JPS62163925A - Rotary encoder - Google Patents

Rotary encoder

Info

Publication number
JPS62163925A
JPS62163925A JP574086A JP574086A JPS62163925A JP S62163925 A JPS62163925 A JP S62163925A JP 574086 A JP574086 A JP 574086A JP 574086 A JP574086 A JP 574086A JP S62163925 A JPS62163925 A JP S62163925A
Authority
JP
Japan
Prior art keywords
light
reflecting
grating
radiation grating
reflecting means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP574086A
Other languages
Japanese (ja)
Other versions
JPH0588768B2 (en
Inventor
Tetsuji Nishimura
西村 哲治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP574086A priority Critical patent/JPS62163925A/en
Priority to DE3700906A priority patent/DE3700906C2/en
Priority to GB8700784A priority patent/GB2185314B/en
Publication of JPS62163925A publication Critical patent/JPS62163925A/en
Priority to US07/608,629 priority patent/US5036192A/en
Publication of JPH0588768B2 publication Critical patent/JPH0588768B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To facilitate the miniaturization of the equipment as a whole while smaller load of a rotating object to be inspected, by providing a reflecting means in which a reflecting surface is arranged to reflect specified order of diffraction light alone near a focal plane. CONSTITUTION:A convex lens 141, a reflecting mirror 151 and a mask 161 forms an optical system as a part of reflecting means and a luminous flux projected in parallel to the concave lens 141 is focused on the reflecting mirror 151 through the mask 161. The luminous flux thus focused is reflected to return to the original light path and irradiate the position M1 on the radiation grating 6 again. The optical system of the reflecting means thus arranged allows the removal of this diffraction lights other than specified order of diffraction light L1 such as zero order of one incident into the convex lens 141. Thus, this can reduce the distance between the radiation grating 6 and the reflecting means 141, 151 and 161.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はロータリーエンコーダーに関し、特に円周上に
例えば透光部と反射部の格子模様を複数個1周期的に刻
んだ放射格子全回転物体く取付は島該放射格子に例えば
レーザーからの光束全照射しS該放射格子からの回折光
を利用して、放射格子若しくは回転物体の回転速度や回
転速度の変動量等の回転状態を光電的に検出するロータ
リーエンコーダーに関するものでらる。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a rotary encoder, and in particular to a rotary encoder, in particular a radiant grating fully rotating object in which a plurality of lattice patterns of, for example, transparent parts and reflective parts are periodically carved on the circumference. For installation, the radiation grating is irradiated with the entire beam from a laser, for example, and the diffracted light from the radiation grating is used to photoelectrically measure the rotational state of the radiation grating or rotating object, such as the rotational speed or the amount of variation in rotational speed. This is about a rotary encoder that detects.

(従来の技術) 従来よりフロッピーデスクの駆動等のコンピューター機
器、プリンター等の事務機器、あるいはNC工作機械さ
らにはVTRのキャプステンモーターや回転ドラム等の
回転機構の回転速度や回転速度の変動量を検出する為の
手段として光電的なロータリーエンコーダーが利用され
てきている。
(Prior art) Conventionally, it has been used to measure the rotational speed and the amount of variation in rotational speed of computer equipment such as floppy desk drives, office equipment such as printers, NC machine tools, and rotating mechanisms such as VTR capsten motors and rotating drums. A photoelectric rotary encoder has been used as a means for detection.

光電的なロータリーエンコーダーは回転軸に連絡し九円
板の周囲に透光部と遮光部を等間隔に設は友、所謂メイ
ンスケールとこれに対応してメインスケールと等しい間
隔て遮光部と遮光部とを設けた所謂固定のインデックス
スケールとの双方のスケールを投光手段と受光手段で挾
んで対向配置したrh Af4インデックススケール方
式の構成を採っている。この方法はメインスケ−ルの回
転に伴って双方のスケールの透光部と遮光部の間隔に同
期し良信号が得られ、この信号を周波数解析して回転軸
の回転速度の変動を検出している。この為双方のスケー
ルの透光部と遮光部とのスケール間隔を細かくすればす
る程、検出精度?高めることができる。しかしながらス
ケール間隔1aかくすると回折光の影響で受光手段から
の出力信号のS/N比が低下し検出積度が低下してしま
5欠点があつ九。この為メインスケールの透光部と遮光
部の格子の総本数全固定させ\透光部と遮光部の間隔を
回折光の影響金堂けない程度まで拡大しようとするとメ
インスケールの円板の直径が増大し更に厚さも増大し装
置全体が大型化し、この結果被検回転物体への負荷が大
きくなってくる等の欠点があつ九。
The photoelectric rotary encoder connects to the rotating shaft and has light-transmitting parts and light-shielding parts spaced at equal intervals around the periphery of the nine-circle plate, i.e., a so-called main scale, and corresponding light-shielding parts and light-shielding parts spaced at equal intervals to the main scale. The rhAf4 index scale system has a so-called fixed index scale with a section and a so-called fixed index scale, and both scales are placed facing each other with a light emitting means and a light receiving means sandwiched therebetween. In this method, as the main scale rotates, a good signal is obtained by synchronizing the interval between the light-transmitting part and the light-blocking part of both scales, and this signal is frequency-analyzed to detect fluctuations in the rotational speed of the rotating shaft. There is. For this reason, the finer the scale interval between the light-transmitting part and the light-blocking part of both scales, the better the detection accuracy. can be increased. However, when the scale interval 1a is used, the S/N ratio of the output signal from the light receiving means decreases due to the influence of the diffracted light, and the detection area decreases, resulting in five drawbacks. For this reason, if you fix the total number of gratings in the light-transmitting part and the light-shielding part of the main scale, and try to increase the distance between the light-transmitting part and the light-shielding part to such an extent that the influence of diffracted light cannot be overcome, the diameter of the main scale disc will increase. This increases the thickness and increases the overall size of the device, which has the disadvantage of increasing the load on the rotating object being tested.

(発明が解決しようとする問題点) 本発明は被検回転物体の負荷が小さく装置全体の小型化
が容易でしかも回転状態を高精度に検出することのでき
るロータリーエンコーダーの提供を目的とする。
(Problems to be Solved by the Invention) An object of the present invention is to provide a rotary encoder that has a small load on a rotating object to be inspected, is easy to miniaturize the entire device, and is capable of detecting a rotational state with high precision.

(問題点を解決する丸めの手段) 可干渉性の光源からの光束を回転物体に連結した円板状
の放射格子上の一部に入射させ、前記放射格子からの特
定次数の回折光全反射手段により再度前記放射格子上に
入射させ、前記放射格子からの特定次数の再回折光全受
光することにより前記回転物体の回転状態に求めるロー
タリーエンコーダーにおいて、前記反射子役ハ焦点面近
房に前記特定人数の回折光のみを反射させる反射面を配
置した光学系を有していることである。
(Rounding means to solve the problem) A beam from a coherent light source is made incident on a part of a disc-shaped radiation grating connected to a rotating object, and the diffracted light of a specific order from the radiation grating is totally reflected. In a rotary encoder that determines the rotational state of the rotating object by making it incident on the radiation grating again and receiving all of the re-diffracted light of a specific order from the radiation grating, It has an optical system in which a reflecting surface is arranged to reflect only the diffracted light of the number of people.

この池水発明の特徴は実施例において記載されている。The features of this pond water invention are described in the Examples.

(実施列) 第1図は本発明の一実施例の光学系のglRI。(Implementation row) FIG. 1 shows glRI of an optical system according to an embodiment of the present invention.

でおる。I'll go.

同図においてlはレーザー等の可干渉性の光源、2はコ
リメーターレンズX3□、 32は偏光ビームスプリッ
タ−で\レーザーlからの直線偏光に対して蔦その偏光
軸が45′となるように配置されている。4□〜45は
各々A波長板、51〜54は各々シリ/トリカルレンズ
16は円板上に例えば透光部と反射部の格子模様を等角
度で設けた放射格子・7は不図示の被検回転物体の回転
軸である。91.9□は反射鏡・10はW波長板、 1
1はビームスプリッタ−,12,122は偏光板、13
.13□は受光素子である。14□。
In the same figure, l is a coherent light source such as a laser, 2 is a collimator lens X3, and 32 is a polarizing beam splitter, so that the polarization axis is 45' for the linearly polarized light from laser l. It is located. 4□ to 45 are A wavelength plates, and 51 to 54 are each a silicon/trical lens 16, which is a radiation grating in which, for example, a grid pattern of transparent parts and reflective parts is provided at equal angles on a disk. 7 is not shown. This is the rotation axis of the rotating object to be tested. 91.9□ is a reflecting mirror, 10 is a W wavelength plate, 1
1 is a beam splitter, 12 and 122 are polarizing plates, 13
.. 13□ is a light receiving element. 14□.

14  け集光性の凸レンズ、15.15□は凸しンズ
14.14□の焦点位置近傍に配置された反射境で・そ
の前面に・光束を制限するマスク16□。
14 is a convex lens with condensing properties, and 15.15□ is a reflective boundary placed near the focal point of the convex lens 14.14□, and in front of it is a mask 16□ that limits the light flux.

16□が設けられている。16□ is provided.

本実施′−リでは凸レンズ14  、反射鏡15□SM
rスフ16□より反射手段の一部である光学系を構成し
ている。
In this implementation, the convex lens 14 and the reflecting mirror 15□SM
The r frame 16□ constitutes an optical system which is a part of the reflecting means.

仄に第1図のロータリーエンコーダーの動作全説明する
。V−ザー1より放射された光束は1コリメーターVン
ズ2によって略平行光束となって偏光ビームスプリンタ
ー3□に入射し1略等光量で透過1反射される。このう
ち)透過光束は・猛波長板4□を通過して円偏光となり
・シリンドリカルレンズ5□を介して飄放射格十6上の
位置M1全線状照射する。
The entire operation of the rotary encoder shown in FIG. 1 will be briefly explained. The luminous flux emitted from the V-zer 1 is turned into a substantially parallel luminous flux by a collimator V lens 2, and enters a polarizing beam splinter 3□, where it is transmitted and reflected in substantially equal amounts. Of these, the transmitted light beam passes through the intense wavelength plate 4□ and becomes circularly polarized light, and irradiates the entire position M1 on the radial frame 16 in a linear manner via the cylindrical lens 5□.

ここでシリンドリカルレンズ51は、光束全放射格子6
の放射方向と直交する方向に線状照射するように必要に
応じて配置されている。このように線状照射することに
より、放射格子6上での光束の照射部分に相当する透光
部と反射部の格子模様のピッチ誤差を軽減することがで
きる0 放射格子6上の位置M□に線状照射されて回折され九特
定次数の回折光は為シリンドリカルレンズ5□によって
略平行光束となり光学系の一部である凸レンズ14□に
入射する。第2図は本実施例における一反射手段の一部
である光学系の概略間であシ、反射鏡15□け凸レンズ
14□の略焦点面°に配置されている。この為凸レンズ
14□に平行で入射した光束はマスク16□を介し反射
鏡15□上に集光する。集光され走光束は、反射されて
元の光路を戻って放射格子6上の位! Mlk再照射す
る。セしてM工で栴回折された光束は一、V4波長板4
□を通って偏光ビームスプリッタ−3□で反射されzV
4波長板4□を介して反射鏡9□で反射され\再びA波
長板 4□を介して偏光ビームスプリッタ−3□を透過
する。そしてA波長板10によって偏光方位が 9σ回
転して偏光ビームスプリンター3□で反射さしS1/!
波長板45ヲ介して、ビームスプリッタ−11で公開さ
れ偏光板12□、 12□を介して受光素子13.13
□で受光される。
Here, the cylindrical lens 51 has a luminous flux total radiation grating 6
They are arranged as necessary to emit linear radiation in a direction perpendicular to the radiation direction. By irradiating in a linear manner in this way, it is possible to reduce the pitch error of the grid pattern of the transparent part and the reflective part corresponding to the irradiated part of the luminous flux on the radiation grating 6.0 Position M on the radiation grating 6 The nine specific orders of diffracted light that are linearly irradiated and diffracted are turned into a substantially parallel light beam by a cylindrical lens 5□ and enter a convex lens 14□ which is a part of the optical system. FIG. 2 shows the approximate distance between an optical system which is a part of one reflecting means in this embodiment, and a reflecting mirror 15□ is arranged substantially at the focal plane of a convex lens 14□. For this reason, the light beam incident parallel to the convex lens 14□ is condensed onto the reflecting mirror 15□ via the mask 16□. The condensed light traveling flux is reflected and returns to the original optical path to the top of the radiation grating 6! Re-irradiate Mlk. The light beam diffracted by the M-technique is 1, and the V4 wavelength plate 4
zV passes through □ and is reflected by polarizing beam splitter 3□
It is reflected by the reflecting mirror 9□ via the 4-wavelength plate 4□, and is transmitted through the polarizing beam splitter 3□ again via the A-wavelength plate 4□. Then, the polarization direction is rotated by 9σ by the A wavelength plate 10 and reflected by the polarization beam splinter 3□ S1/!
Via the wavelength plate 45, it is exposed by the beam splitter 11, and the light receiving element 13.13 is exposed through the polarizing plates 12□, 12□.
Light is received at □.

一方、レーザーlから放射されて翫偏元ビームスプリッ
タ−3□で反射され次光束は、A波a板tot−通って
1偏光ビームスプリッタ−32を透過し・儀波長板43
を介して反射鏡9□で反射されて、偏光ビームスプリッ
タ−3□テ反射され、A波長板4 S シリンドリカル
レンズ53  を介して1族射格子〇上の位tiLM2
を線状照射する。
On the other hand, the beam emitted from the laser l and reflected by the polarizing beam splitter 3□ passes through the A-wave plate tot- and passes through the polarizing beam splitter 32.
It is reflected by the reflecting mirror 9□, reflected by the polarizing beam splitter 3□, and transmitted through the A wavelength plate 4S and the cylindrical lens 53 to the position tiLM2 on the group 1 grating 〇.
irradiate linearly.

ここで位置M工とM2は、被検回転物体の回転中心に対
して1略点対称な位置関係にある。
Here, the positions M and M2 have a positional relationship that is substantially symmetrical by one point with respect to the rotation center of the rotating object to be tested.

位fit M2で回折された光束のうち、特定次数の回
折光L2は、回折光L工と同様にしてシリンドリカルレ
ンズ54によって略平行元束となり凸レンズ14□に入
射し、光束制限マスク16□を介して反射鏡15□上に
集光される。集光された光束は反射されて元の光路を戻
って放射格子6上の点M2t−再照射する。そして点M
2で再回折され次光束は元の光路を戻り・偏光ビームス
プリッタ−3゜全透過して、位置M工での回折光L工と
重なり合って、受光素子13□、13□で受光される。
Among the light beams diffracted by the position fit M2, the diffracted light L2 of a specific order becomes a substantially parallel beam by the cylindrical lens 54 in the same manner as the diffracted light L process, and enters the convex lens 14□, and passes through the light flux limiting mask 16□. The light is focused onto the reflecting mirror 15□. The condensed light flux is reflected and returns along the original optical path to re-irradiate the point M2t on the radiation grating 6. and point M
The second beam is re-diffracted at 2, returns to its original optical path, completely passes through the polarizing beam splitter 3 degrees, overlaps with the diffracted light beam L at position M, and is received by light receiving elements 13□, 13□.

被検回転物体が回転すると1位置M工での回折光L工は
、Δf−rω51n−/λだけ周波数シフトする。ここ
でrは)回転中lしからM工までの距離、ωは、角速度
、θrnはSm次回折光Lしの回折角度・λはレーザー
10波長である。
When the rotating object to be tested rotates, the frequency of the diffracted light beam L at the first position M shifts by Δf-rω51n-/λ. Here, r is the distance from l to M during rotation, ω is the angular velocity, θrn is the diffraction angle of the Sm-order diffracted light L, and λ is the 10 wavelength of the laser.

回折光L工は反射手段で反射されて・位置Mエ で再回
折されるので一受光素子13□、13□に入射するとき
は2△f だけ周波数シフトしている。一方、位tM2
での回折光L2が、受光素子13□、 13□に入射す
るときは、同様にして肩−2Δf だけ周波数シフトし
ている。
Since the diffracted light L is reflected by the reflecting means and re-diffracted at the position M, the frequency is shifted by 2△f when it enters the light receiving elements 13□ and 13□. On the other hand, tM2
When the diffracted light L2 enters the light receiving elements 13□, 13□, the frequency is similarly shifted by −2Δf.

従って1受光素子13.13□からの出力信号の周波数
は4Δf となる。を九1位置M工9M2での格子模様
のピップt−pとすると、回折条件から、S1nθ、−
mλ/P だから、受光素子の出力信号の周波数はF−
4Δf −4mrω/P となる。
Therefore, the frequency of the output signal from one light receiving element 13.13□ is 4Δf. If is the pip t-p of the checkered pattern at the 91st position M-9M2, then from the diffraction conditions, S1nθ, -
mλ/P Therefore, the frequency of the output signal of the light receiving element is F-
4Δf −4mrω/P.

放射格子6の格子模様の総本数をN1等角度ピッチをΔ
ψとすれば、P−rΔψ、Δψ−2π/Nより−,F 
−2mNω/πとなる。いま、時間Δtの間での受光素
子の出力信号の波数’1ris Δtの間での放射格子
6の回転内金θとすれば・n −FΔt、θ−ωΔLよ
りz n −2mNθ/π・・・(1)となり1受光素
子の出力信号の波数n?カウントすることKより放射格
子6の回転角θヲ(11式によって求めることができる
。このように構成されている第1図の実施例では、回折
光?利用しているために・放射格子6は小径で微細な格
子を用いることが可能であり・従って、装置全体として
も小径となり1被検回転物体への負荷も小さくなるとい
う特徴を有している。又本実施例では回折光L工、L2
t−位置M工9M2に再照射するための反射手段として
−6レンズ14.14□と反射鏡15.15□を利用す
ることによりコーナーキューブ反射鏡を用いた場曾と同
様の機能を果している。
The total number of grid patterns of the radiation grid 6 is N1, and the equal angular pitch is Δ
If ψ, then -, F from P-rΔψ, Δψ-2π/N
-2mNω/π. Now, if the wave number '1ris of the output signal of the light-receiving element during the time Δt is the rotational radius θ of the radiation grating 6 during the time Δt, then from n - FΔt, θ-ωΔL, z n -2mNθ/π...・(1), the wave number n of the output signal of one light receiving element? From counting K, the rotation angle θ of the radiation grating 6 can be determined by equation 11. In the embodiment of FIG. It is possible to use a fine grating with a small diameter, and therefore, the diameter of the entire device is small, and the load on the rotating object to be tested is also small.In addition, in this example, the diffraction light L process is used. ,L2
By using the -6 lens 14.14□ and the reflector 15.15□ as a reflection means to re-irradiate the t-position M-work 9M2, it achieves the same function as the field using a corner cube reflector. .

すなわち・放射格子6への入射光束の波長が周囲の温度
変化てよって変化したplまた、被検回転物体の回転中
心と\放射格子6の回転中心とが一致していなくて1放
射格子6上の光束入射位[Mよ1M2での格子模僚のピ
ッチが、放射格子6が回転することによって変化する場
合、回折光L工、L2の回折角が変化する。
In other words, the wavelength of the light beam incident on the radiation grating 6 has changed due to the change in the surrounding temperature.In addition, the rotation center of the rotating object to be tested and the rotation center of the radiation grating 6 do not match, and the wavelength of the light beam incident on the radiation grating 6 has changed. When the pitch of the grating structure at the light flux incident position [M 1 M2 changes as the radiation grating 6 rotates, the diffraction angle of the diffracted light beams L and L2 changes.

しかしながら本実施例によれば反射手段の光学系を前述
の如く構成することにより凸レンズ14.14□に入射
した光束を反射鏡15□、15□で反射させた後、入射
したときと等しい角度で凸レンズ14.14□から出射
させて元の光Mを戻すことができる。さらに\反射鏡前
面に設けた光束制限マスク16.16□によって、凸レ
ンズ14.14□に入射する・0次の回折光など、特定
次数の回折光L□、L2以外の回折光を除去することが
できる。このことによって為放射格子6と、反射手段1
4□、14゜、 15□、15□。
However, according to this embodiment, by configuring the optical system of the reflecting means as described above, the light beam incident on the convex lens 14. The original light M can be returned by being emitted from the convex lens 14.14□. Furthermore, the light flux limiting mask 16.16□ provided on the front surface of the reflecting mirror removes diffracted light other than the diffracted lights L□ and L2 of specific orders, such as the zero-order diffracted light that enters the convex lens 14.14□. I can do it. This allows the radiation grating 6 and the reflecting means 1 to
4□, 14°, 15□, 15□.

16.16□との距離を縮めることが可能となる。It becomes possible to shorten the distance from 16.16□.

ま たとえば、放射格子6の、位置M□1M2における格子
模様のピッチが10μm1人射光束の波長が0.83μ
m の場合、凸レンズ14,142としてA半径31の
平凸マイクロレンズを用いて・1次の回折光を放射格子
6に再照射させようとすると、0次の回折光(d11次
の回折光に対して4.8° の角、1f、でマイクロレ
ンズ14,142に入射するから・光束制御畏マスク1
6.16□の開口として・ (マイクロレンズの焦点距
離−6tea ) X(脚4.8’ ) −0,5B以
下の半径の開口を設ければ、0次の回折光が除去できる
。このとき1放射格子6から反射d 15t 、152
までの距Fmは、15w程度あれば十分である。また1
凸レンズ141゜14゜、反!を境15□、15□1光
束制限マスク16□。
For example, if the pitch of the grid pattern at the position M□1M2 of the radiation grating 6 is 10 μm, the wavelength of the human radiation beam is 0.83 μm.
In the case of m, when trying to re-irradiate the radiation grating 6 with the first-order diffracted light using a plano-convex microlens with an A radius of 31 as the convex lenses 14, 142, the 0th-order diffracted light (d11th-order diffracted light) Since it enters the microlens 14, 142 at an angle of 4.8° and 1f, the light flux control mask 1
If an aperture of 6.16 □ is provided with a radius of less than (focal length of microlens -6 tea) At this time, the reflection from the first radiation grating 6 d 15t , 152
A distance Fm of about 15w is sufficient. Also 1
Convex lens 141°14°, anti! Boundary 15□, 15□1 luminous flux limiting mask 16□.

16゜はいずれも容易に製作可能であり為例えばコーナ
ーキューブ反射鏡を用いた場合に比べ低コストになると
いう利点がある。
Both angles of 16° can be easily manufactured, and therefore have the advantage of being lower in cost than, for example, using a corner cube reflector.

尚本実施例において反射鏡15,15゜全平面鏡の代わ
りに凸レンズ14,14゜の節点を曲率中心とする凹面
鏡より構成しても良い。又反射手段の光学系を第3図に
示すように凸レンズ、マスクそして反射鏡を一体化して
構成すれば装置全体が簡素化されるので好ましい。
In this embodiment, instead of the reflecting mirrors 15 and 15° full plane mirrors, concave mirrors having the center of curvature at the nodes of the convex lenses 14 and 14° may be used. Furthermore, it is preferable to construct the optical system of the reflecting means by integrating a convex lens, a mask, and a reflecting mirror as shown in FIG. 3, since this simplifies the entire apparatus.

同図において18  は集光レンズ・18゜は反射■ 面、183はマスクである。In the same figure, 18 is a condenser lens and 18° is a reflective lens. The surface 183 is a mask.

さらに、第4図のように、第3図のレンズ全屈折率分布
型レンズ、たとえば商品名セルフォックマイクロレンズ
(日本板硝子(株)製)として、その平面端面の中心部
のみに反射鏡を蒸着しておけば・製造が容易となり・装
置も小型・簡便となる。
Furthermore, as shown in Fig. 4, a reflective mirror is deposited only at the center of the planar end surface of the lens shown in Fig. 3, which is a total refractive index gradient lens, such as the product name SELFOC Micro Lens (manufactured by Nippon Sheet Glass Co., Ltd.). If this is done, manufacturing will be easier and the equipment will be smaller and simpler.

第4図において、19□は屈折率分布型レンズ、19゜
は反射部(裏面鏡)である。
In FIG. 4, 19□ is a gradient index lens, and 19° is a reflecting portion (back mirror).

尚、本発明に用いる回折格子は遮光部と透光部から成る
所謂振幅型の回折格子・互いに屈折率が異なる部分から
なる位相型の回折格子等が用いられる。特に位相壓の回
折格子(位相格子)は例えば透明円盤の円周部にレリー
フ型の凹凸パターンを形成することによって得ることが
出来、スタンパ、エンボス等で大量生産が可能であり有
効である。又1反射型の位相格子は凹凸パターンに蒸着
等の反射膜を形成することによシ容易に作戎できる。
The diffraction grating used in the present invention may be a so-called amplitude type diffraction grating consisting of a light blocking part and a light transmitting part, a phase type diffraction grating consisting of parts having mutually different refractive indexes, or the like. In particular, a phase grating (phase grating) can be obtained, for example, by forming a relief-type uneven pattern on the circumference of a transparent disk, and is effective because it can be mass-produced using a stamper, embossing, etc. Further, a single-reflection type phase grating can be easily formed by forming a reflection film such as vapor deposition on a concavo-convex pattern.

本実施例では透過回折光金利用しt場合について述べた
が為反射回折光を利用しても同様に本発明の目的を達成
することができる。
In this embodiment, a case has been described in which transmitted diffraction light is used, but the object of the present invention can be achieved in the same way even if reflected diffraction light is used.

(発明の効果) 以上のように本発明によれば焦点面に反射部を配置し次
光学系を有する反射手段を用いることにより被検回転物
体の負荷が小さく、装置全体の小型化7図った高精度の
ロータリーエンコーダー?達成することができる。
(Effects of the Invention) As described above, according to the present invention, the load on the rotating object to be inspected is small, and the overall size of the apparatus can be reduced by using a reflecting means that has a reflecting section on the focal plane and a secondary optical system. High precision rotary encoder? can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一芙施例の光学系の慨略図、等4圀 発明の他の実施例の一部分の説明図である。図中1は光
源、2はコリメーターレンズ、3□。 3 は偏光ビームスプリッタ−・4□〜45はA波長板
、51〜54はシリンドリカルレンズ、6は放射格子、
7は回転軸、9□、9゜は反射鏡、12.12゜は偏光
板、13□、13゜は受光素子、14.14  は凸レ
ンズ、15,15゜は反射鏡、16.16□は光束制限
マスクである。
FIG. 1 is a schematic diagram of an optical system according to one embodiment of the present invention, and is an explanatory diagram of a part of another embodiment of the invention. In the figure, 1 is a light source, 2 is a collimator lens, and 3□. 3 is a polarizing beam splitter, 4□~45 are A wavelength plates, 51~54 are cylindrical lenses, 6 is a radiation grating,
7 is the rotation axis, 9□, 9° is a reflecting mirror, 12.12° is a polarizing plate, 13□, 13° is a light receiving element, 14.14 is a convex lens, 15, 15° is a reflecting mirror, 16.16□ is a This is a light flux limiting mask.

Claims (1)

【特許請求の範囲】[Claims] 可干渉性の光源からの光束を回転物体に連結した円板状
の放射格子上の一部に入射させ、前記放射格子からの特
定次数の回折光を反射手段により再度前記放射格子上に
入射させ、前記放射格子からの特定次数の再回折光を受
光することにより前記回転物体の回転状態を求めるロー
タリーエンコーダーにおいて、前記反射手段は焦点面近
傍に前記特定次数の回折光のみを反射させる反射面を配
置した光学系を有していることを特徴とするロータリー
エンコーダー。
A light beam from a coherent light source is made incident on a part of a disc-shaped radiation grating connected to a rotating object, and diffracted light of a specific order from the radiation grating is made to be incident on the radiation grating again by a reflecting means. , in a rotary encoder that determines the rotational state of the rotating object by receiving re-diffracted light of a specific order from the radiation grating, the reflecting means has a reflecting surface near the focal plane that reflects only the diffracted light of the specific order. A rotary encoder characterized by having an optical system arranged.
JP574086A 1986-01-14 1986-01-14 Rotary encoder Granted JPS62163925A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP574086A JPS62163925A (en) 1986-01-14 1986-01-14 Rotary encoder
DE3700906A DE3700906C2 (en) 1986-01-14 1987-01-14 Encryptor
GB8700784A GB2185314B (en) 1986-01-14 1987-01-14 Encoder
US07/608,629 US5036192A (en) 1986-01-14 1990-11-06 Rotary encoder using reflected light

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP574086A JPS62163925A (en) 1986-01-14 1986-01-14 Rotary encoder

Publications (2)

Publication Number Publication Date
JPS62163925A true JPS62163925A (en) 1987-07-20
JPH0588768B2 JPH0588768B2 (en) 1993-12-24

Family

ID=11619496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP574086A Granted JPS62163925A (en) 1986-01-14 1986-01-14 Rotary encoder

Country Status (1)

Country Link
JP (1) JPS62163925A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS615741A (en) * 1984-06-18 1986-01-11 市倉 寛 Production of nutrition enriched food

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS615741A (en) * 1984-06-18 1986-01-11 市倉 寛 Production of nutrition enriched food

Also Published As

Publication number Publication date
JPH0588768B2 (en) 1993-12-24

Similar Documents

Publication Publication Date Title
US4868385A (en) Rotating state detection apparatus using a plurality of light beams
JPS626119A (en) Rotary encoder
JPH073344B2 (en) Encoder
JP3977126B2 (en) Displacement information detector
JP2009543087A (en) Scale and read head
JPS62163925A (en) Rotary encoder
JPS6165116A (en) Rotary encoder
JPS62200224A (en) Rotary encoder
JPH0462003B2 (en)
JPH0462004B2 (en)
JPS62200226A (en) Rotary encoder
JPS62163919A (en) Rotary encoder
JP3751123B2 (en) Relative position detector
JPS62200222A (en) Rotary encoder
JPH0462002B2 (en)
JPH045142B2 (en)
JPH07119623B2 (en) Displacement measuring device
JPH11325973A (en) Encoder
JPS62163918A (en) Rotary encoder
JPS62201313A (en) Rotary encoder
JPS62200223A (en) Encoder
JPS62200219A (en) Encoder
JPH07119624B2 (en) Linear encoder
JPS62200221A (en) Rotary encoder
JPS62204127A (en) Encoder

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees