JPS62164305A - Photodetecting circuit - Google Patents

Photodetecting circuit

Info

Publication number
JPS62164305A
JPS62164305A JP61006840A JP684086A JPS62164305A JP S62164305 A JPS62164305 A JP S62164305A JP 61006840 A JP61006840 A JP 61006840A JP 684086 A JP684086 A JP 684086A JP S62164305 A JPS62164305 A JP S62164305A
Authority
JP
Japan
Prior art keywords
feedback
fet
resistance
end amplifier
drains
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61006840A
Other languages
Japanese (ja)
Inventor
Sadao Fujita
定男 藤田
Isamu Takano
高野 勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP61006840A priority Critical patent/JPS62164305A/en
Publication of JPS62164305A publication Critical patent/JPS62164305A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Communication System (AREA)
  • Amplifiers (AREA)

Abstract

PURPOSE:To obtain a photodetecting circuit having a sufficient band characteristic and a high receiving sensitivity by connecting respectively in parallel the drains of two electric field effect transistors and the sources and linking a feedback signal from respective drains to respective gates. CONSTITUTION:Two pieces of FET are used, these drains and sources are connected in parallel, between the gate of an FET 2 and the drain, a feedback resistance Rf1 with a large resistance value is connected and between the gate of an FET 3 and the drain, a feedback resistance Rf2 with a small resistance value is connected. Thus, a front end amplifier to fit an APD 1 can be sufficiently made into a wide band. On the other hand, the noise characteristic of the front end amplifier is approximately determined by the feedback resistance Rf1 connected to FET 2. Consequently, since the load resistance of an APD is large, the thermal noise is decreased and a wide band photodetecting circuit having a high receiving sensitivity can be realized.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は高速光通信システム等に用いられる光受信回路
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an optical receiving circuit used in high-speed optical communication systems and the like.

(従来の技術) 光通信システムに於いて、大容量の情報を長距離に渡り
て伝送する之めには、広帯域かつ、高い受信感度を有す
る光受信回路が必要となる。この光受信感度の向上の几
めには、増幅機能を有する低雑音の光検出器と広帯域な
電気的増幅素子との利用が有効であり、主にアバランシ
ェ・フォトダイオード(APD)と電界効果トランジス
タ(FET)とを組み合わせた光受信回路が従来用いら
れている。例えば、大川、太田らによる論文「超高速G
aAs MES FET  受光回路の特性」(昭和5
9年度、電子通信学会総合全国大会論文集2603参照
)がある。
(Prior Art) In an optical communication system, in order to transmit a large amount of information over a long distance, an optical receiving circuit having a wide band and high receiving sensitivity is required. To improve this optical reception sensitivity, it is effective to use a low-noise photodetector with an amplification function and a broadband electrical amplification element, and mainly use an avalanche photodiode (APD) and a field-effect transistor. (FET) has been conventionally used. For example, in the paper by Okawa, Ota et al.
"Characteristics of aAs MES FET photodetector circuit" (Showa 5
(Refer to Proceedings of the National Conference of the Institute of Electronics and Communication Engineers, 2010, 2603).

この論文の受光回路は、APDとFETとを組み合わせ
た前置増幅回路であプ、低雑音化のため、またAPD 
の容量による帯域劣化を抑えるため、FET  に負帰
還を施したトランスインピーダンス形の回路形式を採用
している。
The photodetector circuit in this paper is a preamplifier circuit that combines an APD and a FET.
In order to suppress band deterioration due to capacitance, a transimpedance type circuit with negative feedback applied to the FET is used.

第3図は従来のトランスインピーダンス形のフロントエ
ンドアンプの一例の回路図であり、APD6とFET2
  とで構成されている。このフロントエンドアンプは
、入力インピーダンスが比較的小さいため、APD6 
 の容量による帯域劣化が抑えられ、広帯域化が可能と
なる。また、フロントエンドアンプの雑音特性は、比較
的大きな抵抗値の帰還抵抗Rfでほぼ決定され、抵抗の
熱雑音を低減し、高受信感度化が図れる。
Figure 3 is a circuit diagram of an example of a conventional transimpedance front-end amplifier, with APD6 and FET2.
It is made up of. This front-end amplifier has a relatively low input impedance, so the APD6
Bandwidth deterioration due to capacity is suppressed, making it possible to widen the band. Further, the noise characteristics of the front-end amplifier are almost determined by the feedback resistor Rf having a relatively large resistance value, so that the thermal noise of the resistor can be reduced and high reception sensitivity can be achieved.

(発明が解決しようとする問題点〕 このように従来のトランスインピーダンス形フロントエ
ンドアンプは、広帯域で、比較的良好な光受信感度が得
られるが、さらに高感度化を図るためには、帰還抵抗R
fの抵抗値を大きくして熱雑音の影響をさらに低減すれ
ばよいが、その場合にはフロントエンドアンプの入力イ
ンピーダンスも大きくなるので、APD6とF’ET2
の容icおよび入力インピーダンス几とで決定される時
定数CRが大きくなる。このため従来のフロントエンド
アンプでは帯域が狭くなり、良好な光受信特性が得られ
ないという欠点があった。
(Problem to be solved by the invention) As described above, conventional transimpedance type front-end amplifiers can obtain relatively good optical reception sensitivity over a wide band, but in order to achieve even higher sensitivity, feedback resistance R
The effect of thermal noise can be further reduced by increasing the resistance value of f, but in that case, the input impedance of the front-end amplifier will also increase, so APD6 and F'ET2
The time constant CR determined by the capacity IC and the input impedance becomes large. For this reason, conventional front-end amplifiers had the disadvantage that the band was narrow and good optical reception characteristics could not be obtained.

本発明の目的は、このような欠点を除き十分な帯域特性
を有すると共に、高い受信感度を有する光受信回路を提
供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an optical receiving circuit that eliminates such drawbacks, has sufficient band characteristics, and has high receiving sensitivity.

(問題点を解決するための手段) 本発明の構成は、光検出器と、この光検出器に結合する
負帰還増幅回路とを含む光受信回路に於いて、前記負帰
還増幅回路は、2個の電界効果トランジスタのドレイン
同志ならびにソース同志をそれぞれ並列接続した増幅回
路と、これら電界効果トランジスタの各ゲートに、前記
各ドレインからの帰還信号を結合する第1及び第2の帰
還回路とを備えたことを特徴とする。
(Means for Solving the Problems) The configuration of the present invention provides an optical receiving circuit including a photodetector and a negative feedback amplifier circuit coupled to the photodetector, wherein the negative feedback amplifier circuit includes two an amplifier circuit in which drains and sources of field effect transistors are connected in parallel, and first and second feedback circuits that couple feedback signals from the respective drains to each gate of these field effect transistors. It is characterized by:

(作用) 以下、本発明の作用について説明する。(effect) Hereinafter, the effects of the present invention will be explained.

一般に、FETのゲートKAPDと帰還抵抗とを設けた
構成のトランスインピーダンス形フロントエンドアンプ
に於いては、高感度化のために帰還抵抗の抵抗値を大き
くすると、フロントエンドアンプの帯域劣化を生じる。
Generally, in a transimpedance type front-end amplifier configured to include a FET gate KAPD and a feedback resistor, if the resistance value of the feedback resistor is increased in order to increase sensitivity, the band of the front-end amplifier deteriorates.

この几め本発明では、帰還抵抗の抵抗値を大きくしても
帯域劣化を生じないようにするために、フロントエンド
アンプの初段に第1及び第2の2個のFET を用い、
これらのドレイン同志、ならびにソース同志を並列接続
し、WJlのFET のゲート、ドレイン間には、例え
ば抵抗値の大きな帰還抵抗、第2のFET のゲート、
ドレイン間には抵抗値の小さな帰還抵抗を接続した負帰
還増幅器を用いる。この負帰還増幅器の第1のFETの
ゲートKAPDを接続し、出力信号は第1及び第2のF
ET のドレイン接続部から取り出す。
In the present invention, in order to prevent band deterioration even if the resistance value of the feedback resistor is increased, two FETs, the first and second FETs, are used in the first stage of the front-end amplifier.
These drains and sources are connected in parallel, and between the gate and drain of the WJl FET, for example, a feedback resistor with a large resistance value, the gate of the second FET,
A negative feedback amplifier is used in which a feedback resistor with a small resistance value is connected between the drains. The gate KAPD of the first FET of this negative feedback amplifier is connected, and the output signal is sent to the first and second FETs.
Take it out from the drain connection of ET.

との構成のフロントエンドアンプに於いては、第2のF
ET のゲート端への帰還信号路には比較的小さな抵抗
値の帰還抵抗が取りつけであるため、第10FET へ
の帰還信号路に比較的大きな抵抗値の帰還抵抗を用いて
も、APD を取りつけたフロントエンドアンプは十分
に広帯域にできる。一方、フロントエンドアンプの雑音
特性は第1のFET に接続した帰還抵抗でほぼ決定さ
れる。従って、APDの負荷抵抗が大きいため、熱雑音
が低減され、高い受信感度を有した広帯域光受信回路が
実現できる。
In a front-end amplifier configured with
Since a feedback resistor with a relatively small resistance value is attached to the feedback signal path to the gate end of the ET, even if a feedback resistor with a relatively large resistance value is used in the feedback signal path to the 10th FET, the APD cannot be attached. The front-end amplifier can have a sufficiently wide band. On the other hand, the noise characteristics of the front-end amplifier are almost determined by the feedback resistor connected to the first FET. Therefore, since the load resistance of the APD is large, thermal noise is reduced, and a broadband optical receiving circuit with high receiving sensitivity can be realized.

(実施例) 次に図面を用いて本発明の詳細な説明する。(Example) Next, the present invention will be explained in detail using the drawings.

第1図は本発明の第1の実施例のフロントエンドアンプ
の初段の回路図である。本実施例において、フロントエ
ンドアンプは、2Gb/s、RZ符号の光信号の検出を
行うものであり、光検出器1にはInGaAs−APD
、第1及び第2のFET2゜3にはGaAs−FETを
用い、これらFET 2.3のドレイン同志、ソース同
志をそれぞれ接続した。
FIG. 1 is a circuit diagram of the first stage of a front-end amplifier according to a first embodiment of the present invention. In this embodiment, the front end amplifier detects a 2Gb/s RZ code optical signal, and the photodetector 1 includes an InGaAs-APD.
, GaAs-FETs were used for the first and second FETs 2.3, and the drains and sources of these FETs 2.3 were connected, respectively.

また、光検出器1の負荷抵抗RLは2にΩ、第1の帰還
抵抗Rfxは400Ω、第2の帰還抵抗Rfzは200
Ω、第2のFETのバイアス抵抗Rbxは200Ωとし
た。
The load resistance RL of the photodetector 1 is 2Ω, the first feedback resistance Rfx is 400Ω, and the second feedback resistance Rfz is 200Ω.
Ω, and the bias resistance Rbx of the second FET was 200Ω.

このような構成に於いて、第1のFET 2  に帰還
される信号の大きさは帰還抵抗Rft  と負荷抵抗R
Lとの比でほぼ決り、信号の帰還量は比較的少なくなっ
ている。同様に、第2のFET 3  に帰還される信
号の大きさも帰還抵抗Rfz  とバイアス抵抗Rbl
  との比でほぼ決る。この場合信号の帰還量が多いた
め、第1及び第2のFET 2.3  を言んだ負帰還
増幅器は広帯域の特性を有し、InGaAs−APD 
の増倍率MをM=5とした場合のフロントエンドアンプ
の帯域は約1.9GHzであった。
In such a configuration, the magnitude of the signal fed back to the first FET 2 is determined by the feedback resistance Rft and the load resistance R
It is almost determined by the ratio to L, and the amount of signal feedback is relatively small. Similarly, the magnitude of the signal fed back to the second FET 3 also depends on the feedback resistance Rfz and the bias resistance Rbl.
It is almost determined by the ratio. In this case, since the amount of signal feedback is large, the negative feedback amplifier, which refers to the first and second FETs 2.3, has broadband characteristics, and the InGaAs-APD
The band of the front end amplifier was approximately 1.9 GHz when the multiplication factor M was M=5.

ちなみに、第1のFET のみを用いて負帰還を施した
従来のトランスインピーダンス形フロントエンドアンプ
で約2GH2の帯域を得るためには、帰還抵抗の値は約
2000となる。その時の雑音特性は小さな抵抗値の帰
還抵抗の熱雑音の之めに劣化し、フロントエンドアンプ
の雑音の指標となる入力換算雑音電流の帯域内での平均
値は16 pA/qで雑音の大きなフロントエンドアン
プとなってしまう。
Incidentally, in order to obtain a band of about 2 GH2 with a conventional transimpedance front-end amplifier that uses only the first FET and provides negative feedback, the value of the feedback resistor is about 2000. At that time, the noise characteristics deteriorate due to the thermal noise of the feedback resistor with a small resistance value, and the average value within the band of the input-referred noise current, which is an index of the noise of the front-end amplifier, is 16 pA/q, which is a large noise. It becomes a front end amplifier.

一方、本実施例のフロントエンドアンプの雑音特性は4
00Ωの第1の帰還抵抗Rftで生じる熱雑音でほぼ決
定される友め、入力換算雑音電流の帯域内での平均値は
12 pA/y’i−と小さな値となり、低雑音のフロ
ントエンドアンプが得られた。
On the other hand, the noise characteristics of the front-end amplifier in this example are 4.
The average value of the input-referred noise current within the band, which is almost determined by the thermal noise generated by the first feedback resistor Rft of 00Ω, is as small as 12 pA/y'i-, making it a low-noise front-end amplifier. was gotten.

実際に本実施例で示したフロントエンドアンプを用いて
、波長1.55μmで伝送速度2Gb/sのBZ符号の
光変調波形に対する光受信感度を測定したところ、符号
誤り率10 で−35dBmという良好な値が得られた
When the front-end amplifier shown in this example was actually used to measure the optical reception sensitivity for a BZ code optical modulation waveform with a wavelength of 1.55 μm and a transmission rate of 2 Gb/s, it was as good as -35 dBm at a bit error rate of 10. A value was obtained.

第2図は本発明の第2の実施例の回路図である。FIG. 2 is a circuit diagram of a second embodiment of the invention.

本実施例では、光検出器1にペレットのInGaAs−
A)’D、ペレットのFET 2.3.5をハイブリッ
ド実装シ、フロントエンドアンプの入力端の低容量化を
図ったもので、2Gb/s 、RZ符号の光信号の検出
を行うものである。本実施例の構成は、第1図とほぼ同
様であるが、APDに接続する抵抗に寄生する浮遊容量
の影響を半減するように、第1の帰還抵抗1−tflと
APDの負荷抵抗RLを直列に接続し、APD接続部の
入力容量の低減な゛図っており、また、フロントエンド
アンプで十分すSZN比を得るために、出力インピーダ
ンスが500に整合されたFET 5  を用いたバッ
ファアンプを使用した。また、第2図に於いて、負荷抵
抗RLは3にΩ、第1の帰還抵抗RftはlkΩ、第2
の帰還抵抗Rf2は430Ωに設定して十分な帯域特性
のあるフロントエンドアンプを構成した。
In this embodiment, the photodetector 1 is made of pellets of InGaAs-
A) 'D: This is a hybrid-mounted pellet FET 2.3.5 designed to reduce the capacitance at the input end of the front-end amplifier, and is used to detect 2Gb/s RZ code optical signals. . The configuration of this embodiment is almost the same as that in FIG. 1, but the first feedback resistor 1-tfl and the load resistor RL of the APD are set so as to reduce by half the influence of stray capacitance parasitic on the resistor connected to the APD. In order to reduce the input capacitance of the APD connection part by connecting them in series, and to obtain a SZN ratio sufficient for a front-end amplifier, a buffer amplifier using FET 5 with an output impedance matched to 500 was used. used. In addition, in FIG. 2, the load resistance RL is 3Ω, the first feedback resistance Rft is lkΩ, and the second
The feedback resistor Rf2 was set to 430Ω to construct a front-end amplifier with sufficient band characteristics.

この実施例で、実際に、波長1.55μmの2Gb/s
、RZ符号に対する光受信感度を測定したところ、符号
誤り率10 で−37,5dBm という優れた受信感
度が得られた。
In this example, 2 Gb/s with a wavelength of 1.55 μm is actually used.
, RZ code was measured, and an excellent receiving sensitivity of -37.5 dBm was obtained with a code error rate of 10.

本発明としては、以上説明した実施例の他にもいろいろ
な態様が実現できる。例えば、光検出器1としてはAP
D の他にも、PIN  フォトダイオード、光導電検
出器や光電子増倍管等の利用が可能である。またAPD
の増倍時に於けるAPDで発生したキャリアの増倍時間
の影響にょシ生じる帯域劣化を補償するため、帯域補償
用の等化回路をフロントエンドアンプの後段に使用して
もよho(発明の効果) 以上説明したように、本発明によれば、A)’D接続部
への帰還路の帰還抵抗に大きな値の抵抗を用いても、フ
ロントエンドアンプの帯域を十分に広くとれ、しかも低
雑音で高受信感度の光受信回路が得られる。
The present invention can be implemented in various other forms in addition to the embodiments described above. For example, as the photodetector 1, AP
In addition to D, it is possible to use a PIN photodiode, a photoconductive detector, a photomultiplier tube, etc. Also APD
In order to compensate for band deterioration caused by the effect of the carrier multiplication time generated in the APD during multiplication, an equalization circuit for band compensation may be used after the front-end amplifier. Effects) As explained above, according to the present invention, even if a large value resistor is used as the feedback resistance in the feedback path to the A) 'D connection part, the band of the front end amplifier can be sufficiently widened, and the An optical receiving circuit with high reception sensitivity and low noise can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は本発明の第1および第2の実施例を説
明する回路図、第3図は従来の光受信回路の一例の回路
図である。 1・・・・・・光検出器、2,3.5・・・・・・F’
ET、4・・・・・・出力端子、6・・・・・・APD
、C1〜C3・・・・・・コンデンサ、Rft + ”
f2・・・・・・帰還抵抗、RL・・・・・・負荷抵抗
。 代理人 弁理士  内 原   −“、′日  ゝ
1 and 2 are circuit diagrams for explaining first and second embodiments of the present invention, and FIG. 3 is a circuit diagram of an example of a conventional optical receiving circuit. 1...Photodetector, 2,3.5...F'
ET, 4...Output terminal, 6...APD
, C1-C3...Capacitor, Rft+"
f2...Feedback resistance, RL...Load resistance. Agent Patent Attorney Uchihara −“、′日 ゝ

Claims (1)

【特許請求の範囲】[Claims] 光検出器と、この光検出器に結合する負帰還増幅回路と
を含む光受信回路において、前記負帰還増幅回路は、2
個の電界効果トランジスタのドレイン同志ならびにソー
ス同志をそれぞれ並列接続した増幅回路と、これら電界
効果トランジスタの各ゲートに、前記各ドレインからの
帰還信号を結合する第1及び第2の帰還回路とを備えた
ことを特徴とする光受信回路。
In an optical receiving circuit including a photodetector and a negative feedback amplifier circuit coupled to the photodetector, the negative feedback amplifier circuit includes two
an amplifier circuit in which drains and sources of field effect transistors are connected in parallel, and first and second feedback circuits that couple feedback signals from the respective drains to each gate of these field effect transistors. An optical receiving circuit characterized by:
JP61006840A 1986-01-14 1986-01-14 Photodetecting circuit Pending JPS62164305A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61006840A JPS62164305A (en) 1986-01-14 1986-01-14 Photodetecting circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61006840A JPS62164305A (en) 1986-01-14 1986-01-14 Photodetecting circuit

Publications (1)

Publication Number Publication Date
JPS62164305A true JPS62164305A (en) 1987-07-21

Family

ID=11649437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61006840A Pending JPS62164305A (en) 1986-01-14 1986-01-14 Photodetecting circuit

Country Status (1)

Country Link
JP (1) JPS62164305A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5177641A (en) * 1989-10-31 1993-01-05 Asahi Kogaku Kogyo Kabushiki Kaisha Structure for holding lens in lens holding member

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5177641A (en) * 1989-10-31 1993-01-05 Asahi Kogaku Kogyo Kabushiki Kaisha Structure for holding lens in lens holding member

Similar Documents

Publication Publication Date Title
US6275114B1 (en) Impedance matched CMOS transimpedance amplifier for high-speed fiber optic communications
EP0568880B1 (en) Preamplifier for optical communication having a gain control circuit
JPH06177664A (en) Digital photoreception circuit, trans-impedance amplifier circuit and preamplifier circuit
JPH06105855B2 (en) Optical receiver
US4088962A (en) Self biasing differential amplifier
JPH11239027A (en) Equilibrium light receiver having complementary hbt common base push-pull pre-amplifier
JP3541750B2 (en) Optical receiving preamplifier
CN106788280B (en) Low-noise high-speed trans-impedance amplifier
US6876259B2 (en) Fully integrated received signal strength indicator for a transimpedance amplifier
US6879217B2 (en) Triode region MOSFET current source to bias a transimpedance amplifier
US6876260B2 (en) Elevated front-end transimpedance amplifier
US11411542B2 (en) Transimpedance amplifier circuit
EP0185199B1 (en) Optical receiver with negative feedback
US6831521B1 (en) Method and apparatus for detecting interruption of an input signal with cancellation of offset level
US5095286A (en) Fiber optic receiver and amplifier
US7183859B2 (en) Power supply rejection for high bandwidth transimpedance amplifier circuits (TIAs)
JPS62164305A (en) Photodetecting circuit
EP3404831B1 (en) Photoreceiver with pre-equalizing differential transimpedance amplifier
JPS63250928A (en) Light reception circuit
JP3599274B2 (en) Transimpedance amplifier
US20120249240A1 (en) System and method for effectively implementing a front end for a transimpedance amplifier
JP3214196B2 (en) Light receiving circuit for AV optical space transmission
US6605997B1 (en) CMOS dual-stage differential receiver-amplifer
KR100886178B1 (en) Limiting amplifier improved gain and bandwidth character
US20230291366A1 (en) Transimpedance amplifier circuits and devices