JPS62163902A - Working elongation setting type extending conductive element - Google Patents

Working elongation setting type extending conductive element

Info

Publication number
JPS62163902A
JPS62163902A JP61005086A JP508686A JPS62163902A JP S62163902 A JPS62163902 A JP S62163902A JP 61005086 A JP61005086 A JP 61005086A JP 508686 A JP508686 A JP 508686A JP S62163902 A JPS62163902 A JP S62163902A
Authority
JP
Japan
Prior art keywords
elongation
conductive element
conductive
elongated
elongated conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61005086A
Other languages
Japanese (ja)
Inventor
Minoru Fukui
福井 実
Naoki Kataoka
直樹 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP61005086A priority Critical patent/JPS62163902A/en
Publication of JPS62163902A publication Critical patent/JPS62163902A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Adjustable Resistors (AREA)

Abstract

PURPOSE:To enable the detection of extending behavior of an object accurately while keeping an extending conductive element from elongating beyond a limit, if necessary, by providing an elongation inhibiting member which can set the working elongation of the extending element to above a specified elongation or below it. CONSTITUTION:This extending conductive element is combined with an elongation inhibiting member which can set the working elongation thereof to above a specified elongation and/or below it. For example, a working elongation setting type extending conductive element has an extending conductive sheet 3 and electrodes 2a and 2b mounted at both ends thereof. An elongation inhibiting member 1 for initial set elongation is mounted to the electrodes 2a and 2b through hooks 4a and 4b, respectively, and a lead with each end connected to an electric resistance measuring device is connected to the electrodes 2a and 2b.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明IJ伸長導電素子に関する。より詳しくは伸び抑
制部材を具備した作用伸度設定型伸長導電素子に関する
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to an IJ elongated conductive element. More specifically, the present invention relates to an elongation conductive element of action elongation setting type equipped with an elongation suppressing member.

〈従来の技術〉 人体の肘、膝等の屈曲部分のような大きな伸長変形を電
気的に検出することが必要な場合がある。
<Prior Art> There are cases where it is necessary to electrically detect large elongation deformations such as bending parts of the human body, such as elbows and knees.

このような検出に際して伸長変形によって電気抵抗値が
減少する素材を用いる方法と、伸長変形によって電気抵
抗値が増大する素材を用いる方法の何れかを採用するこ
とが考えられる。
For such detection, it is conceivable to adopt either a method using a material whose electrical resistance value decreases as it is stretched and deformed, or a method that uses a material whose electrical resistance value increases when it is stretched and deformed.

しかしながら従来伸長変形によって電気抵抗値が減少す
る性質を有する素材は知られておらず、したがって伸長
変形によって生ずる電気抵抗値の減少をとらえることに
よって被測定物の伸長の有無、伸長の量、伸長・圧縮の
頻度を検出することのできる素子も開発されていなかっ
た。
However, until now, no material has been known that has the property of reducing its electrical resistance value due to elongation deformation. Therefore, by detecting the decrease in electrical resistance value caused by elongation deformation, it is possible to determine whether or not the object to be measured is elongated, the amount of elongation, and the amount of elongation. Elements capable of detecting the frequency of compression have also not been developed.

そこで伸長変形だよって電気抵抗値が増大する性質を利
用した素子、例えばストレーンダーツを用いて伸長変形
を検出することが考えられる。すナワチ、例えばコン′
スタンタスアドパンス、ニクローム等の細い金属線を引
張ると電気抵抗値が増大するのでこの性質を利用してス
トレーンダーツが作られる。しかしこの種の金属線の伸
長率は極めて小さい(1壬以下)ため、前記ストレーン
r −ノは測定対象物の微小変形にしか対応できず、例
えば人体の肘、膝等の屈曲部分のような大きな伸長変形
の検出には用いることができない。
Therefore, it is conceivable to detect elongated deformation using an element that takes advantage of the property that the electric resistance value increases due to elongated deformation, such as a strain dart. Sunawachi, for example Kon'
When a thin metal wire such as Stantus Adpanse or Nichrome is pulled, its electrical resistance increases, and this property is used to make strain darts. However, since the elongation rate of this type of metal wire is extremely small (less than 1 inch), the strain r-no can only cope with minute deformations of the object to be measured. It cannot be used to detect large elongation deformations.

一方測定対象物の変形を険知する素子として圧電素子や
感圧導電性ゴムを用いた素子が知られている。しかし圧
電素子は機械的歪変形を電圧変化としてとらえるもので
あるが、ストレー/グーノと同様に微小変形の用途にし
か適さない。また後者の感圧導電性ゴムは圧縮変形に対
して電気抵抗値が減少するものであり、伸長変形に対し
ては電気抵抗直の低下は生じない。
On the other hand, piezoelectric elements and elements using pressure-sensitive conductive rubber are known as elements for detecting deformation of an object to be measured. However, although piezoelectric elements detect mechanical strain and deformation as voltage changes, they are only suitable for applications involving minute deformations, similar to Stray/Guno. In addition, the latter pressure-sensitive conductive rubber has an electrical resistance value that decreases when subjected to compressive deformation, but does not exhibit a direct decrease in electrical resistance when subjected to elongated deformation.

前述の如〈従来公知の素子は微小な伸長変形にしか用い
ることができないか、あるいは圧縮変形にしか用いるこ
とができない。したがって従来公知の素子では、伸長変
形、特に相当量の伸長変形をする対象物の伸長挙動、す
なわち伸長の有無、伸長の量、伸長を伴う圧縮の頻度等
を検出することができない。
As mentioned above, conventionally known elements can only be used for minute extensional deformations or only for compressive deformations. Therefore, with conventionally known elements, it is not possible to detect the elongation behavior of an object that undergoes elongation deformation, especially a considerable amount of elongation deformation, that is, the presence or absence of elongation, the amount of elongation, the frequency of compression accompanied by elongation, etc.

〈発明が解決しようとする問題点〉 前述のように、従来公知の素子を用いては伸長変形、特
に相当量の伸長挙動?:、電気的に検出することができ
ない。そこで本発明と同一の出願人によって相当量の伸
長挙動を:I電気的検出するのに用いることができるシ
ート状物が提案されている。
<Problems to be Solved by the Invention> As mentioned above, the use of conventionally known elements does not result in elongation deformation, especially considerable elongation behavior. :, cannot be detected electrically. Accordingly, the same applicant as the present inventor has proposed a sheet-like material which can be used to electrically detect the elongation behavior of a considerable amount.

例えばその1番目のシート状物は昭和59年9月27日
に「変形導電性高分子エラスト7−」の名で出願された
特願昭59−200577号中に記載されたシートであ
って、絶縁性の高分子エラストマーに薄片状の形状をし
た導電性フィラーを入れることにより、フィラーの面に
平行な方向で伸長した際に、伸長方向の導電性が向上す
るシートである。2番目のシート状物は昭和60年3月
4日に「変形導電性編織物」の名で出願された特願昭6
0−41024号中に記載されたシート状物であって、
そのシート状物は構成する糸の交絡部分および交絡部分
間についての成気導通性又はシ気絶縁性が下記の条件を
満たすように形成されていることによって任意の方向に
伸長を加えた場合にその電気抵抗値が変化する変形導電
性編織物である。
For example, the first sheet-like material is the sheet described in Japanese Patent Application No. 59-200577 filed under the name of "Deformed Conductive Polymer Elasto 7-" on September 27, 1982, By incorporating a flaky conductive filler into an insulating polymer elastomer, this sheet improves conductivity in the stretching direction when stretched in a direction parallel to the filler surface. The second sheet-like material is a patent application filed on March 4, 1985 under the name of "Deformed conductive knitted fabric".
A sheet-like product described in No. 0-41024,
The sheet-like material is formed so that the intertwined parts of the constituent threads and the intertwined parts have air conductivity or air insulation that satisfies the following conditions, so that when stretched in any direction, It is a deformable conductive knitted fabric whose electrical resistance value changes.

■ 孕編織物の所定の面積中における全交絡部分の中で
、電気的に絶縁状態にある交絡部分の数をtl とし、
電気的に導通状態にある交絡部分の数を62 とした場
合にその比t、/12の値が一平方インチ当りの測定値
で179以上であること;■ 前記編織物を構成するそ
れぞれの糸の長手方向一定長での隣り合う複数の交絡部
分間について、電気的に絶縁状態である交絡部分間の数
をm、とし、電気的に導通状態である交絡部分間の数を
m2とした場合に、その比m 1 / m 2の値が1
インチ当りの測定値で1/9以上であること。
■ The number of intertwined parts that are electrically insulated among all the intertwined parts in a predetermined area of the pregnant fabric is tl,
When the number of intertwined parts in an electrically conductive state is 62, the value of the ratio t, /12 is 179 or more as a measured value per square inch;■ Each yarn constituting the knitted fabric When the number of interlaced parts that are electrically insulated is m, and the number of interlaced parts that are electrically conductive is m2 between adjacent intertwined parts of a certain length in the longitudinal direction. , the value of the ratio m 1 / m 2 is 1
The measured value per inch shall be 1/9 or more.

前述のようなシート状物の任意の2点に電極をとり付け
、′電極間のシート状物を伸長すればシート状物の電極
間の電気抵抗が減少するので、その減少の有無および減
少の程度を2個の電極間で測定すれば被測定物の伸長の
有無および伸長の程要を把握することができる。又これ
らシート状物、特に後者の変形導電性編織物は相当量の
伸長変形をすることができるので相当量の伸長変形をす
る対象物の伸長挙動、すなわち伸長の有無、伸長の量、
伸長を伴う圧縮の頻度等を検出することができる。
If electrodes are attached to any two points on a sheet-like object as described above and the sheet-like object is stretched between the electrodes, the electrical resistance between the electrodes on the sheet-like object will decrease, so it is possible to determine whether or not the electrical resistance has decreased. By measuring the extent between two electrodes, it is possible to determine whether or not the object to be measured is elongated and the degree of elongation. In addition, since these sheet-like materials, especially the latter deformable conductive knitted fabrics, can undergo a considerable amount of elongation deformation, it is important to understand the elongation behavior of objects that undergo a considerable amount of elongation deformation, that is, the presence or absence of elongation, the amount of elongation,
It is possible to detect the frequency of compression accompanied by expansion.

以下の説明にさいて前記シート状物を伸長導電性シート
と称し、伸長導電性シートに電極を取りつける素子を伸
長導電素子と称す。
In the following description, the sheet-like material will be referred to as an elongated conductive sheet, and an element in which an electrode is attached to the elongated conductive sheet will be referred to as an elongated conductive element.

このように構成された伸長導電素子は相当量の伸長変形
をする対象物の伸長挙動の検出に、1際して優れた性能
を発揮するが、対象物に取付けて使用する際に下記のよ
うな問題点を有する。すなわち伸長導電素子の抵抗値が
絶縁状態の10 Ωから減少し始める伸度の直前の状態
で伸長導電素子を対象物に取付けないと対象物の伸長を
正しく検出することができない。したがって前述のよう
な構成の伸長導電素子では対象物への取付けに特別の注
意を要することになる。又前述のよりな構成の伸長導電
素子の場合には過大の張力が加えられて過度に延ばされ
ると、伸長導電素子の特性に変化が生じたし、破壊する
恐れがあり、その伸長導電素子を再使用することができ
なくなるという問題点を有する。
The elongated conductive element configured in this way exhibits outstanding performance in detecting the elongation behavior of an object that undergoes a considerable amount of elongation deformation, but when attached to the object and used, the following It has some problems. That is, unless the elongated conductive element is attached to the object in a state immediately before the elongation at which the resistance value of the elongated conductive element starts to decrease from 10 Ω in the insulated state, the elongation of the object cannot be detected correctly. Therefore, special care must be taken when attaching the elongated conductive element configured as described above to an object. In addition, in the case of an elongated conductive element having a more structured structure as described above, if an excessive tension is applied and the elongated conductive element is excessively stretched, the characteristics of the elongated conductive element change and there is a risk of destruction. This has the problem that it cannot be reused.

本発明は本発明の出願人と同一の出願人によってさきに
提案された伸長導電素子の有する使用上の問題点を解決
して、特別の注意を払うことなく対象物に取付けること
ができて且つ正確に対象物の伸長挙j幼を検出すること
ができると共に、必要な場合には伸長導電素子に限度以
上の伸びが加えられないようにすることができる伸長導
電素子を提供することを目的とする。
The present invention solves the problems in use of the elongated conductive element previously proposed by the same applicant as the applicant of the present invention, and can be attached to an object without special care. It is an object of the present invention to provide an elongated conductive element that can accurately detect the elongation behavior of an object and, if necessary, prevent extension beyond a limit from being applied to the elongated conductive element. do.

〈問題点を解決するための手段〉 本発明の目的は、任意の方向に伸長を加えた場合に、そ
のル気抵抗値が変化する伸長導電性シートと、その伸長
導電性シートの伸長方向に所定の間隔をあけて取着した
少くとも2個の電極とを含んで成る伸長導電素子であっ
て、該伸長導電素子の作用伸度を所定伸度以上および/
又は所定伸度以下に設定できる伸び抑制部材が少くとも
1個併設されていることを特徴とする作用伸度設定型伸
長導電素子によって達成される。
<Means for Solving the Problems> The object of the present invention is to provide a stretched conductive sheet whose air resistance changes when stretched in any direction, and a stretched conductive sheet whose air resistance value changes when stretched in any direction. an elongated conductive element comprising at least two electrodes attached at a predetermined distance, the elongated conductive element having an effective elongation equal to or greater than a predetermined elongation and/or
Alternatively, this can be achieved by an elongation conductive element of the action elongation setting type, which is characterized in that it is also provided with at least one elongation suppressing member that can set the elongation to a predetermined elongation or less.

前記伸び抑制部材は作用伸度を所定伸度以上に設定でき
るものあるいは作用伸度を所定伸度以下に設定できるも
ののどちらか一方を伸長導電赤子に併設してもよく、あ
るいは両方の伸び抑制部材を同一の伸長導電素子に併設
してもよい。
The elongation suppressing member may be one that can set the working elongation to a predetermined elongation or more, or one that can set the working elongation to a predetermined elongation or less, or both elongation suppressing members may be provided together with the elongated conductive baby. may be provided on the same elongated conductive element.

前記伸び抑制部材の併設方法については伸び抑制部材の
それぞれの端部を伸長導電素子の2つの電極にそれぞれ
取付ける方法と、伸長導電素子の外側に延びる別個の取
付部材をそれぞれの屯僑に取付け、この取付部材に伸び
抑制部材のそれぞれの端部を取付ける方法とがあり、何
れを採用してもよい。前記取付部材自体が測定対象物で
あってもよい。
The methods for installing the elongation suppressing members include attaching each end of the elongation suppressing member to the two electrodes of the elongated conductive element, and attaching a separate attachment member extending outside the elongated conductive element to each bulge. There are two methods of attaching each end of the elongation suppressing member to this attaching member, and any of these methods may be adopted. The mounting member itself may be the object to be measured.

前記伸び抑制部材としては2種類のタイプの部材を用い
ることができる。第1のタイプの部材は伸長導′dL素
子を構成する伸長導電性シートよりも引張り弾性率が高
い素材、例えば天然および合成高分子から成る紙、糸、
布帛(織物、不織布など)、フィルムあるいはシート等
を用いることができる。
Two types of members can be used as the elongation suppressing member. The first type of member is made of a material having a higher tensile modulus than the elongated conductive sheet constituting the elongated conductive sheet, such as paper, thread, etc. made of natural and synthetic polymers.
Fabric (woven fabric, non-woven fabric, etc.), film, sheet, etc. can be used.

このタイプの伸び抑制部材を用いる場合には、伸び抑制
部材は2個の電極あるいは電極に取付けられた取付部材
にたるませて取付ければよい。その際たるみの量を例え
ば伸長導電素子の抵抗値が絶縁状態の106Ωから減少
し始める伸度の直前の伸長導電素子の伸度(以下初期設
定伸度と称す)あるいは伸長導電素子の特性が変化した
り、破壊したシする以前の伸長導電素子の伸度(以下破
壊防止限界伸度と称す)に合せて設定すればよい。
When using this type of elongation suppressing member, the elongation suppressing member may be attached to two electrodes or a mounting member attached to the electrodes so as to be loose. At that time, the amount of slack is determined by, for example, the elongation of the elongated conductive element immediately before the elongation at which the resistance value of the elongated conductive element starts to decrease from 106Ω in the insulated state (hereinafter referred to as the initial setting elongation) or the characteristics of the elongated conductive element change. It may be set according to the elongation of the elongated conductive element before breaking or breaking (hereinafter referred to as destruction prevention limit elongation).

一方第2のタイプの部材として初期の引張り弾性率が伸
長導電素子よりも小さいが初期設定伸度あるいは破壊防
止限界伸度に対応した伸度に伸ばされた時に高い引張り
弾性率を有する部材、例えばエステルフィラメントをカ
バリングしたウレタン糸を用いることができる。このタ
イプの伸び抑制部材は、第1の伸び抑制部材が伸長導電
素子に併設さ八る際に必要とされるゆるみの量を伸び抑
制部材が内蔵しているので、伸長導電素子への併設が容
易かつ正確に行うことができる。なお第2のタイプの伸
び抑制部材を初期設定伸度まだは破壊防止限界伸度を考
ML Lでたるみt持たせて伸長導電素子に併設しても
よい。
On the other hand, the second type of member is a member whose initial tensile modulus is lower than that of the elongated conductive element, but which has a high tensile modulus when stretched to an elongation corresponding to the initial setting elongation or the fracture prevention limit elongation, e.g. Urethane thread covered with ester filament can be used. This type of elongation suppressing member has a built-in amount of slack required when the first elongation suppressing member is attached to the elongated conductive element, so it can be easily attached to the elongated conductive element. Can be done easily and accurately. Note that the second type of elongation suppressing member may be attached to the elongated conductive element with slack at the initial setting elongation and the limit elongation for preventing destruction.

前記伸び抑制部材の形状は前述の特性を有するものであ
る限り、任意の形状のものを用いることができる。ただ
し伸長導電性シートと電極との組合せの形状に近い形状
の伸び抑制部材を採用する方が外観上好ましい。
The shape of the elongation suppressing member may be any shape as long as it has the above-mentioned characteristics. However, it is preferable in terms of appearance to employ an elongation suppressing member having a shape close to the shape of the combination of the elongated conductive sheet and the electrode.

次に本発明による作用伸度設定型伸長導電素子の吏用方
法について説明する。
Next, a method of using the action/elongation setting type elongation conductive element according to the present invention will be explained.

初期設定伸度用伸び抑制部材を具備した作用伸度設定型
伸長導電素子を対象物に取付ける場合には、伸長導電素
子をその伸びが止まる迄(前記第1のタイプの呻び抑制
部材の場合はたるみが無くなる迄、前記第2のタイプの
伸び抑制部材の場合には@、テ引張り抵抗が増加する迄
)引張りその状態で伸長導電素子の電隠を対象物に取付
ける。其後初期設定沖度用伸び抑制部材を切断し、必要
あれば除去すればよい。
When attaching an action elongation setting type elongation conductive element equipped with an elongation suppressing member for initial setting elongation to an object, the elongation conductive element is held until its elongation stops (in the case of the first type of elongation suppressing member). (In the case of the second type of elongation suppressing member, until the tensile resistance increases), the elongated conductive element Denkaku is attached to the object in that state. Thereafter, the initial setting offshore elongation suppressing member may be cut and removed if necessary.

このようにして対象物に取付けられた伸長導電素子は対
象物の僅かな伸長変形に対しても誤作動が無く、応答性
の良いスイッチ機能を発揮する。
The elongated conductive element attached to the object in this manner does not malfunction even when the object is slightly elongated and deformed, and exhibits a switch function with good responsiveness.

なお前記初期設定伸度用伸び抑制部材の初期設定伸度を
、前述の定義による絶縁状態の10  Ωから減少し始
める直前の伸度より僅かに伸度を大きくしたそれ以降で
は伸長導電素子の伸長変形値と抵抗値の対数値の関係が
直傅関係になる伸度に設定して用いることができる。こ
のように設定された初期設定伸度を有する伸び抑制部材
を具備した伸長導電素子が、対象物の伸度などの物理的
変位を伸長導電素子の抵抗値に基づいて検知するために
−用いられた場合には、隋度の良好な変位量11j定が
可能となる。
In addition, if the initial setting elongation of the elongation suppressing member for the initial setting elongation is made slightly larger than the elongation immediately before the elongation starts to decrease from 10 Ω in the insulated state as defined above, the elongation of the elongated conductive element is increased. It can be used by setting the elongation to such a degree that the relationship between the deformation value and the logarithm value of the resistance value is a direct relationship. The elongated conductive element provided with the elongation suppressing member having the initial elongation set in this manner is used to detect physical displacement such as elongation of the object based on the resistance value of the elongated conductive element. In this case, the displacement amount 11j can be determined with good accuracy.

次に破壊防止限界伸度用伸び抑制部材は伸長導電素子に
併設されたまま使用される。したがって対象物に取付け
られた伸長導電素子が極度に伸ばされた時には前記破壊
防止限界伸度用伸び抑制部材が作用して、設定された限
界伸度以上に坤度導’rli、素子が伸ばされることを
防ぐ。その結果伸長導電性素子が破壊されたり、再使用
不能になるような事が防がれる。
Next, the elongation suppressing member for breaking prevention limit elongation is used while being attached to the elongated conductive element. Therefore, when the elongated conductive element attached to the object is extremely stretched, the elongation suppressing member for the limit elongation for preventing destruction acts, and the element is elongated beyond the set elongation limit. prevent that. As a result, the elongated conductive element is prevented from being destroyed or rendered unusable.

以下本発明による作用伸度設定型伸長導電素子の一実施
図1を示す添付図面を参照して本発明を詳述する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will now be described in detail with reference to the accompanying drawings, in which FIG. 1 shows an embodiment of an elongated conductive element of the present invention.

第1図(a)に初期設定伸度用伸び抑制部材1が併設さ
れた本発明による作用伸度設定型伸長導電素子素子のf
11面図を示し、第1図(b)にその平面図を示す。
Fig. 1(a) shows the functional elongation setting type elongation conductive element according to the present invention, which is provided with an elongation suppressing member 1 for initial setting elongation.
11 is shown, and FIG. 1(b) is a plan view thereof.

図より明らかなように、作用伸度設定型伸長導電素子は
伸長導電性シート3と、その両端に取付けられた電極2
a 、2bと、電極2a 、2bにそれぞれホック4a
 、4bを介して初期設定伸度用伸び抑制部材1が取付
けられている。前記型tii2a。
As is clear from the figure, the action elongation setting type elongated conductive element consists of an elongated conductive sheet 3 and electrodes 2 attached to both ends of the elongated conductive sheet 3.
a, 2b, and hooks 4a on electrodes 2a, 2b, respectively.
, 4b, the elongation suppressing member 1 for initial setting elongation is attached. Said type tii2a.

2bにはそれぞれの端部が電気抵抗測定装置に接続され
たリード線(図示せず)が接続される。
Lead wires (not shown) each end of which is connected to an electrical resistance measuring device are connected to 2b.

第2図に伸長導電素子の伸長導電特性の一例を示鳴図に
おいて縦軸にlogで示した電気抵抗値、横軸には伸度
を示す。第2図に示すように伸長導電素子は伸度Aに至
る迄は伸ばしても電気抵抗値は変化せず、伸度Aを過ぎ
てから急激に電気抵抗値が下り、さらに伸ばして伸度B
から伸度Cに至る間は電気抵抗値のlog値が伸度に対
して直線関係で減少し、伸度Cから伸度りに至る間は電
気抵抗値が徐々に下がり、伸度りにおいて伸長導電素子
が破壊されることになる。
FIG. 2 shows an example of the elongated conductive characteristics of an elongated conductive element in a sound diagram, in which the vertical axis shows the electrical resistance value in log, and the horizontal axis shows the degree of elongation. As shown in Figure 2, the electrical resistance of the elongated conductive element does not change even if it is stretched until it reaches the elongation A, and after the elongation A, the electrical resistance value decreases rapidly, and when it is further stretched, the elongation B is reached.
From elongation C to elongation C, the log value of electrical resistance decreases in a linear relationship with elongation, from elongation C to elongation, the electrical resistance value gradually decreases, and at elongation C, elongation increases. The conductive element will be destroyed.

そこで本発明による伸長導電素子をスイッチとして使用
する場合には第1図(、)に示す如く伸び抑制部材1を
第2図のAに相当する長さだけたるませて電接に取付け
るか(第1タイプの伸び抑制部材の場合)、あるいはA
に相当する長さを内蔵した第2タイプの伸び抑制部材を
直線状態で電極に取付ければよい。
Therefore, when the elongated conductive element according to the present invention is used as a switch, the elongation suppressing member 1 is attached to the electrical connection with the elongation suppressing member 1 slackened by the length corresponding to A in Fig. 2, as shown in Fig. 1 (,). 1 type of elongation suppressing member) or A
What is necessary is to attach the second type of elongation suppressing member having a built-in length corresponding to the length to the electrode in a straight state.

第11菌(a)および第1図(b)に示した伸長導電素
子では伸長導電性シートとして変形導電性織物を用いて
いる。この変形導電性織物は前述のように任意の方向に
伸長を加えた場合にその電気抵抗が減少する織物であっ
て、織物の所定の面積中における全交絡部分の中で、眠
気的にeEt状態にある交絡部分の数を41 とし、眠
気的に導通状態にある交絡部分の数をt2とした場合に
、その比t1/12の値が一平方インチ当りの測定値で
1/9以上であるという条件と、織物を構成するそれぞ
れの糸の長手方向一定長での隣り合う複数の交絡部分間
について、に気的に絶縁状態である交絡部分間の数をm
、とし、電気的に導通状態である交絡部分間の数をm2
とした場合に、その比m 、/ m 2の値が1インチ
当りの測定値で1/9以上であるという条件を共に満た
す織物である。
In the elongated conductive elements shown in No. 11 (a) and FIG. 1 (b), a deformed conductive fabric is used as the elongated conductive sheet. As mentioned above, this deformed conductive fabric is a fabric whose electrical resistance decreases when stretched in any direction, and among all the intertwined parts in a predetermined area of the fabric, it is in a drowsy eEt state. If the number of intertwined parts in 41 is 41, and the number of intertwined parts in a drowsy conductive state is t2, then the value of the ratio t1/12 is 1/9 or more as a measured value per square inch. Under the condition that
, and the number of intertwined parts that are electrically conductive is m2
It is a fabric that satisfies the condition that the values of the ratio m 2 and /m 2 are 1/9 or more as measured values per inch.

ここでいう電気的に絶縁状態とは、実施例中に記載した
電気抵抗値の測定法によって、2つの針状端子間の′6
気抵抗値か10 0以上である状聾を意味し、また、電
気的導通状態とは、同様に2つの針状端子間の電気抵抗
値が10  Ω未満である状態を意味する。
The electrically insulated state here refers to the electrically insulated state between the two needle-shaped terminals by the method of measuring the electrical resistance value described in the examples.
A state of deafness in which the electrical resistance value is 100 Ω or more is meant, and an electrically conductive state similarly means a state in which the electrical resistance value between two needle terminals is less than 10 Ω.

ここでいう交絡部分とは、各県が交差している部分を示
しており、必ずしも接触している必要はない。織物の場
合は経糸と緯糸の交差部分であり、編物の場合は、ルー
プの交差部分を意味する。
The intertwined area here refers to the area where each prefecture intersects, and does not necessarily need to be in contact. In the case of woven fabrics, it is the intersection of warp and weft yarns, and in the case of knitted fabrics, it is the intersection of loops.

ここでいう電気的に絶縁状態である交絡部分または電気
的に導通状態である交絡部分とは、交絡している2本の
糸が交絡部分を介してそれぞ?−電気的に絶縁状態であ
る部分、あるいは電気的に導通状伸である部分を意味す
る。
Here, the intertwined part that is electrically insulated or the intertwined part that is electrically conductive means that two intertwined threads are connected through the intertwined part. - Refers to a part that is electrically insulated or electrically conductive.

また隣り合う交絡部分間とは、より正確には交絡部分中
心間部分であって、一本の糸で隣り合う交絡部分の中心
間を意味する。また電気的に絶縁状態である交絡部分間
、または電気的に導通状態である交絡部分間とは、上に
述べた隣り合う交絡部分間が電気的に絶縁状態であるか
、導通状態であるかを意味する。
Moreover, the term "between adjacent interlaced parts" more precisely means the part between the centers of the interlaced parts, and means the area between the centers of adjacent interlaced parts of one thread. Also, between interlaced parts that are electrically insulated or electrically conductive refers to whether the adjacent interlaced parts mentioned above are electrically insulated or electrically conductive. means.

ここで用いられる変形24成性織物は平織で形成されて
いる。平織は組織が密で、氷・IN返し耐久性に優れ、
また微小の変形に対して高感度に抵抗値が変化するので
より好ましい。ただし綾織または朱子織で変形導電性織
物を形成してもよい。また4編物を用いてもよい。編物
の組織としては、経編。
The modified 24-layer fabric used here is formed of a plain weave. Plain weave has a dense structure and has excellent ice and IN return durability.
It is also more preferable because the resistance value changes with high sensitivity to minute deformations. However, the deformed conductive fabric may be formed of twill weave or satin weave. Alternatively, a four-knit fabric may be used. The texture of knitted fabrics is warp knitting.

EX H’lhのどちらでも良いし、トリコット編、天
竺編。
Either EX H'lh, tricot or jersey is fine.

ゴム編、・セールB等のいずれでも良いが、特に・ぐ−
ル編の場合には、編組織のどの方向にもほぼ均一な変形
導電性が得られるのでより好ましい。尚、微小変形、大
変形に対する変形導電性は、それぞれ織物1編物の構成
(糸の太さ、密度、度目等)を適切に選定することによ
り得られる。編織物の形状としては、シート状、円筒状
など編織物の組織を使ったすべての形状を含む。
Any of the rubber parts, sail B, etc. is fine, but especially the rubber part.
In the case of double knitting, substantially uniform deformation conductivity can be obtained in any direction of the knitting structure, so it is more preferable. Incidentally, the deformation conductivity with respect to minute deformation and large deformation can be obtained by appropriately selecting the configuration (thread thickness, density, thread size, etc.) of each woven fabric. The shape of the knitted fabric includes all shapes using the structure of the knitted fabric, such as sheet-like and cylindrical shapes.

ここで用いられる変形導電性織物はエステルマルチフィ
ラメントを用いて形成されているが、それ以外に編織物
を構成する糸として、通常の溶融、湿式紡糸機によって
紡糸されたモノフィラメントやマルチフィラメント、短
繊維からなる紡績糸やそれらの糸の撚糸、フィルムやシ
ートを細長くスリットした、細長い形状物もしくはその
収束物を用いることができる。その素材としては、エス
テル以外にもナイロン、などのすべての電気絶縁性合成
高分子、セルロース等の再生セルロースf隊惟などの化
繊、天然ゴムなどの電気絶縁性天然高分子、ガラスなど
の電気絶縁性繊維依維等を用いることができる。
The deformed conductive fabric used here is formed using ester multifilament, but other yarns constituting the knitted fabric include monofilament, multifilament, and staple fibers spun using a conventional melt or wet spinning machine. It is possible to use spun yarns made of , twisted yarns of these yarns, elongated objects obtained by slitting films or sheets, or convergence thereof. In addition to ester, the materials include all electrically insulating synthetic polymers such as nylon, synthetic fibers such as cellulose and other regenerated cellulose, electrically insulating natural polymers such as natural rubber, and electrically insulating materials such as glass. Polymer fibers, etc. can be used.

前述の変形導電性編織物の製造は、まず電気絶縁性繊維
にメッキ、コーティング、溶射などの手段により、導電
性物質を付与した導電糸から作られた編織物、もしくは
電気絶縁性編織物をメッキ、コーティング、溶射などの
手段により、導電性物質を付与した導電性編織物を用意
し、この編織物に超音波、水や空気の高速噴射、流速の
差の大きい層流の生じている媒体中などで物理的応力を
加えることにより、糸の交絡部分及び交絡部分間で選択
的に導電性物質を剥離させることによって行われる。し
たがって変形導電性編織物を構成する糸の特定の部分の
み電気的絶縁状態におかれており、その他の部分は、銅
、ニッケル、銀、カービンなどの導電性物質がメッキ、
コーティング、溶射などの導電化手段により導電性を付
与されている。尚、特にマルチフィラメントや紡績糸の
場合には、微小の応力で各フィラメントや短繊維が接触
するので高感度変形専心性編織物を形成するためにはよ
り好ましい。
The above-mentioned modified conductive knitted fabric is manufactured by first plating a knitted fabric made from conductive yarn to which an electrically insulating fiber is coated with a conductive substance by plating, coating, thermal spraying, etc., or plating an electrically insulating knitted fabric. A conductive knitted fabric to which a conductive substance has been applied by means such as , coating, or thermal spraying is prepared, and this knitted fabric is subjected to ultrasonic waves, high-speed jetting of water or air, or a medium in which a laminar flow with a large difference in flow velocity occurs. This is done by selectively peeling off the conductive substance between the intertwined portions of the yarn and the intertwined portions by applying physical stress, such as by applying physical stress. Therefore, only certain parts of the yarn that make up the modified conductive knitted fabric are electrically insulated, and other parts are plated with conductive substances such as copper, nickel, silver, carbine, etc.
Conductivity is imparted by conductive means such as coating or thermal spraying. In particular, in the case of multifilament or spun yarn, each filament or short fiber comes into contact with each other under minute stress, which is more preferable for forming a highly sensitive deformable knitted fabric.

また4径糸もしくは緯糸のどちらか一方がm t=糸、
他方が絶縁糸である織物を形成し、この織物をバイヤス
方向にカットすることによって得た変形導′ib:キ、
織物を用いてもよい。なお伸長導電素子の伸長導電性シ
ートの耐久汁等を向上させるために、変形導電開場織物
の少なくも片面にニジストマーを積層して用いてもよい
Also, either the 4-diameter yarn or the weft is m t = yarn,
The deformation guide′ib obtained by forming a fabric in which the other side is an insulating thread and cutting this fabric in the bias direction:
Fabrics may also be used. In order to improve the durability of the elongated conductive sheet of the elongated conductive element, a nystomer may be laminated on at least one side of the deformed conductive open field fabric.

第1図(a)および第2図(b)に示した伸長導電素子
では電極として銅板が用いられているが、これ以外にア
ルミ、真強、ステンレスなどの通常電極として用いられ
る金属板をはじめ、布帛やエラストマーシートに金4鍍
金、コーティング、溶射あるいは導電性フィラー混入な
どの手段により導電性を付与した導電性布帛や導電性エ
ラストマーシートを用いてもよい。
In the elongated conductive elements shown in Figures 1(a) and 2(b), copper plates are used as electrodes, but other metal plates such as aluminum, steel, stainless steel, etc., which are normally used as electrodes, are also used. Alternatively, a conductive fabric or conductive elastomer sheet may be used, in which conductivity is imparted to the cloth or elastomer sheet by means such as gold plating, coating, thermal spraying, or mixing with a conductive filler.

金属板や導電性布帛や導電性エラストマーシートで作ら
れた電極と伸長導電性シートとの接続は導電性樹脂ti
を介して行うと、接触抵抗が低く、伸長くり返しに対す
る力学的強度が増大するので好ましい。ここでいう導電
性樹脂層とは、通常よく用いられるエポキシ系、アクリ
ル系、エステル系などのプラスチック系接着剤をはじめ
、ウレタン系、ラテックス系などの接着剤、または熱溶
iA虫型のポリマー、例えばポリエステル系、ポリアミ
ド系樹脂などを基材とし、それに通常5〜50体積係の
範囲内で適当量の導電性フィラーを混入した導’t[性
樹脂からなる層である。ここでいうi、n 電性フィラ
ーとは、ニッケル、銅、鉄、アルミニウム、金、銀、な
どの金属もしくは、それらの合金もしくは導電性カーゲ
ンなどからなり、形状としては粉末もしくは短繊維状で
ある。捷た、導電性樹脂層の厚みとしては、1μm以上
の厚みが必要であり、伸長導電素子の用途にもよるが、
通常は2μm以上50μm以下の厚みが、伸長導電性シ
ート、電極板との接着力、接触抵抗、コストの面で好ま
しいがこれに限られるものではない。導電性樹脂層の厚
みが1μm未満であると、接着力が劣る。尚、導電性樹
脂が、熱溶融型の、4 +7マーを基材としている場合
には、シート状、もしくはフィルム状で使用できるので
操作性の面で優れ、工業的により好ましい。
The connection between the electrode made of a metal plate, conductive fabric, or conductive elastomer sheet and the stretched conductive sheet is made using conductive resin Ti.
It is preferable to do so through the contact resistance because the contact resistance is low and the mechanical strength against stretching and repetition is increased. The conductive resin layer referred to here includes commonly used plastic adhesives such as epoxy, acrylic, and ester adhesives, urethane adhesives, latex adhesives, and hot-melting iA insect-type polymers. For example, it is a layer made of a conductive resin having a base material such as a polyester resin or a polyamide resin, and mixed therein with an appropriate amount of conductive filler, usually within a range of 5 to 50 volume coefficients. The i, n electrically conductive filler herein refers to metals such as nickel, copper, iron, aluminum, gold, and silver, or their alloys, or conductive carbon, and is in the form of powder or short fibers. . The thickness of the twisted conductive resin layer needs to be 1 μm or more, and it depends on the use of the elongated conductive element.
Usually, a thickness of 2 μm or more and 50 μm or less is preferable in terms of adhesive strength with the stretched conductive sheet and electrode plate, contact resistance, and cost, but the thickness is not limited to this. If the thickness of the conductive resin layer is less than 1 μm, the adhesive strength will be poor. It should be noted that when the conductive resin is made of heat-melting type 4+7 mer as a base material, it can be used in the form of a sheet or film, which is excellent in terms of operability and is more preferable from an industrial perspective.

尚、金属板の表面が凹凸にエンゴス加工されていると、
導電性樹脂層との接着力が高く、かつ心気的な絶縁破壊
が起りやすくなるので導電性フィラーの混入量を下げる
ことができ、コスト面及び導電性樹脂層の接着力低下も
抑えられるのでより好ましい。
In addition, if the surface of the metal plate is engosu processed into irregularities,
It has a high adhesive strength with the conductive resin layer and is more likely to cause dielectric breakdown, so the amount of conductive filler mixed in can be reduced, reducing costs and reducing the adhesive strength of the conductive resin layer. More preferred.

また、4″L極として、導電性のホックやはとめ、圧着
端子を用いることもできるし、上記電極板や導電性布帛
や導電性エラストマーシートと徂み合せて用いることも
できる。
Furthermore, a conductive hook, eyelet, or crimp terminal can be used as the 4'' L pole, or it can be used in combination with the above electrode plate, conductive fabric, or conductive elastomer sheet.

次に第3図には本発明による作用伸度設定型伸長導電素
子の他の例を説明する。
Next, referring to FIG. 3, another example of the action elongation setting type elongation conductive element according to the present invention will be explained.

第3図に示した作用伸度設定型伸長導電素子では伸長導
電素子の電極2!/h、2”bが取付部材5a。
In the action elongation setting type elongated conductive element shown in FIG. 3, the electrode 2 of the elongated conductive element! /h, 2”b is the mounting member 5a.

5bに取付けられ、初期設定伸度用伸び抑制部材1“が
前記取付部材5a、5blC取付られでいる。
5b, and the initial setting elongation suppressing member 1'' is attached to the mounting members 5a and 5blC.

それぞれの電極2”a l 2”bにリード線5a、5
bが接続されている。前記取付部材自体が対象物であっ
てもよい。
Lead wires 5a, 5 to each electrode 2"a l 2"b
b is connected. The attachment member itself may be the object.

第4図と第5図rは初期設定伸度用伸び抑制部材7.7
′と破壊防止限界伸度用伸び抑制部材8゜ぎが同一の伸
長導電素子に併設されているI!IIJを示す。第4図
に示した例では、同一構成の伸び抑制部材が伸長溝な素
子の上側と下側にたるみの量を変えて配置され、ホック
4“a + 4”bによって電極2′′a * 2”’
bに取付けられている。第5図に示した例では2種類の
伸び抑制部材7/ 、 s/が別箇に用意され伸長導電
素子の上側でたるみの量を変えて配着され、破壊防止限
界伸度用伸び抑制部材ぎはホック4/# a  、  
4“′bで電極2”a  *  2”bに取付けられ、
一方初期設定伸度用伸び抑制部材1は着脱可能なホック
9a、9bを前記ホック4′″a、イ″bに取付けられ
る。
Figures 4 and 5r show the elongation suppressing member 7.7 for the initial setting elongation.
' and the elongation suppressing member 8° for breaking prevention limit elongation are attached to the same elongated conductive element I! IIJ is shown. In the example shown in FIG. 4, elongation suppressing members having the same structure are arranged with different amounts of slack on the upper and lower sides of the elongated groove element, and hooks 4"a + 4"b connect electrodes 2''a* 2"'
It is attached to b. In the example shown in FIG. 5, two types of elongation suppressing members 7/ and s/ are separately prepared and arranged with varying amounts of slack above the elongated conductive element, and are used as the elongation suppressing members for the limit elongation to prevent destruction. Giha hook 4/#a,
Attached to electrode 2"a * 2"b at 4"'b,
On the other hand, the elongation suppressing member 1 for initial setting elongation has detachable hooks 9a and 9b attached to the hooks 4'''a and 4'''b.

次に伸び抑制部材のゆるみの量の設定について説明する
。第1図および第3図に示した例において、ゆるみの量
を第2図のAの伸度に対応して設定すれば、僅かの伸長
変形にも誤動作なく、応答性の良いスイッチとして用い
ることができる。第4図および第5図に示した2つの伸
び抑制部材を用いる場合では、初期設定伸度用伸び抑制
部材のゆるみのffl’e第2図のBの伸度に対応して
設定し、破壊防止限界伸度用伸び抑制部材のゆるみの量
を第2図のCの伸度に対応して設定すれば、対宝物の伸
度と11+l−1a導電素子の抵抗値の対数値が直線関
係VCある沖度頭域で伸長溝i’j R子を使用するこ
とができ、精度の良い対象物変位1測定を実施すること
ができる。また前者を第2図中のAの伸度に対応したゆ
るみの量で設定し、後者を第2図中のDの伸度に対応し
てゆるみの量を設定すれば、伸長導電素子を誤動作なく
、且つ耐久性の高いスイッチング素子として用いること
ができる。
Next, the setting of the amount of loosening of the elongation suppressing member will be explained. In the examples shown in Figures 1 and 3, if the amount of loosening is set in accordance with the degree of elongation at A in Figure 2, the switch can be used as a highly responsive switch without malfunctioning even with slight elongation deformation. I can do it. When using the two elongation suppressing members shown in Fig. 4 and Fig. 5, the initial setting elongation and loosening of the elongation suppressing member are set corresponding to the elongation B in Fig. 2, and If the amount of loosening of the elongation suppressing member for prevention limit elongation is set corresponding to the elongation of C in Figure 2, the elongation of the treasure and the logarithm of the resistance value of the 11+l-1a conductive element will have a linear relationship VC. The elongated groove i'j R can be used in a certain offshore head area, and accurate object displacement 1 measurement can be performed. In addition, if the former is set with an amount of slack corresponding to the elongation of A in Fig. 2, and the latter is set with an amount of slack corresponding to the elongation of D in Fig. 2, the elongated conductive element will malfunction. It can be used as a switching element with high durability.

なお伸長導電性シートとしては前述の変形4寛性機織物
以外のシート状物を用いてもよい。
Note that as the elongated conductive sheet, a sheet-like material other than the above-mentioned modified four-relaxed woven fabric may be used.

〈実施例〉 以下本発明による作用伸度設定型伸長導電素子の具体的
実施例を説明する。しかし本発明はこれら具体的実施例
に限定されるものではないは明らかである。
<Examples> Specific examples of the action/elongation setting type elongation conductive element according to the present invention will be described below. However, it is clear that the present invention is not limited to these specific examples.

無化成工業(休)製のエステルタフタ(経50d/24
f、緯75d/36f)を水酸化ナトリウム水溶液(8
0g/l)、100℃で減量加工(減量率201L、S
 n Ct2 :塩酸が3:10の重量比の浴中で感受
性化し、水洗脱水後。
Ester taffeta (diameter 50d/24) made by Mukasei Kogyo (closed)
f, latitude 75d/36f) in sodium hydroxide aqueous solution (8
0g/l), weight loss processing at 100℃ (loss rate 201L, S
n Ct2: Sensitized in a bath with hydrochloric acid at a weight ratio of 3:10, after washing with water and dehydrating.

PdCl2:塩酸が重量比1:15の浴中で活性化し、
水洗脱水後Nl ct2・6 H2O、H2IIPO2
,H2O、クエン酸ナトリウム、NH4C4,アンモニ
ア水が1:1:3:2:2の重量比の浴中90℃×2分
処理して、別メッキエステルタフタを作製した。これを
10crnX10(7)の大きさのサンプルに切り、二
重円筒形の層流発生装置(内側の円筒が高速回転、外筒
の内径25c!n、内筒の外径10口)に水と一緒に入
れ、内筒回転速度200 rpmで、300分処理して
伸長導電性シート用原料シートを得た。
PdCl2:hydrochloric acid is activated in a bath with a weight ratio of 1:15,
Nl ct2・6 H2O, H2IIPO2 after water washing and dehydration
, H2O, sodium citrate, NH4C4, and aqueous ammonia at a weight ratio of 1:1:3:2:2 at 90°C for 2 minutes to produce separately plated ester taffeta. Cut this into samples of size 10 crn x 10 (7), and add water to a double cylindrical laminar flow generator (inner cylinder rotates at high speed, outer cylinder inner diameter 25 c!n, inner cylinder outer diameter 10 ports). They were put together and processed for 300 minutes at an inner cylinder rotation speed of 200 rpm to obtain a raw material sheet for an elongated conductive sheet.

次に、市販ウレタン系エラストマー樹脂(溶媒DMF 
 、固形分10 wt4 )’に90μmのグーノで離
型紙にコーテイング後100℃X 3 min乾そうさ
せ生がわきの状態で、この原料シートの両面に4 kg
 / cm2の圧力で110℃で熱接着転写し100℃
×30分乾そうさせ、伸長導電性シートを得た。
Next, commercially available urethane elastomer resin (solvent DMF
, solid content 10 wt4)' was coated with release paper with 90 μm guno, and dried at 100°C for 3 min.
Heat adhesive transfer at 110℃ with a pressure of /cm2 and 100℃
This was dried for 30 minutes to obtain an elongated conductive sheet.

次にこのシートを1口中X5cTR長にバイアス方向に
裁断し、両端から1m長の表裏に厚さ40μmの銅板を
導電性接着剤で接続しく実質的に伸長する部分は31長
)15%伸長することにより、t1/12=41mj/
rn□=4であり、抵抗値が4.5×1060から2.
0 X 102Ωに低下する伸長導電素子を作製した。
Next, this sheet is cut in the bias direction to a length of X5cTR in one piece, and a 40μm thick copper plate is connected to the front and back sides of 1m length from both ends with conductive adhesive. Therefore, t1/12=41mj/
rn□=4, and the resistance value ranges from 4.5×1060 to 2.
An elongated conductive element was fabricated that reduced the resistance to 0.times.10@2 Ω.

この素子の伸長導電特性を第2図を参照して説明すると
、抵抗値が絶縁状態から導通状態に変わる直前の伸gA
は7憾、伸度と抵抗(直が直線関係を保つ領域B−Cは
8.5〜15係、限界伸度りは25係である。上記素子
の2つの北(返部にまたがって伸度Aに相当する分だけ
たるませて、1.2crn巾X 5.21 cm長の7
9ラフイン紙を金属製のホックでとりつけて、第1図(
a)および第1図(b)のようなw期設定(実質的な長
さid3.21crn長さ)のできる伸長2K ”、g
素子(試料屋1)を作・視した。次に上記伸長導電素子
の両端にまたがって表面に・卆ラフイン系を伸度B、B
面にはエステル系織物(70d/24f)t−伸度C分
だけたるませてホックで接続し、第4図に示すような伸
度と抵抗値の対数が直線関係にある本発明物の伸長導電
素子(試料/L2)を作製した。また、上記伸長導電素
子の両端の電極にまたがってエステル系織物(70d/
24f)を限界伸度り分だけたるませてホックのオス型
で固定し、両端をホックのメス型で挟持されたエステル
不織*(70d/24f)で、ホックの中心間のきより
か伸長導電素子よりも初期設定伸度A分だけ長く、前記
オス型のホックに脱着可能な伸び抑制部材を有する本発
明物の伸長導電素子(試料&3)を作製した(第5図を
参照)。
To explain the elongation conductive characteristics of this element with reference to Fig. 2, the elongation gA immediately before the resistance value changes from an insulating state to a conductive state.
is 7, elongation and resistance (area B-C where the straightness maintains a linear relationship is 8.5 to 15, and the limit elongation is 25. Leave slack by the amount corresponding to degree A, and make a 1.2 crn width x 5.21 cm long 7
9 Attach the rough-in paper with a metal hook and attach it as shown in Figure 1 (
A) and an elongation 2K ”, g that allows w period setting (substantive length id 3.21crn length) as shown in Fig. 1(b).
Created and viewed the element (sample shop 1). Next, a rough-in system is applied to the surface across both ends of the elongated conductive element with elongation B and B.
An ester-based fabric (70d/24f) is connected to the surface with a hook by slackening by t-elongation C, and the elongation of the present invention where the elongation and the logarithm of the resistance value are in a linear relationship as shown in Figure 4. A conductive element (sample/L2) was produced. In addition, an ester-based fabric (70d/
24f) is slacked by the limit elongation and fixed with the male type of the hook, and the ester non-woven * (70d/24f) is held between both ends by the female type of the hook. An elongated conductive element (sample &3) of the present invention was produced, which was longer than the conductive element by an initial setting elongation A and had an elongation suppressing member that was detachable from the male hook (see FIG. 5).

尚、本発明物の伸長導電素子の伸長導電特性はその素子
のm4部分にリード線をとりつけ、電気抵抗測定器(タ
ケダ理研製デソタルマルチメーター)に接続し、引っ張
り試験機(東洋ボールドウィン社1Tensilon 
)で伸長して、各伸度における抵抗1直の読みを測定し
た。表1にその結果を示す。
The elongated conductive properties of the elongated conductive element of the present invention were determined by attaching a lead wire to the m4 part of the element, connecting it to an electrical resistance measuring device (Desotal Multimeter manufactured by Takeda Riken Co., Ltd.), and testing it using a tensile tester (Toyo Baldwin Co., Ltd. 1 Tensilon).
) and measured the resistance reading for one rotation at each degree of elongation. Table 1 shows the results.

表1かられかるように伸び抑制部材の設定により所望の
伸度に坤長導′ユ素子が設定され、所望の伸長導電性が
得られていることがわかる。
As can be seen from Table 1, it can be seen that by setting the elongation suppressing member, the length guide element is set to a desired elongation, and the desired elongation conductivity is obtained.

以−:・−余白 〈発明の効果〉 本発明による作用伸度設定型伸長導電素子は前述の如く
構成されているので、従来公知のセンサー素子を用いて
行うことのできない伸長変形、特に相描遺の伸長変化を
する対象物の伸長挙動を検出することができると共に、
噴出に際してより精度高く測定値が得られる。又使用に
際しての対象物への取付作業が容易であると共に、耐久
力の高い伸長導電性季子にである。
Margin <Effects of the Invention> Since the action and elongation setting type elongation conductive element according to the present invention is constructed as described above, elongation deformation that cannot be performed using conventionally known sensor elements, especially phase drawing, is possible. It is possible to detect the elongation behavior of an object that changes its elongation, and
Measured values can be obtained with higher accuracy during ejection. In addition, it is easy to attach to an object during use, and the elongated conductive material has high durability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(、)および第1図(b)は本発明による作用伸
度設定型伸長導電素子の一例を示す模式図であって第1
図(a)は正面図、第1図(b)は千面図であり、第2
図は伸長導電ぶ子の伸びと眠気抵抗値との関係を示すグ
ラフであり、第3図〜、A5図には第1図(a)に示し
た伸長導市素子の変形実施例をそれぞれ示す。 1.1’、1”、7.7’、8.8’・・・伸び抑制部
材、2 a = 2 b + 2’a * 2’b *
 2”a r 2//b l 2″′a rfb−社t
i、3 、3’、 3″、 3“′、3″イ” fl 
長m 電性シート、 4 a  *  4 b  、4
’a  +  4’ b  *  4“a +  4/
/b  。 4”’a + 4”’c・・・ホック、5・・・取付台
(被測定対象物)。
1(a) and 1(b) are schematic diagrams showing an example of the action elongation setting type elongation conductive element according to the present invention.
Figure (a) is a front view, Figure 1 (b) is a thousand-sided view, and Figure 2
The figure is a graph showing the relationship between the elongation of the elongated conductive button and the drowsiness resistance value, and Figs. 3 to A5 each show modified examples of the elongated conductive element shown in Fig. 1(a). . 1.1', 1", 7.7', 8.8'...Elongation suppressing member, 2 a = 2 b + 2'a * 2'b *
2"a r 2//b l 2"'a rfb-company t
i, 3, 3', 3", 3"', 3"i" fl
Length m conductive sheet, 4 a * 4 b, 4
'a + 4' b * 4"a + 4/
/b. 4"'a + 4"'c...Hook, 5...Mounting stand (object to be measured).

Claims (1)

【特許請求の範囲】[Claims] 1、任意の方向に伸長を加えた場合にその電気抵抗値が
減少する伸長導電性シートと、該伸長導電性シートの伸
長方向に所定の間隔をあけて取着した少くとも2個の電
極とを含んで成る伸長導電素子であって、該伸長導電素
子の作用伸度を所定伸度以上および/又は所定伸度以下
に設定できる伸び抑制部材が少くとも1個併設されてい
ることを特徴とする作用伸度設定型伸長導電素子。
1. A stretched conductive sheet whose electrical resistance value decreases when stretched in any direction, and at least two electrodes attached at a predetermined interval in the stretching direction of the stretched conductive sheet. an elongated conductive element comprising at least one elongation suppressing member that can set the effective elongation of the elongated conductive element to a predetermined elongation or more and/or a predetermined elongation or less. An elongation conductive element with action elongation setting.
JP61005086A 1986-01-16 1986-01-16 Working elongation setting type extending conductive element Pending JPS62163902A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61005086A JPS62163902A (en) 1986-01-16 1986-01-16 Working elongation setting type extending conductive element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61005086A JPS62163902A (en) 1986-01-16 1986-01-16 Working elongation setting type extending conductive element

Publications (1)

Publication Number Publication Date
JPS62163902A true JPS62163902A (en) 1987-07-20

Family

ID=11601579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61005086A Pending JPS62163902A (en) 1986-01-16 1986-01-16 Working elongation setting type extending conductive element

Country Status (1)

Country Link
JP (1) JPS62163902A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6313996B1 (en) 1997-12-25 2001-11-06 Yazaki Corporation Heat radiation system for electric circuitry
JP2007121159A (en) * 2005-10-28 2007-05-17 Tokai Rubber Ind Ltd Device for detecting displacement amount
JP2020153932A (en) * 2019-03-22 2020-09-24 ヤマハ株式会社 Strain sensor unit and elongation measuring member

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6313996B1 (en) 1997-12-25 2001-11-06 Yazaki Corporation Heat radiation system for electric circuitry
JP2007121159A (en) * 2005-10-28 2007-05-17 Tokai Rubber Ind Ltd Device for detecting displacement amount
JP2020153932A (en) * 2019-03-22 2020-09-24 ヤマハ株式会社 Strain sensor unit and elongation measuring member

Similar Documents

Publication Publication Date Title
US4715235A (en) Deformation sensitive electroconductive knitted or woven fabric and deformation sensitive electroconductive device comprising the same
JP2719090B2 (en) Wearing pressure measuring device
CN110926661B (en) Flexible fabric pressure and strain composite sensor
JP2009516839A (en) Pressure sensor
WO2017119489A1 (en) Conductive stretchable thread, conductive stretchable cloth, and conductive stretchable knitted fabric
CN214149645U (en) Flexible wearable pressure sensor based on elastic cloth
CN109239139B (en) Yarn-shaped humidity sensor
McKnight et al. Sensing textile seam-line for wearable multimodal physiological monitoring
JP7068569B2 (en) Tension sensor
JP2010014694A (en) Load detection fiber
JPS62163902A (en) Working elongation setting type extending conductive element
JPS62200701A (en) Deformed conductive knitting
JPS62163903A (en) Extending conductive element of insulating object to be inspected
JPS62163904A (en) Expanding conductive element with fixing means
CN211317588U (en) Flexible pressure sensor
US4332762A (en) Process for preparing a spreadable acrylic fiber tow
JP7204089B2 (en) Tensile sensor and its manufacturing method
WO2022270461A1 (en) Conductive mesh fabric
JPS62200203A (en) Extensible conductive element with fixing means
JPS6276602A (en) Elongated conductive cloth piece
JPS62200204A (en) Elongating conductive element with fixing means having adjusting mechanism
JPS61201045A (en) Deformed conductive knitted cloth
TW201830744A (en) Structure for use in piezoelectric element, braided piezoelectric element, fabric-like piezoelectric element using braided piezoelectric element, and device using these
JPS6276601A (en) Elongated conductive structure
WO2019240241A1 (en) Electroconductive material and electrical element provided with same, and sensor