JPS6216250B2 - - Google Patents

Info

Publication number
JPS6216250B2
JPS6216250B2 JP58173159A JP17315983A JPS6216250B2 JP S6216250 B2 JPS6216250 B2 JP S6216250B2 JP 58173159 A JP58173159 A JP 58173159A JP 17315983 A JP17315983 A JP 17315983A JP S6216250 B2 JPS6216250 B2 JP S6216250B2
Authority
JP
Japan
Prior art keywords
less
weight
temperature
quenching
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58173159A
Other languages
Japanese (ja)
Other versions
JPS6067623A (en
Inventor
Kunihiko Kobayashi
Takeo Ueno
Yoshimitsu Iwasaki
Yasumori Koyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP17315983A priority Critical patent/JPS6067623A/en
Publication of JPS6067623A publication Critical patent/JPS6067623A/en
Priority to JP27523686A priority patent/JPS62149814A/en
Publication of JPS6216250B2 publication Critical patent/JPS6216250B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 低炭素高強度継目無鋼管をいわゆる直接焼入で
製造する方法に関しこの明細書に述べる技術内容
は、ラインパイプや、海洋ないし、陸上の構造物
などの使途に供されるこの種の継目無鋼管の製造
段階に独自の成分挙動に着目して、上記直接焼入
との適合を成就させることに関連し、この種の熱
処理を経る低炭素高強度継目無鋼管の製造に係わ
る技術の分野に位置している。 (従来の技術) 高強度継目無鋼管の製造には通常、熱間圧延に
よる造管加工を経てから焼入れ焼戻しが施され
る。その際焼入性を向上させるために予め微量の
Bを鋼中添加し、かつその焼入性を安定化するた
めに適量のAlを添加するのが一般的である。 (発明が解決ようとする問題点) 熱間圧延で、所定寸法の鋼管に成形後一たん冷
却させてからAr3点以上まで再加熱し、焼入処理
が行われる従来法では、上記のBによる焼入効果
が実現され得るけれども、熱間圧延後ただちに、
焼入処理を施すいわゆる直接焼入の場合には、実
際上Bによる焼入性効果が安定して得られない。 またここにBの効果を阻害するNを固定するた
めにTiを添加することもすでに知られてはいる
が直接焼入による継目無鋼管の製造においては、
やはりその効果を安定した得ることが困難であ
る。 すなわち継目無鋼管を製造する場合、穿孔機に
よる穿孔を可能とするために、ビレツトを1200〜
1300℃の温度で加熱することが必要なところ、こ
のような高い温度ではもはや、NがAlと結合し
たAINとしては存在することができず、かくして
鋼中に固溶して存在するNは、熱間圧延時に温度
が低下すると、それに応じBと結合してBNとな
り、オーステナイト粒界に偏析して焼入性を向上
させるべき固溶B量を減じてその効果を失わせ
る。 熱間加工後700℃程度以下まで一たん冷却し、
再びAr3点以上まで加熱して焼入れする通常の再
加熱焼入れの場合には、この再加熱時にAlがN
をAINとして固定することにより固溶Bを増して
焼入性を向上させることはよく知られているとお
りであるが、直接焼入れの場合には上記のように
AINの析出が阻害されるため、Bによる焼入向上
の効果が期待できない。 したがつて熱間圧延前の加熱温度が1200〜1300
℃と高温の場合には、この温度領域で安定してN
と結合するTiを添加することが直接焼入れの場
合には有効で、その効果の例は第1図に示すとお
りであり、このようにTiのNの固定効果はあつ
てもその反面、過剰なTiは焼入れ後の焼戻し処
理においてTiCとして析出し、切欠靭性を著しく
劣化させるのでTi量の厳密な規制が必要であ
る。 すなわちTiは、NをTiNという形で固定するの
で、鋼中に含まれるNをすべて固定するために必
要なTi量は、化学量論的にはTi=3.42Nである。 しかし工業的には、鋼中のTi、Nの量を常に
この割合に保つのは不可能である。 発明者らは、種々検討を重ねた結果、上記した
問題の原因がTi含有量とN含有量の不適正にあ
ることを究明し、Ti、Nを適正量に制御して直
接焼入を実行することにより、強度並びに切欠靭
性の優れた低炭素高強度継目鋼管が次のように安
定して製造できることを見出した。 すなわち、Ti、Nの割合を種々変化させた鋼
を用いて強度および衝撃試験での破面遷移温度を
調査した結果、第2図に示す成績が得られた。 第2図において横軸にとつたΔTi=Ti−3.42N
は理論上Nを固定するに必要なTi量(重量%;
以下成分量に関して単に%で示す。)に対する過
不足を示す。 ΔTiが−0.008%よりも低いと、Tiの不足のた
にめに、固溶Nが多くなりすぎ、Bの焼入性向上
効果を減じ、強度、靭性が劣ることを示してい
る。 一方ΔTiが+0.008%をこえるとTiによるNの
固定にてBの焼入性向上効果が十分に発揮される
ものの余剰Tiが焼入後の焼もどしの際、TiCとし
て析出するために、強度は高くなつても靭性が著
しく劣化する。 ΔTiが−0.008%と+0.008%の間にある場合に
は、Nの大部分が固定されてBにより焼入性向上
効果で高い強度が得られるとともに、過剰なTiC
の析出も抑えられて優れた靭性が確保され得る。 上記の知見に基き、TiとNの含有量を適当な
範囲に規制することによつて強度・靭性ともに優
れた高強度継目無鋼管を直接焼入法で製造するこ
とがこの発明の目的である。 (問題点を解決するための手段) 上掲した発明の目的は、次の事項を骨子とする
手順で有利に実現される。 C:0.06〜0.20%、 Si:0.10〜0.50%、 Mn:0.5〜2.0%、 Al:0.01〜0.1% B:0.0005〜0.0050%と、 Ni:5%以下、 Cr:1%以下、 Mo:1%以下、 Cu:0.5%以下、 V:0.1%以下、 Nb:0.1%以下並び Ca:0.010%以下を、 P:0.03%以下及び S:0.015%以下 において含有しかつ、 N:0.0010〜0.0060%を、N含有量に応じ下記
、式に従うTiとともに含有し、残部鉄及び
不可避的混入元素よりなる組成の鋼を、1200℃以
上1300℃以下の温度に加熱して熱間加工により、
所定形状の鋼管に形成すること、 この熱間加工後750℃以上の温度にてただちに
焼入れすること、 次いでAc1以下の温度で焼戻すこと、 の結合を特徴とする直接焼入法による低炭素高強
度継目無鋼管の製造方法。 3.42N−0.008(重量%)Ti3.42N +0.008(%) … Ti>0(%) … またこの場合熱間加工による所定形状の継目無
鋼管に成形する過程が、その最終加工に際し850
℃以上の温度に保持された加熱炉に装入して被加
工材を再加熱する場合も実施能態に含まれる。 (作用) 次にこの発明で成分組成および工程段階につい
て規定した理由を以下に述べる。 まず化学成分を制限した理由は以下の通りであ
る。 C:0.06〜0.20% Cは焼入性を高め、高強度を得るために不可欠
であつて、0.06%未満ではその効果がなく、また
0.20%をこえると炭素当量が過大となり、溶接割
れ感受性を高めるのでこの発明の対象としている
ラインパイプや構造物用鋼管として適しないので
0.06〜0.20%に制限した。 Si:0.10〜0.50% Siは鋼の脱酸に必要であつて、0.10%未満では
その効果がなく、また0.50%をこえると鋼片の割
れを生じたり、溶接性を損うので、0.10〜0.50%
に限定した。 Mn:0.5〜2.0% Mnは焼入性を高め、強度をあげるのに有効で
あるが、0.5%未満では効果がなく、2.0%をこえ
ると溶接性、加工性を損うので0.5〜2.0%に限定
した。 Al:0.01〜0.1% Alは脱酸に必要な元素であるが、0.01%未満で
は効果がなく、また0.1%をこえるとアルミナ系
介在物として鋼中に残存して靭性を劣化させるの
で0.01〜0.1%に限定した。 B:0.0005〜0.0050% Bは鋼の焼入性を向上させるのに微量で非常に
有効な元素であるが0.0005%未満では効果がな
く、一方0.0050%をこえると析出物を形成して靭
性を劣化させるので0.0005〜0.0050%の範囲に限
定した。 Ni:5%以下 Niは、母材、溶接部の靭性を改善するのに役
立ち0.2%以上にすることが好ましいが非常に高
価な元素でもあるので上限を5%以下とした。 Cr:1%以下 Crは焼入性向上に寄与し、0.1%以上にするこ
とが好ましいけれども1%をこえると溶接性を損
うので、1%以下とした。 Mo:1%以下 MoもNiと同様な効果に加え、とくに0.05%以
上にて焼入性向上、焼戻し脆性の抑止にも有効で
あるが、非常に高価な上に、炭素当量も上げる元
素なので1%以下とした。 Cu:0.5%以下 Cuは耐食性を増すのに寄与し、0.1%以上で好
ましいが、0.5%をこえると鋼片の割れ感受性を
増し、溶接性も損うので0.5%以下とした。 V:0.1%以下 Vは析出強化元素としてのぞましく、0.01%以
上で焼戻し後の強度を上げるのにも有効である
が、0.1%をこえると鋼片の割れの原因となり、
又靭性を阻害するので0.1%以下とした。 Nb:0.1%以下 Nbはオーステナイト粒の細粒化に寄与し、析
出強化による強度増加にも0.01%以上で著しく寄
与するが、0.1%をこえると鋼片の割れの原因と
なり、溶接性も損うので0.1%以下とした。 Ca:0.010%以下 Caは硫化物の形体を球状化させ、とくに管長
手に直角方向の靭性を改善し、さらに水素誘起割
れを防止するのに好ましくは0.0010%以上で有効
であるが0.010%をこえると却つて介在物を形成
して靭性を阻害するで0.010%以下と限定した。 P:0.03%以下 Pは鋼中に含まれる不純物で、低い程好まし
い。0.03%をこえると靭性を著しく劣化させ、ま
た焼戻し脆性を引起すので上限を0.03%とした。 S:0.015%以下 Sも鋼中に含まれる不純物で、低い程好まし
い。0.015%をこえると靭性を損うので上限を
0.015%とした。 N:0.0010〜0.0060% Nは、鋼中に含まれる不純物で0.0010%未満に
することは工業的に困難であるので下限を0.0010
%とした。また0.0060%をこえると溶接部の靭性
を損い、さらに所要量のTi添加によつても巨大
なTiN析出物を形成して母材の靭性を損うので上
限を0.0060%とした。 Tiは、既に記述した如くこの発明で不可欠の
元素であり、Bの焼入性効果を確保し、かつ過剰
Tiによる靭性劣化を防ぐために次式 3.42N−0.008(%)Ti3.42N +0.008(%) … Ti>0(%) … で定める範囲に限定される。 次に製造条件を限定した理由を述べる。 継目無鋼管の製造においては、ビレツトを1200
〜1300℃の範囲で加熱することは穿孔機での加工
上必要な条件であり、またこの発明で、Ti、N
の割合を適正範囲に収めることとした前提的な条
件ともなるものなので、加熱温度は1200〜1300℃
に限定した。 次に熱間加工後直接焼入れを行なうことは、た
とえば厚板の分野などにおいては、広く行われて
いるとおり、熱エネルギー節減による経済的効
果、焼もし抵抗性増大による高強度化などの効果
が知られ、一方鋼管製造分野においても直接焼入
法は公知の事実ではあるが、低炭素鋼の如く焼入
性の低い鋼管では実用化されていなかつた。それ
というのは、継目無鋼管の場合には厚板に比べて
100℃程度も高い温度にビレツトが加熱され、す
でに述べたようにしてBの効果を有効に利用でき
ないことに原因があつたからである。 この発明は、成分の適正化により、低炭素継目
無鋼管においても直接焼入れによる製造を可能と
し、経済的および高強度化の効果を十分に発揮さ
せることを実現したものであり、従つて直接焼入
れを行なうことがこの発明において基本の工程で
あるが、直接焼入れにおいては、焼入温度が重要
である。 直接焼入れの温度を750℃以上と限定したの
は、750℃より低い温度では、焼入れ後の組織中
にかなりの量のフエライトが生成している場合が
あり、そのような条件では強度も低いからであ
る。 焼入れは、本来Ar3変態点以上から行われるべ
きであり、Ar3の温度は成分によつてそれぞれ求
められるべきであるが、直接焼入れ工程に対応し
たAr3点を求めることは技術的にも困難である。 この発明に含まれる最も焼入性の低い成分系に
おいても、750℃以上の温度から直接焼入れを行
えば、焼入後の組織は、マルテンサイト、ベイナ
イトなどにより構成されることが認められたので
焼入下限温度を750℃とした。 なお継目無鋼管では、一般に熱間の最終加工に
つき、サイザーやストレツチレデユーサーによる
加工が行なわれることも多いところ、鋼管の肉厚
の薄いときには、これらの最終加工時に温度が低
下して、直接焼入れに必要な750℃以上の温度を
維持できない場合があり得る。 このような場合には最終加工前に再加熱炉に装
入して管全体の温度を高めることが必要で、通常
の場合850℃以上に加熱すれば焼入前に750℃以上
の温度を確保できるので、この場合に再加熱炉温
度の下限は、850℃とすることが実施態様として
推奨される。 なお鋼管の焼入装置については、リングスプレ
ー、浸漬型、軸流型など種々の方式のものが考案
され、いずれも直接焼入時の焼入法として用いる
ことができる。これらのうちでも鋼管の内・外周
にて、鋼管の軸線方向に沿う冷却水流を与える方
式の焼入装置(特開昭57−85930号、同114616号
公報)では高い焼入能を有し、低炭素高強度継目
無鋼管の直接焼入れによく適合する。 焼戻しは、Ac1以下の温度で、常法に従つて処
理すればよい。 (実施例) 次にこの発明の効果を実施例をあげて説明す
る。 表1は、この発明による鋼および比較鋼の化学
成分を示し、表2は製造条件、得られた機械的特
性の例である。
(Industrial Application Field) The technical content described in this specification regarding the method of manufacturing low-carbon high-strength seamless steel pipes by so-called direct quenching is applicable to applications such as line pipes and marine or land-based structures. Focusing on the unique component behavior of this type of seamless steel pipe manufacturing stage, we will manufacture low carbon high strength seamless steel pipes that undergo this type of heat treatment in order to achieve compatibility with the above-mentioned direct quenching. It is located in the field of technology related to. (Prior Art) In the production of high-strength seamless steel pipes, usually, the pipe is formed by hot rolling, and then quenched and tempered. In this case, it is common to add a small amount of B to the steel in advance in order to improve the hardenability, and to add an appropriate amount of Al to stabilize the hardenability. (Problems to be Solved by the Invention) In the conventional method of hot rolling, in which a steel pipe of a predetermined size is formed, the pipe is once cooled, and then reheated to an Ar temperature of 3 points or higher and quenched. Immediately after hot rolling, although the quenching effect of
In the case of so-called direct hardening, in which the hardening treatment is performed, the hardenability effect of B cannot be stably obtained in practice. It is also already known that Ti is added here to fix N, which inhibits the effect of B, but in the production of seamless steel pipes by direct quenching,
After all, it is difficult to obtain this effect stably. In other words, when manufacturing seamless steel pipes, the billet is
It is necessary to heat the steel to a temperature of 1300°C, but at such a high temperature, N can no longer exist as AIN combined with Al, and thus the N present in solid solution in the steel is When the temperature decreases during hot rolling, it accordingly combines with B to form BN, which segregates at austenite grain boundaries, reducing the amount of solid solution B that should improve hardenability and losing its effect. After hot working, it is cooled down to about 700℃ or less.
In the case of normal reheating and quenching, in which quenching is performed by heating to Ar 3 or higher, during this reheating, Al changes to N.
It is well known that hardenability is improved by increasing solid solution B by fixing AIN as AIN, but in the case of direct hardening, as mentioned above,
Since the precipitation of AIN is inhibited, the effect of improving hardening due to B cannot be expected. Therefore, the heating temperature before hot rolling is 1200 to 1300.
℃ and high temperature, N is stable in this temperature range.
Adding Ti, which binds to N, is effective in direct quenching, and an example of this effect is shown in Figure 1.In this way, although Ti has a fixing effect on N, on the other hand, excessive Ti precipitates as TiC in the tempering process after quenching and significantly deteriorates notch toughness, so the amount of Ti must be strictly regulated. That is, since Ti fixes N in the form of TiN, the amount of Ti required to fix all the N contained in the steel is stoichiometrically Ti = 3.42N. However, industrially, it is impossible to always maintain the amounts of Ti and N in steel at this ratio. As a result of various studies, the inventors determined that the cause of the above problem was due to inappropriate Ti and N contents, and performed direct quenching by controlling Ti and N to appropriate amounts. It has been found that by doing so, low carbon high strength jointed steel pipes with excellent strength and notch toughness can be stably manufactured as follows. That is, as a result of investigating the strength and fracture surface transition temperature in an impact test using steels with various Ti and N ratios, the results shown in FIG. 2 were obtained. ΔTi = Ti−3.42N taken on the horizontal axis in Figure 2
is the theoretical amount of Ti required to fix N (wt%;
The component amounts are simply expressed in % below. ). When ΔTi is lower than −0.008%, the solid solution N becomes too large due to the lack of Ti, which reduces the hardenability improvement effect of B and indicates that the strength and toughness are inferior. On the other hand, when ΔTi exceeds +0.008%, although the effect of improving the hardenability of B is fully exerted by fixing N with Ti, surplus Ti precipitates as TiC during tempering after quenching. Even if the strength increases, the toughness deteriorates significantly. When ΔTi is between -0.008% and +0.008%, most of the N is fixed and B has the effect of improving hardenability, resulting in high strength, and the excess TiC
The precipitation of is also suppressed and excellent toughness can be ensured. Based on the above knowledge, the purpose of this invention is to manufacture high-strength seamless steel pipes with excellent strength and toughness by direct quenching by regulating the content of Ti and N within appropriate ranges. . (Means for Solving the Problems) The above-mentioned objects of the invention can be advantageously realized by a procedure consisting of the following matters. C: 0.06 to 0.20%, Si: 0.10 to 0.50%, Mn: 0.5 to 2.0%, Al: 0.01 to 0.1%, B: 0.0005 to 0.0050%, Ni: 5% or less, Cr: 1% or less, Mo: 1 % or less, Cu: 0.5% or less, V: 0.1% or less, Nb: 0.1% or less, Ca: 0.010% or less, P: 0.03% or less and S: 0.015% or less, and N: 0.0010 to 0.0060%. , along with Ti according to the following formula according to the N content, and the balance consists of iron and unavoidable mixed elements, by hot working by heating to a temperature of 1200 ° C or more and 1300 ° C or less,
A low-carbon product made by a direct quenching method, which is characterized by the following: forming a steel pipe into a specified shape, immediately quenching at a temperature of 750℃ or higher after hot working, and then tempering at a temperature of Ac 1 or lower. A method for manufacturing high-strength seamless steel pipes. 3.42N−0.008 (wt%) Ti3.42N +0.008 (%) … Ti > 0 (%) … In this case, the process of forming a seamless steel pipe into a predetermined shape by hot working is 850
A case where the workpiece is reheated by charging it into a heating furnace maintained at a temperature of 0.degree. C. or higher is also included in the embodiment. (Function) Next, the reasons for specifying the component composition and process steps in this invention will be described below. First, the reason for limiting the chemical components is as follows. C: 0.06-0.20% C is essential for improving hardenability and obtaining high strength, and if it is less than 0.06%, it has no effect and
If it exceeds 0.20%, the carbon equivalent becomes excessive and increases the susceptibility to weld cracking, making it unsuitable for line pipes and structural steel pipes, which are the subject of this invention.
It was limited to 0.06-0.20%. Si: 0.10 to 0.50% Si is necessary for deoxidizing steel, and if it is less than 0.10%, it has no effect, and if it exceeds 0.50%, it will cause cracks in the steel billet or impair weldability. 0.50%
limited to. Mn: 0.5 to 2.0% Mn is effective in improving hardenability and increasing strength, but if it is less than 0.5% it is ineffective, and if it exceeds 2.0% it impairs weldability and workability, so 0.5 to 2.0% limited to. Al: 0.01~0.1% Al is an element necessary for deoxidation, but if it is less than 0.01% it is ineffective, and if it exceeds 0.1% it remains in the steel as alumina inclusions and deteriorates toughness, so 0.01~ Limited to 0.1%. B: 0.0005 to 0.0050% B is a very effective element in trace amounts to improve the hardenability of steel, but it is ineffective at less than 0.0005%, while when it exceeds 0.0050% it forms precipitates and impairs toughness. Since it causes deterioration, it is limited to the range of 0.0005 to 0.0050%. Ni: 5% or less Ni is useful for improving the toughness of the base metal and the welded part, and is preferably 0.2% or more, but it is also a very expensive element, so the upper limit is set to 5% or less. Cr: 1% or less Cr contributes to improving hardenability and is preferably 0.1% or more, but if it exceeds 1%, weldability is impaired, so it is set to 1% or less. Mo: 1% or less Mo has the same effects as Ni, and is also effective in improving hardenability and suppressing temper brittleness, especially at 0.05% or more, but it is very expensive and is an element that also increases carbon equivalent. It was set to 1% or less. Cu: 0.5% or less Cu contributes to increasing corrosion resistance and is preferably 0.1% or more, but if it exceeds 0.5%, it increases the cracking susceptibility of the steel billet and impairs weldability, so it is set to 0.5% or less. V: 0.1% or less V is desirable as a precipitation-strengthening element, and at 0.01% or more it is effective in increasing the strength after tempering, but when it exceeds 0.1%, it causes cracks in the steel billet.
Also, since it inhibits toughness, it is set at 0.1% or less. Nb: 0.1% or less Nb contributes to the refinement of austenite grains and significantly increases strength through precipitation strengthening at 0.01% or more, but if it exceeds 0.1%, it causes cracks in the steel billet and impairs weldability. Therefore, it was set to 0.1% or less. Ca: 0.010% or less Ca is effective at 0.0010% or more to make the shape of the sulfide spheroidal, particularly to improve the toughness in the direction perpendicular to the pipe length, and to prevent hydrogen-induced cracking. If it exceeds this, inclusions will form and the toughness will be impaired, so the content was limited to 0.010% or less. P: 0.03% or less P is an impurity contained in steel, and the lower the content, the better. If it exceeds 0.03%, the toughness will deteriorate significantly and temper brittleness will occur, so the upper limit was set at 0.03%. S: 0.015% or less S is also an impurity contained in steel, and the lower the content, the better. If it exceeds 0.015%, the toughness will be impaired, so please set the upper limit.
It was set at 0.015%. N: 0.0010 to 0.0060% N is an impurity contained in steel and it is industrially difficult to reduce it to less than 0.0010%, so the lower limit is set to 0.0010.
%. Moreover, if it exceeds 0.0060%, the toughness of the weld zone will be impaired, and even if the required amount of Ti is added, giant TiN precipitates will be formed, impairing the toughness of the base metal, so the upper limit was set at 0.0060%. As already described, Ti is an essential element in this invention, ensuring the hardenability effect of B, and
In order to prevent toughness deterioration due to Ti, it is limited to the range defined by the following formula: 3.42N−0.008(%)Ti3.42N+0.008(%)...Ti>0(%)... Next, the reason for limiting the manufacturing conditions will be explained. In the production of seamless steel pipes, billet 1200
Heating in the range of ~1300℃ is a necessary condition for processing with a drilling machine, and in this invention, Ti, N
This is a prerequisite for keeping the ratio within the appropriate range, so the heating temperature is 1200 to 1300℃.
limited to. Next, direct quenching after hot working is widely practiced in the field of thick plates, for example, and has economical effects due to thermal energy savings and higher strength due to increased burn resistance. Although the direct quenching method is well known in the steel pipe manufacturing field, it has not been put into practical use for steel pipes with low hardenability such as low carbon steel. That is, in the case of seamless steel pipes, compared to thick plates,
This is because the billet was heated to a temperature as high as 100°C, making it impossible to effectively utilize the effect of B as described above. This invention makes it possible to manufacture low-carbon seamless steel pipes by direct quenching by optimizing the composition, and fully exhibits the economical and high-strength effects. Although this is the basic step in this invention, the quenching temperature is important in direct quenching. The temperature for direct quenching was limited to 750°C or higher because at temperatures lower than 750°C, a considerable amount of ferrite may be formed in the structure after quenching, and under such conditions the strength is low. It is. Hardening should originally be performed from the Ar 3 transformation point or higher, and the temperature of Ar 3 should be determined depending on the component, but it is technically difficult to determine the 3 Ar points that correspond to the direct quenching process. Have difficulty. Even in the component system with the lowest hardenability included in this invention, it was recognized that if direct quenching is performed at a temperature of 750°C or higher, the structure after quenching will be composed of martensite, bainite, etc. The minimum quenching temperature was set at 750°C. In general, for seamless steel pipes, the final hot processing is often performed using a sizer or stretch reducer, but when the wall thickness of the steel pipe is thin, the temperature drops during these final processings, resulting in direct processing. There may be cases where it is not possible to maintain the temperature of 750°C or higher required for quenching. In such cases, it is necessary to raise the temperature of the entire tube by charging it into a reheating furnace before final processing, and in normal cases, heating to 850℃ or higher will ensure a temperature of 750℃ or higher before quenching. Therefore, in this case, it is recommended that the lower limit of the reheating furnace temperature be 850°C. Various types of quenching equipment for steel pipes have been devised, including ring spray, immersion, and axial flow types, and any of these can be used as a quenching method during direct quenching. Among these, quenching equipment that applies a cooling water flow along the axial direction of the steel pipe at the inner and outer circumferences of the steel pipe (Japanese Patent Application Laid-open Nos. 57-85930 and 114616) has a high hardening ability. Suitable for direct quenching of low carbon high strength seamless steel pipes. Tempering may be carried out according to a conventional method at a temperature of Ac 1 or less. (Example) Next, the effect of this invention will be explained by giving an example. Table 1 shows the chemical composition of the steel according to the invention and the comparative steel, and Table 2 is an example of the manufacturing conditions and the mechanical properties obtained.

【表】【table】

【表】 表2において直接焼入れ−焼もどし後の破面遷
移温度vTrsは、比較鋼O、P、Q及びRの場
合、Ti、Nの含有範囲が適切でないため非常に
劣るのに対し、供試鋼A、B、C、D、E、F、
G、H、I、J、K、L、M及びNではvTrsが
低く、極めて優れた靭性を示すことが理解されよ
う。 また各供試鋼を用いても通常の再加熱焼入れを
行なう場合には、直接焼入法に比べて強度が若干
低くなることがわかる。 なお表2のNo.27は、この発明による成分を有す
る鋼であつても焼入温度が740℃と低下すると十
分な強度および靭性が得られないことを示す例で
ある。 (発明の効果) これらの実施例に示されるように、この発明に
よれば強度・靭性がともに優れた低炭素継目無鋼
管を直接焼入法により製造でき、その経済的、技
術的効果は極めて大である。
[Table] In Table 2, the fracture surface transition temperature vTrs after direct quenching and tempering is very inferior in the case of comparative steels O, P, Q, and R because the content ranges of Ti and N are not appropriate. Test steel A, B, C, D, E, F,
It will be understood that G, H, I, J, K, L, M and N have low vTrs and exhibit extremely excellent toughness. Furthermore, it can be seen that even if each sample steel is used, when normal reheating and quenching is performed, the strength is slightly lower than when using the direct quenching method. Note that No. 27 in Table 2 is an example showing that even with steel having the components according to the present invention, sufficient strength and toughness cannot be obtained when the quenching temperature is lowered to 740°C. (Effects of the Invention) As shown in these examples, according to the present invention, a low carbon seamless steel pipe with excellent strength and toughness can be manufactured by direct quenching, and its economic and technical effects are extremely high. It's large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は直接焼入れ後の硬さ分布を示し、Al
−B系では焼入性が不十分であるのに対し、Ti
−B系では、十分に焼きの入ることを示すグラ
フ、第2図はΔTi=Ti−3.42Nがある適正範囲
(−0.008%〜+0.008%)にある場合に低い遷移
温度、すなわち高靭性が得られることを示すグラ
フである。
Figure 1 shows the hardness distribution after direct quenching, and shows the hardness distribution after direct quenching.
-B system has insufficient hardenability, while Ti
In the -B series, the graph showing sufficient hardening, Figure 2 shows that when ΔTi=Ti−3.42N is within a certain appropriate range (−0.008% to +0.008%), the transition temperature is low, that is, high toughness. This is a graph showing that the following can be obtained.

Claims (1)

【特許請求の範囲】 1 C:0.06〜0.20重量%、 Si:0.10〜0.50重量%、 Mn:0.5〜2.0重量% Al:0.01〜0.1重量% B:0.0005〜0.0050重量%と、 Ni:5重量%以下、 Cr:1重量%以下、 Mo:1重量%以下、 Cu:0.5重量%以下、 V:0.1重量%以下、 Nb:0.1重量%以下及び Ca:0.010重量%以下を P:0.03重量%以下及び S:0.015重量%以下 において含有しかつ、 N:0.0010〜0.0060重量%を、N含有量に応じ
下記、式に従うTiとともに含有し、残部鉄
及び不可避的混入元素よりなる組成の鋼を、1200
℃以上1300℃以下の温度に加熱して熱間加工によ
り、所定形状の鋼管に成形すること、 この熱間加工後750℃以上の温度にてただちに
焼入れすること、 次いでAc1以下の温度で焼戻すこと、 の結合を特徴とする直接焼入法による低炭素高強
度継目無鋼管の製造方法。 記 3.42N−0.008(重量%)Ti3.42N +0.008(重量%) … Ti>0(重量%) … 2 熱間加工による所定形状の継目無鋼管に成形
する過程が、その最終加工に際して、850℃以上
の温度に保持された加熱炉に装入して被加工材を
再加熱する工程を含む、特許請求の範囲1記載の
方法。
[Claims] 1 C: 0.06 to 0.20% by weight, Si: 0.10 to 0.50% by weight, Mn: 0.5 to 2.0% by weight, Al: 0.01 to 0.1% by weight, B: 0.0005 to 0.0050% by weight, and Ni: 5% by weight. % or less, Cr: 1% by weight or less, Mo: 1% by weight or less, Cu: 0.5% by weight or less, V: 0.1% by weight or less, Nb: 0.1% by weight or less, Ca: 0.010% by weight or less, P: 0.03% by weight and S: 0.015% by weight or less, and N: 0.0010 to 0.0060% by weight, depending on the N content, along with Ti according to the formula below, and the balance consists of iron and unavoidable mixed elements, 1200
Shape the steel pipe into a specified shape by heating to a temperature of 1300°C or above and hot working, immediately quenching at a temperature of 750°C or above after hot working, and then quenching at a temperature of Ac 1 or below. A method for producing a low-carbon, high-strength seamless steel pipe by a direct quenching method, which is characterized by the following: Note: 3.42N−0.008 (wt%) Ti3.42N +0.008 (wt%) … Ti > 0 (wt%) … 2 The process of forming a seamless steel pipe into a predetermined shape by hot working, during its final processing, The method according to claim 1, comprising the step of reheating the workpiece by charging it into a heating furnace maintained at a temperature of 850° C. or higher.
JP17315983A 1983-09-21 1983-09-21 Preparation of high strength low carbon seamless steel pipe by direct hardening method Granted JPS6067623A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP17315983A JPS6067623A (en) 1983-09-21 1983-09-21 Preparation of high strength low carbon seamless steel pipe by direct hardening method
JP27523686A JPS62149814A (en) 1983-09-21 1986-11-20 Production of low-carbon high-strength seamless steel pipe by direct hardening method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17315983A JPS6067623A (en) 1983-09-21 1983-09-21 Preparation of high strength low carbon seamless steel pipe by direct hardening method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP27523686A Division JPS62149814A (en) 1983-09-21 1986-11-20 Production of low-carbon high-strength seamless steel pipe by direct hardening method

Publications (2)

Publication Number Publication Date
JPS6067623A JPS6067623A (en) 1985-04-18
JPS6216250B2 true JPS6216250B2 (en) 1987-04-11

Family

ID=15955189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17315983A Granted JPS6067623A (en) 1983-09-21 1983-09-21 Preparation of high strength low carbon seamless steel pipe by direct hardening method

Country Status (1)

Country Link
JP (1) JPS6067623A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62151523A (en) * 1985-12-25 1987-07-06 Kawasaki Steel Corp Manufacture of refined seamless line pipe having low yield ratio
JPH0364415A (en) * 1989-07-31 1991-03-19 Nippon Steel Corp Production of high-toughness seamless low alloy steel tube
WO1996036742A1 (en) * 1995-05-15 1996-11-21 Sumitomo Metal Industries, Ltd. Process for producing high-strength seamless steel pipe having excellent sulfide stress cracking resistance
JP5119574B2 (en) * 2005-04-26 2013-01-16 Jfeスチール株式会社 Heat treatment method for seamless steel pipe made of Ti-added low carbon steel
CN103866185B (en) * 2014-03-14 2016-01-20 莱芜钢铁集团有限公司 A kind of preparation method of online manufacture low cost superfine crystal particle transformation induced plasticity steel seamless tube
WO2017050227A1 (en) * 2015-09-24 2017-03-30 宝山钢铁股份有限公司 Seamless steel tube with high strength and toughness and manufacturing method therefor
CN106555045A (en) 2015-09-24 2017-04-05 宝山钢铁股份有限公司 A kind of seamless steel pipe press quenching cooling technique and manufacture method of utilization waste heat

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5097517A (en) * 1973-12-28 1975-08-02
JPS54132421A (en) * 1978-04-05 1979-10-15 Nippon Steel Corp Manufacture of high toughness bainite high tensile steel plate with superior weldability
JPS5543051A (en) * 1978-09-22 1980-03-26 Chisso Corp Preparation of dialkyldichlorosilane
JPS5619373A (en) * 1979-07-25 1981-02-24 Mitsubishi Electric Corp Electromagnetic coupling device
JPS589918A (en) * 1981-07-11 1983-01-20 Kawasaki Steel Corp Production of sulfide stress corrosion cracking resistant steel material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5097517A (en) * 1973-12-28 1975-08-02
JPS54132421A (en) * 1978-04-05 1979-10-15 Nippon Steel Corp Manufacture of high toughness bainite high tensile steel plate with superior weldability
JPS5543051A (en) * 1978-09-22 1980-03-26 Chisso Corp Preparation of dialkyldichlorosilane
JPS5619373A (en) * 1979-07-25 1981-02-24 Mitsubishi Electric Corp Electromagnetic coupling device
JPS589918A (en) * 1981-07-11 1983-01-20 Kawasaki Steel Corp Production of sulfide stress corrosion cracking resistant steel material

Also Published As

Publication number Publication date
JPS6067623A (en) 1985-04-18

Similar Documents

Publication Publication Date Title
US4062705A (en) Method for heat treatment of high-toughness weld metals
JPS6043425A (en) Production of hot rolled composite structure steel sheet having high strength and high workability
JPS59211528A (en) Production of non-tempered steel having low yield ratio
JPH0421718A (en) Production of high strength steel excellent in sulfide stress cracking resistance
JPS6216250B2 (en)
JPS61165207A (en) Manufacture of unrefined steel plate excellent in sour-resistant property
JP2000256777A (en) High tensile strength steel plate excellent in strength and low temperature toughness
JPH08104922A (en) Production of high strength steel pipe excellent in low temperature toughness
JPH11172374A (en) Bent pipe with high strength and high toughness, and its production
JPS62149814A (en) Production of low-carbon high-strength seamless steel pipe by direct hardening method
JPH07110970B2 (en) Method for producing acicular ferritic stainless steel with excellent resistance to stress corrosion cracking
JP2003342638A (en) Process for manufacturing high-strength bent tube
JPH09295067A (en) Manufacture of high strength bent pipe excellent in toughness at welded metal part
JPH09263831A (en) Production of extra thick high strength bent pipe excellent in toughness at low temperature
JPS637328A (en) Production of steel having excellent sulfide corrosion cracking resistance
JPH08269566A (en) Production of high strength and high toughness uoe steel pipe excellent in sr characteristic
JPS62149845A (en) Cu precipitation type steel products having excellent toughness of welded zone and its production
JPH07268457A (en) Production of thick steel plate for line pipe, having high strength and high toughness
JPS60149722A (en) Manufacture of cu added steel having superior toughness at low temperature in weld zone
JPS59150019A (en) Production of seamless steel pipe having high toughness
JPH02156021A (en) Manufacture of high tensile steel sheet
JPH0693371A (en) Quenched and tempered high tension steel for large heat input welding excellent in site weldability and jig mark cracking resistance and its production
JPH04325625A (en) Production of non-ni-added-type high tensile strength steel with high toughness
JPS6077926A (en) Production of seamless steel pipe having high toughness, high strength and low yield ratio
JPH049847B2 (en)