを製造すると、一方で高度不飽和脂肪酸であるAA
およびDHAを含む組成物が得られる。卵黄リン脂質の
分解は、テトラブチルアンモニウムヒドロキサイド等の
4級アルキルアンモニウム水酸化物あるいはアルカリ金
属などを含むアルコールと接触させてアルコリーシスし
、脂肪酸エステル組成物として分離すると、GPCとの
分離が容易で好ましい。また卵黄リン脂質を低濃度のア
/14カリ等で穏やかに加水分解してもよい。
The decomposition of egg yolk phospholipids is similar to the operation generally performed for the production of GPC.
When producing PC, on the other hand, AA, which is a highly unsaturated fatty acid,
and a composition containing DHA is obtained. The decomposition of egg yolk phospholipids can be carried out by bringing them into contact with quaternary alkyl ammonium hydroxides such as tetrabutylammonium hydroxide or alcohols containing alkali metals, resulting in alcoholysis and separating them as fatty acid ester compositions, which can be easily separated from GPC. preferable. Alternatively, egg yolk phospholipids may be gently hydrolyzed with a low concentration of A/14 potash.

こうして得られる組成物はAA、DHA等の高度不飽和
脂肪酸以外の成分を含むので、AA、DHA等の高度不
飽和脂肪酸を濃縮して選択的に取出し、pc製造の原料
とする6 卵黄リン脂質から高度不飽和脂肪酸を得る好ましい方法
は、まず精製卵黄リン脂質ををメタノール中にて上記方
法によりアルコリーシスし、脂肪酸メチルエステルを得
る。次いでメチルエステルを尿素付加し高度不飽和脂肪
酸混合メチルエステルを得る。次いでオクタデシルシラ
ンまたはスチレン−ジビニルベンゼン樹脂を充てんした
高速液体クロマトグラフィカラムで分離し、次いでけん
化後脂肪酸塩を酸で脂肪酸に戻すことにより高純度のA
AおよびDHAを得る。
Since the composition obtained in this way contains components other than highly unsaturated fatty acids such as AA and DHA, the highly unsaturated fatty acids such as AA and DHA are concentrated and selectively extracted and used as raw materials for PC production.6 Egg yolk phospholipid A preferred method for obtaining highly unsaturated fatty acids is to first alcoholyze purified egg yolk phospholipids in methanol by the method described above to obtain fatty acid methyl esters. Next, urea is added to the methyl ester to obtain a highly unsaturated fatty acid mixed methyl ester. High-purity A is then separated by a high performance liquid chromatography column filled with octadecylsilane or styrene-divinylbenzene resin, and then the fatty acid salt is returned to fatty acid with acid after saponification.
A and DHA are obtained.

こうして得られるAAおよびDHAはそれぞれpc製造
の原料として使用できる。
AA and DHA thus obtained can each be used as raw materials for PC production.

本発明の他の原料であるGPCは合成される高度不飽和
脂肪酸含有ホスファチジルコリンの骨格となるもので、
前記卵黄リン脂質分解に際して生成するGPCを使用す
るのが好ましい。すなわち卵黄リン脂質を分解して高度
不飽和脂肪酸含有組成物を得ると、一方でGPCが生成
するため、これをpc製造の原料として使用すると、効
率よくPCの製造を行うことができる。GPCはベンゼ
ン、クロロホルム等の非極性溶媒には不溶であるので、
生成した高度不飽和脂肪酸エステル組成物から容易に分
離することができる。またGPCは大豆等の他のリン脂
質から得たものを使用してもよい。
GPC, which is another raw material of the present invention, becomes the skeleton of the highly unsaturated fatty acid-containing phosphatidylcholine to be synthesized.
It is preferable to use GPC generated during the decomposition of the egg yolk phospholipid. That is, when egg yolk phospholipids are decomposed to obtain a highly unsaturated fatty acid-containing composition, GPC is produced, so if this is used as a raw material for PC production, PC can be produced efficiently. Since GPC is insoluble in nonpolar solvents such as benzene and chloroform,
It can be easily separated from the produced highly unsaturated fatty acid ester composition. Furthermore, GPC obtained from other phospholipids such as soybean may also be used.

以上により得られた高度不飽和脂肪酸とGPCは従来法
と同様の方法により反応させて高度不飽和脂肪酸含有p
cを製造する。この場合、高度不飽和脂肪酸は活性化脂
肪酸としてGPCと反応させる。
The polyunsaturated fatty acid and GPC obtained above were reacted with the polyunsaturated fatty acid containing polyunsaturated fatty acid by the same method as the conventional method.
Manufacture c. In this case, the highly unsaturated fatty acid is reacted with GPC as an activated fatty acid.

活性化脂肪酸としては脂肪酸の無水物、クロル化物、ま
たはイミダゾール化物などがあるが、本発明における高
度不飽和脂肪酸の場合は無水物が好ましい。この場合、
N、N’−ジシクロへキシルカルボジイミドなどのカル
ボジイミド系縮合剤を用い、穏やかに無水物を合成する
のが好ましい。
Activated fatty acids include anhydrides, chlorides, and imidazolates of fatty acids, and in the case of highly unsaturated fatty acids in the present invention, anhydrides are preferred. in this case,
It is preferable to synthesize the anhydride gently using a carbodiimide condensing agent such as N,N'-dicyclohexylcarbodiimide.

高度不飽和脂肪酸無水物を用いてpcを製造すると1合
成がマイルドで、副生成物も少ない。
When PC is produced using highly unsaturated fatty acid anhydrides, the synthesis process is mild and there are fewer by-products.

GPCはカドミウムなどの金属塩として、あるいはセラ
イト、活性炭、活性白土、樹脂等の担体に吸着または含
浸させて反応に用いる。カドミウム塩はGPCを塩化カ
ドミウムと反応させ、エタノールで再結晶して得られる
(例えばChem、 Phy。
GPC is used in the reaction as a metal salt such as cadmium, or by being adsorbed or impregnated onto a carrier such as celite, activated carbon, activated clay, or resin. Cadmium salts can be obtained by reacting GPC with cadmium chloride and recrystallizing from ethanol (for example, Chem, Phy.

Lipids 4 (1970) 104.参照)。G
PCを担体に吸着または含浸させるには、GPCをメタ
ノール等の適当な溶媒に溶解して担体と接触させ、エバ
ポレーター等で溶媒を除くことにより可能である。
Lipids 4 (1970) 104. reference). G
PC can be adsorbed or impregnated into a carrier by dissolving GPC in a suitable solvent such as methanol, bringing it into contact with the carrier, and removing the solvent using an evaporator or the like.

好ましいPCの製造方法はGPC金属塩あるいは担体に
吸着または含浸させたGPCと高度不飽和脂肪酸無水物
とをジクロロメタン等の乾燥溶媒中で触媒の存在下反応
させる方法であり、これによりpcが製造される。
A preferred method for producing PC is a method in which GPC adsorbed or impregnated on a GPC metal salt or carrier and a highly unsaturated fatty acid anhydride are reacted in the presence of a catalyst in a dry solvent such as dichloromethane, whereby PC is produced. Ru.

反応に使用する触媒はGPCと活性化脂肪酸とを反応さ
せてPCを生成させるための触媒であり、二重結合の移
動やPCの異性化を生じさせない穏やかなものが好まし
く、例えば、脂肪酸無水物の場合は4−ジメチルアミノ
ピリジン、またはピロリジノピリジン、クロル化物の場
合はピリジン、イミダゾール化物の場合は金属ナトリウ
ムなどがある。
The catalyst used in the reaction is a catalyst for producing PC by reacting GPC with activated fatty acids, and is preferably a mild catalyst that does not cause movement of double bonds or isomerization of PC, such as fatty acid anhydride. In the case of 4-dimethylaminopyridine or pyrrolidinopyridine, in the case of a chloride, pyridine, and in the case of an imidazolate, metal sodium etc. are used.

反応に使用する溶媒は上記各成分を溶解または分散でき
るものであればよく、たとえばジクロロメタン、クロロ
ホルム、四塩化炭素、ベンゼン、トルエン、ヘキサン等
が使用できる。これらの溶媒は乾燥して用いるのが好ま
しい。
The solvent used in the reaction may be any solvent as long as it can dissolve or disperse the above components, such as dichloromethane, chloroform, carbon tetrachloride, benzene, toluene, hexane, etc. It is preferable to use these solvents after drying.

上記の反応生成物は高速液体クロマトグラフィまたはオ
ープンカラムで精製され、高純度高度不飽和脂肪酸pc
が得られる。
The above reaction product is purified by high performance liquid chromatography or open column, and is purified with high purity highly unsaturated fatty acid PC.
is obtained.

以上によって得られるPCは構造が明確な高度不飽和脂
肪酸を含有するもので、生理活性作用および再現性が高
い。例えばAAは生体内においてほとんどリン脂質部に
結合しており、リン脂質はホスホリパーゼの作用を受け
てAAを放出し、AAはプロスタグランジンに変換され
、生体内で非常に重要な機能を果している。医薬的にA
Aを用いる場合もリン脂質の形態で用いるのが好ましい
とされており、本発明において製造されるPCは ゛こ
のような使用に適したものである。DHAも高い生理活
性作用を有しており、本発明ではこれをPCの形態で利
用するため、医薬1食品などとしての利用価値が高い。
The PC obtained as described above contains highly unsaturated fatty acids with a clear structure, and has high physiological activity and reproducibility. For example, AA is mostly bound to phospholipids in living organisms, and phospholipids release AA under the action of phospholipase, and AA is converted to prostaglandins, which play a very important function in living organisms. . Pharmaceutically A
When using A, it is said to be preferable to use it in the form of a phospholipid, and the PC produced in the present invention is suitable for such use. DHA also has a high physiological activity, and since it is used in the form of PC in the present invention, it has high utility value as a medicine, food, etc.

本発明では卵黄リン脂質から高度不飽和脂肪酸を取り出
すので、容易に高度不飽和脂肪酸を得ることができ、リ
ン脂質分解に際して得るGPCはそのまま一方の原料と
して利用することができ。
In the present invention, highly unsaturated fatty acids are extracted from egg yolk phospholipids, so highly unsaturated fatty acids can be easily obtained, and GPC obtained during phospholipid decomposition can be used as is as one of the raw materials.

反応工程を簡素化して構造明確な高度不飽和脂肪酸含有
PCを高収率で得ることができる。
By simplifying the reaction process, polyunsaturated fatty acid-containing PC with a well-defined structure can be obtained in high yield.

〔発明の効果〕〔Effect of the invention〕

以上のとおり、本発明によれば、卵黄リン脂質を効率よ
く分解−再合成するようにしたので、構造が明確で生理
活性作用の高い高度不飽和脂肪酸含有pcを簡単な反応
工程によ、す、容易かつ高収率で得ることができ、医薬
、食品などとして効果的に用いることができる。
As described above, according to the present invention, egg yolk phospholipids are efficiently decomposed and resynthesized, so PC containing polyunsaturated fatty acids with a clear structure and high physiological activity can be produced through a simple reaction process. can be obtained easily and in high yield, and can be effectively used as medicines, foods, etc.

〔実施例〕〔Example〕

以下、実施例に基づいて本発明を具体的に説明する。実
施例中1%は重量%を示す。
Hereinafter, the present invention will be specifically explained based on Examples. In the examples, 1% indicates weight %.

実施例1 市販卵黄レシチン50gを500m Qのベンゼンに溶
解し、攪拌しつつテトラブチルアンモニウムヒドロキサ
イド10%メタノール溶液50gを加えた。沈殿が析出
し始めてから30分間攪拌を続け、その後30分静置し
た。底に沈殿した粗GPCをデカンテーションで回収し
、ベンゼンで洗浄した0次いで−20℃に冷却したアセ
トン500+a Qに、メタノールに溶解した粗GPC
を投入し、沈殿を得た。これらの操作をくり返し、エス
テルおよび未分解PCを含まない粗GPCを得た。この
GPCをメタノールに溶解し、不溶分を遠心分離により
除いた。
Example 1 50 g of commercially available egg yolk lecithin was dissolved in 500 mQ of benzene, and 50 g of a 10% methanol solution of tetrabutylammonium hydroxide was added while stirring. Stirring was continued for 30 minutes after precipitation started, and then left to stand for 30 minutes. The crude GPC precipitated at the bottom was collected by decantation and washed with benzene.
was added to obtain a precipitate. These operations were repeated to obtain crude GPC free of ester and undecomposed PC. This GPC was dissolved in methanol, and insoluble matter was removed by centrifugation.

上澄をエバポレーションし、14.8 gの粗GPCを
得た。この粗GPCをメタノール&5.2 gに溶解し
The supernatant was evaporated to obtain 14.8 g of crude GPC. This crude GPC was dissolved in 5.2 g of methanol.

粗GPCメタノール溶液100 gを得た。100 g of crude GPC methanol solution was obtained.

同時に得られた脂肪酸メチルエステル含有ベンゼン溶液
を濃縮し、33.8 gの脂肪酸メチルエステルを得た
。この脂肪酸メチルエステルの脂肪酸組成はパルミチン
酸29.2%、パルミトオレイン酸1.5%、ステアリ
ン酸14.2%、オレイン酸26.6%、リノール酸1
3.8%、AA6.4%、DHA6.7%、その他2.
4%であった。
The fatty acid methyl ester-containing benzene solution obtained at the same time was concentrated to obtain 33.8 g of fatty acid methyl ester. The fatty acid composition of this fatty acid methyl ester is 29.2% palmitic acid, 1.5% palmitoleic acid, 14.2% stearic acid, 26.6% oleic acid, and 1 linoleic acid.
3.8%, AA6.4%, DHA6.7%, other 2.
It was 4%.

この混合脂肪酸メチルエステルをメタノールに溶解し、
尿素50gを飽和させたメタノール溶液に加えた。1時
間かくはんし、析出した結晶をろ別した。ろ液に尿素3
5gを加え、45℃に加温して溶解させた1次いで徐々
に冷却して結晶を析出させ、結晶をろ別してろ液を得た
。ろ液を濃縮し、7.9gのメチルエステルを得た。こ
のメチルエステルの脂肪酸組成はパルミトオレイン酸2
.0%、オレイン酸15.6%、リノール酸20.9%
、AA 23.7%、DHA 25.4%、その他12
.4%であった。
Dissolve this mixed fatty acid methyl ester in methanol,
50 g of urea was added to the saturated methanol solution. The mixture was stirred for 1 hour, and the precipitated crystals were filtered off. Urea 3 in the filtrate
5 g was added and dissolved by heating to 45°C. Then, the mixture was gradually cooled to precipitate crystals, and the crystals were filtered to obtain a filtrate. The filtrate was concentrated to obtain 7.9 g of methyl ester. The fatty acid composition of this methyl ester is palmitoleic acid 2
.. 0%, oleic acid 15.6%, linoleic acid 20.9%
, AA 23.7%, DHA 25.4%, other 12
.. It was 4%.

このAA、DHA高含有メチルエステルを高速分取液体
クロマトグラフィにより分離、精製しAAおよびDHA
の純品を得た。すなわちカラム充てん剤としてスチレン
−ジビニルベンゼン共重合体ハイポーラスポリマーゲル
、溶離液としてメタノールを用い分離精製することによ
り、AAメチルエステル1.4gおよびDHAメチルエ
ステル1.5gを得た。
This AA and DHA-rich methyl ester was separated and purified by high-performance preparative liquid chromatography.
I got a pure product. That is, 1.4 g of AA methyl ester and 1.5 g of DHA methyl ester were obtained by separation and purification using a styrene-divinylbenzene copolymer high porous polymer gel as a column packing material and methanol as an eluent.

以上により得られた粗GPCメタノール溶液100gを
、乾燥した市販スチレン−ジビニルベンゼン樹脂(ビー
ズ状) 100gに加え、エバポレーター中でメタノー
ルを除きつつ、粗GPCを上記樹脂に含浸させた。次い
でベンゼンを加え、減圧上共沸脱水し、完全に水分とメ
タノールを除いた。この粗G P C12,9%含浸樹
脂と上記AAを反応させ、1.2−ジアラキドイルホス
ファチジルコリンを得た。すなわちAAメチルエステル
1.4gをメタノール性KOHで常法に従い加水分解し
、HCfiで酸に戻すことによりAA 1.2gを得、
これをジシクロヘキシルカルボジイミド0.89 g、
4−ジメチルアミノピリジン0.16gおよび上記粗G
PC含浸樹脂2gとジクロロメタン中で、窒素雰囲気下
かくはんしつつ室温で48時間反応させた。反応終了後
反応混合物ろ別し、析出物および樹脂をよくジクロロメ
タンで洗浄した。洗浄液とる液を合わせ、メタノールで
希釈してイオン交換樹脂アンバーライト(ローム・アン
ド・ハース社製、ilm)200Cのカラムに通し、4
−ジメチルアミノピリジンを除いた。流出液を濃縮し、
シリカゲルカラムで溶出剤としてクロロホルム/メタノ
ール/水=65/25/4を用いて精製することにより
、1,2−ジアラキドイルホスファチジルコリン0.3
9 gを得た。このPCを薄層クロマトグラフィで分析
したところ。
100 g of the crude GPC methanol solution obtained above was added to 100 g of dried commercially available styrene-divinylbenzene resin (in the form of beads), and while methanol was removed in an evaporator, the crude GPC was impregnated into the resin. Next, benzene was added and azeotropic dehydration was performed under reduced pressure to completely remove water and methanol. This crude G P C12.9% impregnated resin was reacted with the above AA to obtain 1,2-diarachidoylphosphatidylcholine. That is, 1.4 g of AA methyl ester was hydrolyzed with methanolic KOH according to a conventional method, and 1.2 g of AA was obtained by returning it to acid with HCfi.
This was mixed with 0.89 g of dicyclohexylcarbodiimide,
0.16 g of 4-dimethylaminopyridine and the above crude G
The mixture was reacted with 2 g of the PC-impregnated resin in dichloromethane at room temperature for 48 hours with stirring under a nitrogen atmosphere. After the reaction was completed, the reaction mixture was filtered, and the precipitate and resin were thoroughly washed with dichloromethane. Combine the washing solution and the solution, dilute with methanol, and pass through a column of ion exchange resin Amberlite (ILM, manufactured by Rohm and Haas) 200C.
-Dimethylaminopyridine was removed. Concentrate the effluent;
By purifying with a silica gel column using chloroform/methanol/water = 65/25/4 as the eluent, 1,2-diarachidoylphosphatidylcholine 0.3
9 g was obtained. This PC was analyzed by thin layer chromatography.

ワンスポットで標準1,2−ジアラキドイルホスファチ
ジルコリンのRf値と一致した(展開剤クロロホルム/
メタノール/水=65/25/4)。
One spot matched the Rf value of standard 1,2-diarachidoylphosphatidylcholine (developing agent chloroform/
methanol/water = 65/25/4).

実施例2 実施例1と同様にしてAA、DHA高含有メチルエステ
ル1s、3gj市販卵黄レシチン100gがら得た。こ
のメチルエステルをオクタデシルシラン型シリカゲルカ
ラムを備えた高速分取液体クロマトグラフィにより、溶
離液としてメタノールを用いて分離、精製することによ
り、AAメチルエステル2.7g、およびDHAメチル
エステル2.9gを得た。そして実施例1と同様に処理
しAA2.3gおよびDMA2.5gを得た。S:(7
)DHA 2.5g、ジシクロへキシルカルボジイミド
1.7g、4−ジメチルアミノピリジン0.31 gお
よび実施例1と同様にして得た粗GPC含浸樹脂3.8
gをジクロロメタン中で実施例1と同様に反応、精製し
、1,2−シトコサへキサエノイルホスファチジルコリ
ン0.84 gを得た。このPCを薄層クロマトグラフ
ィで分析したところワンスポットで標準1,2−シリル
イルホスファチジルコリンのRf値と一致した(展開剤
クロロホルム/メタノール/水=65/25/4)。
Example 2 In the same manner as in Example 1, 100 g of commercially available egg yolk lecithin containing AA and DHA-rich methyl ester 1s and 3gj was obtained. This methyl ester was separated and purified by high-performance preparative liquid chromatography equipped with an octadecylsilane type silica gel column using methanol as an eluent to obtain 2.7 g of AA methyl ester and 2.9 g of DHA methyl ester. . Then, it was treated in the same manner as in Example 1 to obtain 2.3 g of AA and 2.5 g of DMA. S: (7
) 2.5 g of DHA, 1.7 g of dicyclohexylcarbodiimide, 0.31 g of 4-dimethylaminopyridine, and 3.8 g of crude GPC-impregnated resin obtained in the same manner as in Example 1.
g was reacted and purified in dichloromethane in the same manner as in Example 1 to obtain 0.84 g of 1,2-cytocosahexaenoylphosphatidylcholine. When this PC was analyzed by thin layer chromatography, the Rf value in one spot matched that of standard 1,2-silylylphosphatidylcholine (developing agent chloroform/methanol/water = 65/25/4).

実施例3 実施例2で得たAA2.3gをジシクロへキシルカルボ
ジイミド1.7g、4−ジメチルアミノピリジン0.3
1 gおよびG P C−CdCf12錯体(シグマ社
製)0.83 gを、乾燥クロロホルム中で窒素雰囲気
下かくはんしつつ室温で48時間反応させた。反応終了
後反応混合物をろ別し、析出物をよくクロロホルムで洗
浄した。洗浄液とる液を合わせメタノールで希釈して、
アンバーライトIRC−50、アンバーライトIRA−
45の混合樹脂カラムおよびアンバーライト200Cの
カラムに通し、残存塩化カドミウムと4−ジメチルアミ
ノピリジンを除いた。
Example 3 2.3 g of AA obtained in Example 2 was mixed with 1.7 g of dicyclohexylcarbodiimide and 0.3 g of 4-dimethylaminopyridine.
1 g and 0.83 g of G P C-CdCf12 complex (manufactured by Sigma) were reacted in dry chloroform at room temperature for 48 hours with stirring under a nitrogen atmosphere. After the reaction was completed, the reaction mixture was filtered and the precipitate was thoroughly washed with chloroform. Combine the cleaning solution and the solution, dilute with methanol,
Amberlight IRC-50, Amberlight IRA-
The mixture was passed through a No. 45 mixed resin column and an Amberlite 200C column to remove residual cadmium chloride and 4-dimethylaminopyridine.

流出液を濃縮し、実施例1と同様に精製して1゜2−ジ
アラキドイルホスファチジルコリン1.1 gを得た。
The effluent was concentrated and purified in the same manner as in Example 1 to obtain 1.1 g of 1.2-diarachidoylphosphatidylcholine.

このPCを薄層クロマトグラフィで分析したところ、ワ
ンスポットでaml、2−ジアラキドイルホスファチジ
ルコリンのRf値と一致した(展開剤クロロホルム/メ
タノール/水=65/25/4)。
When this PC was analyzed by thin layer chromatography, the Rf value coincided with that of aml, 2-diarachidoylphosphatidylcholine in one spot (developing agent chloroform/methanol/water = 65/25/4).

実施例4 実施例1で得られた粗GPC含浸樹脂10g、ジシクロ
へキシルカルボジイミド4.6g、4−ジメチルアミノ
ピリジン0.81 gおよびパルミチン酸5.1gをジ
クロロメタン中で48時間室温で反応させ、実施例1と
同様に分離、精製し、1,2−ジパルミトイルホスファ
チジルコリン1.9gを得た。この1゜2−ジパルミト
イルホスファチジルコリンを常法に従い蛇毒ホスホリパ
ーゼA2で分解し、シリカゲルカラムを用い、溶出剤と
してクロロホルム/メタノール/水=6/4/1で分離
、精製し1−バルミトイル−リゾホスファチジルコリン
1.0 gを得た。このリゾPC0,50gに実施例1
と同様にして得たAA 0.61g、ジシクロへキシル
カルボジイミド0.46 gおよび4−ジメチルアミノ
ピリジン0.0829gを加え、ジクロロメタン中で窒
素雰囲下室温で48時間反応させ、実施例1と同様に分
離、精製し、1−バルミトイル−2−アラキトイルホス
ファチジルコリン0.64 gを得た。このPCを薄層
クロマトグラフィで分析したところ、ワンスポットで標
11!1−バルミトイルー2−アラキトイルホスファチ
ジルコリンのRf値として一致した(展開剤クロロホル
ム/メタノール/水=65/25/4)。
Example 4 10 g of the crude GPC-impregnated resin obtained in Example 1, 4.6 g of dicyclohexylcarbodiimide, 0.81 g of 4-dimethylaminopyridine and 5.1 g of palmitic acid were reacted in dichloromethane for 48 hours at room temperature, Separation and purification were carried out in the same manner as in Example 1 to obtain 1.9 g of 1,2-dipalmitoyl phosphatidylcholine. This 1゜2-dipalmitoylphosphatidylcholine was decomposed with snake venom phospholipase A2 according to a conventional method, and separated and purified using a silica gel column with chloroform/methanol/water = 6/4/1 as an eluent. .0 g was obtained. Example 1 to 0.50g of this Rizo PC
0.61 g of AA obtained in the same manner as in Example 1, 0.46 g of dicyclohexylcarbodiimide and 0.0829 g of 4-dimethylaminopyridine were added, and the mixture was reacted in dichloromethane at room temperature under a nitrogen atmosphere for 48 hours. The mixture was separated and purified to obtain 0.64 g of 1-valmitoyl-2-arachitoylphosphatidylcholine. When this PC was analyzed by thin layer chromatography, the Rf value coincided with that of the standard 11!1-valmitoyl-2-arachitoylphosphatidylcholine in one spot (developing agent chloroform/methanol/water = 65/25/4).

上記実施例1〜4により製造されたホスファチジルコリ
ンの元素分析値を表1に示す。
Table 1 shows the elemental analysis values of the phosphatidylcholines produced in Examples 1 to 4 above.

表1Table 1

Claims (3)

【特許請求の範囲】[Claims] (1)卵黄リン脂質を分解し、得られた高度不飽和脂肪
酸含有組成物から高度不飽和脂肪酸を選択的に取り出し
、これをグリセロホスホリルコリンと反応させることを
特徴とするホスファチジルコリンの製造方法。
(1) A method for producing phosphatidylcholine, which comprises decomposing egg yolk phospholipids, selectively extracting highly unsaturated fatty acids from the resulting composition containing highly unsaturated fatty acids, and reacting this with glycerophosphorylcholine.
(2)高度不飽和脂肪酸がアラキドン酸またはドコサヘ
キサエン酸である特許請求の範囲第1項記載のホスファ
チジルコリンの製造方法。
(2) The method for producing phosphatidylcholine according to claim 1, wherein the highly unsaturated fatty acid is arachidonic acid or docosahexaenoic acid.
(3)グリセロホスホリルコリンが卵黄リン脂質を分解
して取り出されたものである特許請求の範囲第1項また
は第2項記載のホスファチジルコリンの製造方法。
(3) The method for producing phosphatidylcholine according to claim 1 or 2, wherein glycerophosphorylcholine is extracted by decomposing egg yolk phospholipids.
JP15565985A 1985-07-15 1985-07-15 Production of phosphatidylcholine Pending JPS6216439A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15565985A JPS6216439A (en) 1985-07-15 1985-07-15 Production of phosphatidylcholine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15565985A JPS6216439A (en) 1985-07-15 1985-07-15 Production of phosphatidylcholine

Publications (1)

Publication Number Publication Date
JPS6216439A true JPS6216439A (en) 1987-01-24

Family

ID=15610793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15565985A Pending JPS6216439A (en) 1985-07-15 1985-07-15 Production of phosphatidylcholine

Country Status (1)

Country Link
JP (1) JPS6216439A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997027274A1 (en) * 1996-01-26 1997-07-31 Abbott Laboratories Process for the isolation of polyunsaturated fatty acids and esters thereof from complex mixtures which contain sterols and phosphorus compounds
CN102964377A (en) * 2012-11-30 2013-03-13 西北大学 Method for preparing natural L-alpha-glycerol phosphatidylcholine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997027274A1 (en) * 1996-01-26 1997-07-31 Abbott Laboratories Process for the isolation of polyunsaturated fatty acids and esters thereof from complex mixtures which contain sterols and phosphorus compounds
US6063946A (en) * 1996-01-26 2000-05-16 Eastman Chemical Company Process for the isolation of polyunsaturated fatty acids and esters thereof from complex mixtures which contain sterols and phosphorus compounds
CN102964377A (en) * 2012-11-30 2013-03-13 西北大学 Method for preparing natural L-alpha-glycerol phosphatidylcholine
CN102964377B (en) * 2012-11-30 2015-05-27 西北大学 Method for preparing natural L-alpha-glycerol phosphatidylcholine

Similar Documents

Publication Publication Date Title
EP0922707B1 (en) A process for the purification of phosphatidylserine
JPH0225447A (en) Production of highly unsaturated fatty acids
JPWO2003093229A1 (en) Astaxanthin medium chain fatty acid ester, process for producing the same, and composition containing them
JPS6216439A (en) Production of phosphatidylcholine
JPS61129190A (en) Polymerizable glycerophospholipid
JPH0387191A (en) Production of phosphatidylinositol
JP2001186898A (en) Method for producing phosphatidyl serine having polyvalent unsaturated fatty acid residue
JPH0751075A (en) Production of docosahexaenoic acid-containing substance
JPH11290094A (en) Production of fatty acid ester of astaxanthin
JP3892497B2 (en) Method for producing eicosapentaenoic acid ester
JP3531876B2 (en) Method for obtaining phospholipid composition containing docosahexaenoic acid
JPS61129191A (en) Glycerophospholipid containing decosahexaenoic acid
GB2058792A (en) Process for the Preparation of L- alpha -Glycerylphosphoryl Choline
JPH09308459A (en) Nutritive composition containing highly unsaturated fatty acid
JPS61207396A (en) Production of phosphatidylcholine
JP5041790B2 (en) Process for producing phosphatidylserine having polyunsaturated fatty acid as a constituent
JPS6185396A (en) Preparation of phosphatidylcholine
JPS63295527A (en) Method for concentrating and separating highly unsaturated fatty acid
JP2546289B2 (en) Method for producing synthetic lecithin
JPS61275287A (en) Production of synthetic phosphatidylcholine
JPH0662648B2 (en) Method for producing high-purity lecithin
JP2683590B2 (en) Method for producing enzyme-converted phospholipid
JPS61158990A (en) Production of glycerophosphorylcholine
JPS6256497A (en) Production of phospholipid composition containing eicosapentaenoic acid
JPS61275286A (en) Production of phosphatidylcholine