JPS62161911A - Lance for converter blowing - Google Patents

Lance for converter blowing

Info

Publication number
JPS62161911A
JPS62161911A JP61003240A JP324086A JPS62161911A JP S62161911 A JPS62161911 A JP S62161911A JP 61003240 A JP61003240 A JP 61003240A JP 324086 A JP324086 A JP 324086A JP S62161911 A JPS62161911 A JP S62161911A
Authority
JP
Japan
Prior art keywords
nozzle
oxygen
lance
secondary combustion
sub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61003240A
Other languages
Japanese (ja)
Other versions
JPH0377248B2 (en
Inventor
Nobumoto Takashiba
高柴 信元
Shinji Kojima
小島 信司
Rinzo Tachibana
橘 林三
Fumiaki Yoshikawa
文明 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP61003240A priority Critical patent/JPS62161911A/en
Priority to US06/897,524 priority patent/US4746103A/en
Priority to CA000516195A priority patent/CA1293121C/en
Priority to DE8686401842T priority patent/DE3671472D1/en
Priority to EP86401842A priority patent/EP0214902B1/en
Priority to BR8603962A priority patent/BR8603962A/en
Priority to KR1019860006818A priority patent/KR930007311B1/en
Publication of JPS62161911A publication Critical patent/JPS62161911A/en
Publication of JPH0377248B2 publication Critical patent/JPH0377248B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

PURPOSE:To increase the burning rate of CO generated in a furnace by 15-20% as compared to the conventional lance by providing an auxiliary nozzle for secondary combustion in addition to a main nozzle for refining to a lance, forming the auxiliary nozzle into the shape at which the flow rate of injection is made to subsonic speed and separating an oxygen flow passage for the main nozzle and oxygen flow passage for the auxiliary nozzle. CONSTITUTION:The auxiliary nozzle 6 for secondary combustion is provided in addition to the main nozzle for refining to the lance for converter refining. The section of the flow passage of the nozzle 6 is formed into, for example, the divergent shape sharply expanding from a diameter d1 to a diameter d2 so that the flow rate of injection is made to subsonic speed. Said section is otherwise formed in to the shape provided internally with resistor for gas flow, etc., such as perforated plate or plate for changing the section of the flow passage. The oxygen flow passage for the main nozzle and the oxygen flow passage for the auxiliary nozzle are separately provided.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、転炉吹錬用ランスに係り、特に2次燃焼用の
酸素流量を調整し炉内保護をしながら効率よく2次燃焼
ができるランスに関し、転炉吹錬の分野で利用される。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a lance for blowing in a converter furnace, and in particular, a method for efficiently performing secondary combustion while protecting the inside of the furnace by adjusting the oxygen flow rate for secondary combustion. Regarding the lance that can be used, it is used in the field of converter blowing.

〔従来の技術〕[Conventional technology]

転炉における炉内反応を特徴づけるものは、上吹きラン
スノズルから供給される酸素ジェットによって生じる鋼
浴の激しい撹拌と急速な反応である。高純度、高エネル
ギーの気体酸素流は火点(酸素ジェットと鋼浴の衝突面
)で脱炭反応に代表されるガス−鋼浴反応を起こさせる
と共に石灰の滓化を促し、脱りんに代表されるスラグ−
鋼浴間反応を同時に進行させる。転炉用原料の溶銑配合
率が95%前後と高い場合は、溶銑中のCが溶鋼温度上
昇のための熱源として十分であったが、溶銑配合率を低
下させたりスクラップや鉄鉱石の配合割合を高めると、
何らかの方法で溶鋼温度上昇のための熱源を補償する必
要が生じる。この方法としてコークス等の炭材添加法と
共に、吹錬時脱炭によって発生するCOガスを吹錬用と
は別の一/ズルから噴射した酸素で燃焼させ、これを鋼
浴に伝達させるいわゆる2次燃焼法がある。
The in-furnace reaction in a converter is characterized by intense stirring of the steel bath and rapid reaction caused by an oxygen jet supplied from a top-blown lance nozzle. The high-purity, high-energy gaseous oxygen flow causes a gas-steel bath reaction, typically the decarburization reaction, at the fire point (the collision surface between the oxygen jet and the steel bath), and also promotes the formation of lime slag, resulting in dephosphorization. slag
The reactions between the steel baths proceed simultaneously. When the hot metal content ratio of the raw material for the converter was high, around 95%, the carbon in the hot metal was sufficient as a heat source to raise the temperature of the molten steel. When you increase
It becomes necessary to compensate for the heat source for increasing the temperature of the molten steel in some way. In addition to the addition of carbonaceous materials such as coke, this method involves burning the CO gas generated by decarburization during blowing with oxygen injected from a separate tube other than the one used for blowing, and transmitting this to the steel bath. There is a secondary combustion method.

この2次燃焼用の酸素吹込みランスとして種々提案され
ているが、その目的とするところは、従来の吹錬用酸素
噴出用主ノズルに加えて、その主ノズルの上方に2次燃
焼用酸素噴出用副ノズルを備えたものである。その代表
的なものとして、待5FJ昭53−102205が開示
されている。これは第5図(A)、(B)に示す如(、
ランス2に吹錬用主ノズル4と2次燃焼用副ノズル6を
それぞれ3〜5個交互に配置し、副ノズル6は主ノズル
4の上方位置とし、いずれも中央の酸素流路8から分岐
し、また冷却水路10をm、tた転炉吹込用ランスであ
る。
Various oxygen injection lances have been proposed for secondary combustion, but their purpose is to install oxygen for secondary combustion above the main nozzle in addition to the conventional main nozzle for blowing oxygen for blowing. It is equipped with a sub-nozzle for ejection. As a representative example, Machi 5FJ 1985-102205 is disclosed. This is shown in Figures 5 (A) and (B).
Three to five main nozzles 4 for blowing and auxiliary nozzles 6 for secondary combustion are arranged alternately on the lance 2, the auxiliary nozzles 6 are positioned above the main nozzle 4, and both branch from the central oxygen flow path 8. It is also a lance for blowing into a converter with a cooling waterway 10 of m and t.

このランス2を使用する炉内2次燃焼操業は次のように
行われろ。一般に転炉炉内はほぼ大気圧に等しく、ラン
ス2の酵素供給管内圧は数〜10数kg/ctであり、
かつ主ノズル4はいわゆるラバール形状となっている乙
とから超音速で酸素が噴出する。従って鋼浴から1〜3
m程度のランス高さの場合でも、鋼浴に衝突する時は、
その圧力は鋼浴上面のスラグ浴静圧よりも高く、かつ1
00m/s以上にも及ぶ流速を維持していることがら鋼
浴面に達し、溶鋼を撹拌し急速な脱炭反応を促進する。
The in-furnace secondary combustion operation using this lance 2 is performed as follows. Generally, the pressure inside the converter furnace is approximately equal to atmospheric pressure, and the internal pressure of the enzyme supply pipe of lance 2 is several to several dozen kg/ct.
In addition, the main nozzle 4 has a so-called Laval shape, and oxygen is ejected at supersonic speed. Therefore 1-3 from the steel bath
Even if the lance height is about m, when it collides with the steel bath,
The pressure is higher than the slag bath static pressure on the top of the steel bath, and 1
Since the flow velocity is maintained at over 1,000 m/s, it reaches the surface of the steel bath, stirs the molten steel, and promotes rapid decarburization reactions.

一方、副ノズル6は主ノズル4よりも高い位置にあるこ
とと、ノズル形状をストレートとすることで音速で噴出
した酸素が鋼浴に達するエネルギーが小さいことから、
脱炭に利用するよりも主ノズル4で脱炭反応により発生
させたCoガスを燃焼させ、その燃焼熱を輻射もしくは
伝熱により溶鋼に伝達させるようにしている。乙のラン
ス2を使用した2次燃焼実績は、2次燃焼率が最大でも
30%であり、その着熱効率に至っては20%が限界で
あると報告されているが、一般に1よ燃焼効率はともか
く着熱効率は前記値より更に小さく、スクラップ配合率
で5%程度上昇させろことが実績限界である。
On the other hand, since the sub nozzle 6 is located higher than the main nozzle 4 and the nozzle has a straight shape, the energy of the oxygen ejected at the speed of sound reaching the steel bath is small.
Rather than using it for decarburization, the Co gas generated by the decarburization reaction is combusted in the main nozzle 4, and the combustion heat is transferred to the molten steel by radiation or heat transfer. In the secondary combustion results using Otsu's Lance 2, the maximum secondary combustion rate is 30%, and it is reported that the heat transfer efficiency is at the limit of 20%, but in general, the combustion efficiency is higher than 1. In any case, the heat transfer efficiency is even smaller than the above value, and the actual limit is to increase the scrap mixing ratio by about 5%.

しかるに、スクラップ価格はその供給量の増大から・漸
次下落する傾向にあり、いづれは溶銑より安価になるこ
とが想定され、事実欧米では高スクラップの配合吹錬が
種々の対策のもとて実行に移されている。従ってこうし
た高スクラップの配合吹錬に応えるべく2次燃焼率の向
上および着熱効率の増加が緊急の課題となっているが、
上記の如く現状においては十分の成果を得るに至ってい
ない。
However, the price of scrap is gradually decreasing due to the increase in its supply, and it is expected that it will eventually become cheaper than hot metal. It has been moved. Therefore, improving the secondary combustion rate and increasing the heat transfer efficiency have become urgent issues in order to respond to such high scrap compound blowing.
As mentioned above, at present, sufficient results have not been achieved.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明の目的は、上記従来技術の問題点を解決し、2次
燃焼効率および着熱効率を向上できる転炉吹錬用ランス
を提供するにある。
An object of the present invention is to provide a converter blowing lance that solves the problems of the prior art described above and can improve secondary combustion efficiency and heat transfer efficiency.

〔問題点を解決するための手段および作用〕本発明の要
旨とするところは次の如くである。
[Means and operations for solving the problems] The gist of the present invention is as follows.

すなわち、精錬用の主ノズルのほかに2次燃焼用の副ノ
ズルを有して成る転炉吹錬用ランスにおいて、前記副ノ
ズルは噴出流速が亜音速になる如く、先拡がり形状もし
くは内部に多孔板、流路断面変更板等のガス流抵抗体を
設けた形状また(よこれらの両者を組合せた形状であり
、前記主ノズル用酸素流路と前記副ノズル用酸素流路を
分離して設けたことを特徴とする転炉吹錬用ランスであ
る。
That is, in a converter blowing lance that has a sub nozzle for secondary combustion in addition to a main nozzle for refining, the sub nozzle has a tapered shape or has a porous hole inside so that the ejection flow velocity is subsonic. The oxygen flow path for the main nozzle and the oxygen flow path for the auxiliary nozzle are provided separately. This is a lance for converter blowing that is characterized by:

本発明者らは2次燃焼によるCoガス燃焼熱の溶鋼への
伝達は、主に次の二つの機構によることを種々のモデル
実験により見出した。その一つは、燃焼熱が炉内でフォ
ーミングしているスラグに直接伝達されてスラグ温度が
上昇し、フォーミングスラグが下降して溶鋼と接触する
際に鋼浴−スラグ界面で熱伝達され溶鋼;温度が上昇す
る機構であり、今一つは、CO燃焼帯の発熱が直接輻射
により溶鋼またはスラグに伝達されたり、あるいは輻射
により転炉炉壁に伝達され間接的に溶鋼の温度を上昇さ
せる機構である。
The present inventors have found through various model experiments that the transfer of Co gas combustion heat to molten steel by secondary combustion is mainly due to the following two mechanisms. One is that combustion heat is directly transferred to the slag forming in the furnace, raising the slag temperature, and when the forming slag descends and comes into contact with the molten steel, heat is transferred at the steel bath-slag interface, resulting in molten steel; This is a mechanism by which the temperature rises. Another mechanism is that the heat generated in the CO combustion zone is transmitted to the molten steel or slag by direct radiation, or it is transmitted to the converter wall by radiation and indirectly increases the temperature of the molten steel. .

他方、ガスの燃焼実験からは次の知見を得た。On the other hand, the following findings were obtained from gas combustion experiments.

すなわち、Coガスの燃焼速度は火炎伝播速度によって
決り、Coガスの場合この火炎伝播速度は10 m/ 
s以下、望ましくは数m/sQ下である。従って2次燃
焼が生じるのは供給酸素とCoガスの混合域での流速が
10 m/ s以下の範囲で急激に起こるので、2次燃
焼を発生せしめたい領域における酸素供給速度を前記火
炎伝播速度に制御することが必要となる。
That is, the combustion speed of Co gas is determined by the flame propagation speed, and in the case of Co gas, this flame propagation speed is 10 m/
s or less, preferably several m/sQ or less. Therefore, secondary combustion occurs rapidly when the flow velocity in the mixing region of supplied oxygen and Co gas is 10 m/s or less, so the oxygen supply velocity in the region where secondary combustion is desired to occur is determined by the flame propagation velocity. It is necessary to control the

一方、前記の種々の実験から2次燃焼帯は、炉内の鋼浴
の上方のフォーミングスラグの豊富な領域であることが
望ましく、ランス高さが鋼浴面から1.5〜4.0m程
度であれば、ランスのノズル噴出口から10〜4.0m
の範囲に前記火炎伝播速度となるように酸素噴出速度を
制御するのが最も効果的である。この時のノズル噴出速
度は亜音速であることが条件で望ましくは100m/S
以下である。
On the other hand, from the various experiments mentioned above, it is desirable that the secondary combustion zone is an area rich in forming slag above the steel bath in the furnace, and the lance height is about 1.5 to 4.0 m from the steel bath surface. If so, 10 to 4.0 m from the lance nozzle outlet.
It is most effective to control the oxygen injection speed so that the flame propagation speed falls within the range of . The nozzle ejection speed at this time should be subsonic, preferably 100 m/s.
It is as follows.

従って本発明においては、酸素流路内圧が亜音速望まし
くは100 m/S以下の副ノズルを設けた。
Therefore, in the present invention, a sub-nozzle is provided in which the internal pressure of the oxygen flow path is subsonic, preferably 100 m/s or less.

第1図に示した副ノズル6の実施例は流路断面を径d、
から径d2に急拡大した先拡がりの形状のものである。
The embodiment of the sub-nozzle 6 shown in FIG. 1 has a flow path cross section with a diameter d,
It has a tapering shape that suddenly expands from 1 to 2 in diameter to d2.

一般に圧縮性流体では流体が亜音速の領域で先拡がりノ
ズルに流入すると圧力が上昇し流速が低下する。転炉ラ
ンス内は数〜10数kg/redの圧力で酸素流速が2
00〜300 m/s程度であるから、第1図に示す如
き先拡がりの副ノズル6に酸素流路から流入する場合は
、流入部では音速に近い状態になるが、ノズル流入直後
から先拡がりの影響で酸素ガスの圧力が増加し流速は減
少し始め、亜音速の噴出流速を得ることができる。
Generally, in the case of a compressible fluid, when the fluid flows into a diverging nozzle in a subsonic region, the pressure increases and the flow velocity decreases. Inside the converter lance, the pressure is several to several dozen kg/red, and the oxygen flow rate is 2.
00 to 300 m/s, so when the oxygen flows from the oxygen flow path into the auxiliary nozzle 6 with a widening tip as shown in FIG. Under the influence of this, the pressure of oxygen gas increases and the flow velocity begins to decrease, making it possible to obtain a subsonic jet flow velocity.

第2図(A)、(B)は先拡がり形状の副ノズル6′の
内部多孔板12のガス流抵抗体を設けたものである。ま
た、第3図(A)〜(E)は先拡がり形状の副ノズル6
の内部に互違いの流路断面変更板1°4のガス流抵抗体
を設けたものである。これらは副ノズル6の先後端が先
拡がりの形状であり、更に中央部にはガス流抵抗体を設
けであるので流速の減速効果はより著しい。
FIGS. 2(A) and 2(B) show a sub-nozzle 6' having a flared tip, in which a gas flow resistor is provided in the internal porous plate 12. In addition, FIGS. 3(A) to 3(E) show the sub-nozzle 6 with a flared tip.
Gas flow resistors with alternating flow path cross-section changing plates of 1°4 are provided inside the gas flow chamber. In these cases, the front and rear ends of the sub-nozzle 6 are flared, and a gas flow resistor is provided in the center, so that the effect of reducing the flow velocity is even more remarkable.

本発明者らの実験によれば第1図において人口径d、、
出口径d2、拡大管部長さlとするとd2/d、= 1
.1〜?、 01d2く!く20od2の範囲が実用的
で効果のあることが認められた。
According to the experiments conducted by the present inventors, in Fig. 1, the population diameter d,
If the outlet diameter is d2 and the length of the expanded tube is l, then d2/d, = 1
.. 1~? , 01d2ku! It was found that a range of 20 od2 is practical and effective.

また、本発明においては、主ノズル用酸素流路と副ノズ
ル用酸素流路が分離して設けられている。
Further, in the present invention, the oxygen flow path for the main nozzle and the oxygen flow path for the sub nozzle are provided separately.

第4図、(A)、(B)、(C)は第1図に示した先拡
がり副ノズル6を採用したランス全体を示したもので(
B)の上半分は(A)のI−I線矢視断面図、下半分は
(A)のII−II線矢視断面図を示し、4個の吹錬用
酸素噴出用主ノズル4と4個の先拡がり2次燃焼用酸素
噴出用副ノズル6を備え、酸素流@8は主ノズル4月と
して主ノズル用酸素流路8A、主ノズル用酸素入口管座
16、および副ノズル6用として副ノズル用酸素流路8
B、副ノズル用酸素入口管座18が別個に設けられてい
る。
Figures 4, (A), (B), and (C) show the entire lance employing the flared secondary nozzle 6 shown in Figure 1.
The upper half of B) shows a cross-sectional view taken along the line II--II of (A), and the lower half shows a cross-sectional view taken along the line II-II of (A), showing the four main nozzles 4 for blowing oxygen and Equipped with four auxiliary nozzles 6 for secondary combustion oxygen injection with a widening tip, the oxygen flow @ 8 is for the main nozzle 4, oxygen flow path 8A for the main nozzle, oxygen inlet tube seat 16 for the main nozzle, and for the auxiliary nozzle 6. Oxygen flow path 8 for sub nozzle as
B. An oxygen inlet tube seat 18 for the sub-nozzle is provided separately.

また、ランスチップおよびランス外周は従来と同様に冷
却水路10によって炉内の熱から保護され、冷却水は給
水口管座20、排水口管座22によって給排水される。
Further, the lance tip and the outer periphery of the lance are protected from the heat in the furnace by the cooling water channel 10 as in the conventional case, and cooling water is supplied and drained by the water inlet pipe seat 20 and the drain port pipe seat 22.

本発明においては、上記の如く先拡がり形状の2次燃焼
用副ノズル6の酸素流路8Bを主ノズル用酸素流路8A
と別個に設けたが、これは次の2つの理由による。
In the present invention, as described above, the oxygen flow path 8B of the secondary combustion sub-nozzle 6 having a flared shape is replaced with the oxygen flow path 8A for the main nozzle.
This is provided separately for the following two reasons.

第1の理由は、前記の如く2次燃焼域を形成するため副
ノズル6から酸素吐出流速を100 m/S以下にする
と、吹錬開始のランス下降時および吹錬終了のランス上
昇時の酸素供給開始時および酸素供給停止的には燃焼域
が炉上方となることが避けられず、炉口や排熱回収設備
の損傷をきたすと共に、いたずらに転炉排ガスを燃焼さ
せるだけで溶鋼昇温に寄与させることができない。本発
明では副ノズル酸素流路8Bを別個に設け、2次燃焼用
酸素の供給開始時期および供給停止時期を吹錬用酸素の
それより遅らせたゆ早めたりすることにより、上記の燃
焼域の上昇を防止し、炉口や排熱回収設備の損傷を防止
することができる。
The first reason is that if the flow rate of oxygen discharged from the sub nozzle 6 is set to 100 m/s or less in order to form the secondary combustion zone as described above, the oxygen will be reduced when the lance descends at the start of blowing and when the lance rises at the end of blowing. When starting the oxygen supply and stopping the oxygen supply, it is unavoidable that the combustion zone will be above the furnace, causing damage to the furnace mouth and exhaust heat recovery equipment, and unnecessarily burning the converter exhaust gas, which will cause the temperature of the molten steel to rise. I can't make a contribution. In the present invention, the auxiliary nozzle oxygen flow path 8B is provided separately, and the timing of starting and stopping the supply of oxygen for secondary combustion is delayed or earlier than that of oxygen for blowing, thereby increasing the above-mentioned combustion range. It is possible to prevent damage to the furnace mouth and exhaust heat recovery equipment.

第2の理由は、従来のように第5図に示す如く吹錬用酸
素と2次燃焼用酸素を同一酸素流FIs8から供給する
と、各々のノズルのプロフィルにより、各々のノズルか
ら噴出する酸素量比が一定である。
The second reason is that when oxygen for blowing and oxygen for secondary combustion are supplied from the same oxygen flow FIs8 as shown in FIG. The ratio is constant.

しかし、実際の操業においては、脱炭期(吹錬中期)や
炉内スラグ量が増加して高着熱率が期待できる時期等の
2次燃焼用酸素量を増加させたい場合、あるいはこれと
反対に2次燃焼用酸素量を減少させたい場合があるので
、これらの炉況に対応して吹錬用酸素供給量とは別個に
2次燃焼用酸素供給量を調節するためである。
However, in actual operations, there are times when it is desired to increase the amount of oxygen for secondary combustion, such as during the decarburization period (mid-blowing period), when the amount of slag in the furnace increases and a high heat transfer rate can be expected, or when it is necessary to increase the amount of oxygen for secondary combustion. On the contrary, there are cases where it is desired to reduce the amount of oxygen for secondary combustion, so the purpose is to adjust the amount of oxygen supplied for secondary combustion separately from the amount of oxygen supplied for blowing in response to these furnace conditions.

第4図に示した本発明の実施例において、主ノズル用酸
素流路8Aの径をDl、副ノズル用酸素流路8Bの径を
D2としD2/D、= 1.23 、副ノズル6の仕様
ヲd2/d、= 1.65.1=20d2、副ノズル用
酸素流路8Bの圧力を10 kg/c+/とじた時、副
ノズル6の先端の酸素噴出流速は約95 m/ sであ
った。従って主ノズル4からマツハM)1の超音速で酸
素が鋼浴撹拌と脱炭に供され、一方副ノズル6からは9
5m/s程度の亜音速の酸素が噴出され、目標位置に燃
焼帯が形成され効率よく2次燃焼を行うことができた。
In the embodiment of the present invention shown in FIG. 4, the diameter of the oxygen flow path 8A for the main nozzle is Dl, the diameter of the oxygen flow path 8B for the sub nozzle is D2, D2/D, = 1.23, and the diameter of the oxygen flow path 8A for the sub nozzle 6 is D2. Specifications: d2/d, = 1.65.1 = 20d2, when the pressure in the sub-nozzle oxygen flow path 8B is 10 kg/c+/, the oxygen jet flow velocity at the tip of the sub-nozzle 6 is approximately 95 m/s. there were. Therefore, oxygen is supplied from the main nozzle 4 at a supersonic speed of Matsuha M) 1 for stirring and decarburizing the steel bath, while from the sub nozzle 6 9
Oxygen was ejected at a subsonic velocity of about 5 m/s, a combustion zone was formed at the target position, and secondary combustion could be performed efficiently.

〔実施例〕〔Example〕

第4図に図示の本発明の転炉上吹ランスを用い、底吹き
も0ト用して200t/ah転炉で主ノズルから500
 Nrn’/mi n 、単独に設けた副ノズル用酸素
流路を介して副ノズルから100〜170 Nrn’/
minの酸素を吹錬による脱炭期および炉内スラグ量に
適合させて吹込み、ランス高さ3.5mとした時、炉内
発生COガスの2次燃焼率は35〜40%で、従来の1
5〜25%増であるにもかかわらず2次燃焼帯形成域が
ランス先端から1〜ZmS鋼浴界面から上方1〜2mの
ほぼ理想的な領域に形成されることから、着熱効率が実
に60〜70%に達した。
Using the converter top blowing lance of the present invention shown in FIG.
Nrn'/min, 100 to 170 Nrn'/min from the sub nozzle via the separately provided oxygen flow path for the sub nozzle.
When the lance height is set to 3.5 m, the secondary combustion rate of the CO gas generated in the furnace is 35 to 40%, compared to the conventional method. 1
Despite the increase of 5 to 25%, the secondary combustion zone is formed in an almost ideal region from the tip of the lance to 1 to 2 m above the 1 to ZmS steel bath interface, so the heat transfer efficiency is actually 60%. ~70% was reached.

その結果、転炉原料中のスクラップ比を20%程度まで
高めることができ、従来のほぼ4倍の大量のスクラップ
を処理することができた。
As a result, it was possible to increase the scrap ratio in the converter raw material to about 20%, and it was possible to process approximately four times as much scrap as in the past.

更に上記の如く2次燃焼用酸素流路を吹錬用と別個に設
けて流量#御をすることにより、2次燃焼用酸素量を、
従来の吹錬用と2次燃焼用を同一流路から供給する場合
に比して約20%節減することができな。
Furthermore, as mentioned above, by providing an oxygen flow path for secondary combustion separately from that for blowing and controlling the flow rate, the amount of oxygen for secondary combustion can be adjusted to
Compared to the conventional case where blowing and secondary combustion are supplied from the same flow path, it is possible to save about 20%.

また、2次燃焼用酸素の供給開始時期を吹錬用酸素の供
給開始時よりランス高さで約1.5m遅らせ、かつ供給
停止時期をランス高さで約1.5m早めることで炉口部
をなんら損傷することなく2次燃焼を行うことができた
In addition, by delaying the start of supply of oxygen for secondary combustion by approximately 1.5 m in lance height compared to the start of supply of oxygen for blowing, and advancing the supply stop time by approximately 1.5 m in lance height, the furnace opening Secondary combustion could be carried out without any damage.

〔発明の効果〕〔Effect of the invention〕

本発明は上記実施例からも明らかな如く、副ノズルの噴
出流速が亜音速になる如(先拡がりおよび/またはガス
流体抵抗体を備えた形状の副ノズルを設け、かつランス
内部に副ノズル用2次燃焼酸素流路を独立して設け、2
次燃焼用酸素の供給量と供給時期を制御することにより
、転炉炉口部を損傷することなく、炉内発生のGo燃焼
率を従来に比し15〜20%増加し、その上転炉装入原
料のスクラップ比を従来の4倍に増加させる画期的効果
をあげることができた。
As is clear from the above embodiments, the present invention provides a sub nozzle with a shape such that the ejection flow velocity of the sub nozzle becomes subsonic (with a diverging tip and/or a gas fluid resistance element), and a sub nozzle for use in the sub nozzle inside the lance. A secondary combustion oxygen flow path is provided independently, and 2
By controlling the supply amount and supply timing of oxygen for the next combustion, the Go combustion rate generated in the furnace can be increased by 15 to 20% compared to the conventional method without damaging the converter mouth. We were able to achieve the revolutionary effect of increasing the scrap ratio of charged raw materials to four times the conventional rate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の急拡大先拡がりの副ノズルの縦断面図
、第2図(A)、(B)はいずれも本発明の流体抵抗体
を設けた副ノズルを示し、(A)は縦断面図、(B)は
(A)のB−B線矢視断面図、第3図(A)〜(E)は
いずれも本発明のその他の実施態様を示し、(A)は縦
断面図、(B)〜(E)は(A)の各部の断面図、第4
図(A)、(B) 、(C)はいずれも本発明実施例の
ランスを示し、(A)は全体の縦断面図、(B)の上半
分は(A)のI−I線矢視断面図、(B)の下半分は(
A)のIf−It線矢視断面図、(C)は(A)の副ノ
ズルの先拡がりの詳細を示す部分拡大断面図、第5図(
A)、(B)はいずれも従来の転炉吹錬用ランスを示し
くA)は横断面図、(B)は(A)のB−B折線矢視断
面図である。 2・・・吹錬用ランス     4・・吹錬用主ノズル
6・・・2次燃焼用副ノズル  8・・・酸素流路8A
・・・主ノズル用酸素流路   8B・・・副ノズル用
酸素流路10・・・冷却水路      12・・・多
孔板14・・・流路断面変更板
FIG. 1 is a vertical cross-sectional view of a rapidly expanding sub-nozzle of the present invention, and FIGS. 2(A) and (B) both show a sub-nozzle provided with a fluid resistance element of the present invention. 3(A) to 3(E) all show other embodiments of the present invention, and (A) is a longitudinal sectional view of FIG. Figures (B) to (E) are cross-sectional views of each part of (A).
Figures (A), (B), and (C) all show lances according to embodiments of the present invention, where (A) is a longitudinal cross-sectional view of the whole, and the upper half of (B) is a diagram taken along the line I-I in (A). The lower half of the cross-sectional view (B) is (
A) is a cross-sectional view taken along the line If-It, (C) is a partially enlarged cross-sectional view showing details of the expanding tip of the sub nozzle in (A), and FIG.
Both A) and (B) show a conventional converter blowing lance, A) is a cross-sectional view, and (B) is a cross-sectional view taken along the line BB in (A). 2...Lance for blowing 4...Main nozzle for blowing 6...Sub-nozzle for secondary combustion 8...Oxygen flow path 8A
...Oxygen channel for main nozzle 8B...Oxygen channel for sub-nozzle 10...Cooling water channel 12...Perforated plate 14...Channel cross-section changing plate

Claims (1)

【特許請求の範囲】[Claims] (1)精錬用の主ノズルのほかに2次燃焼用の副ノズル
を有して成る転炉吹錬用ランスにおいて、前記副ノズル
は噴出流速が亜音速になる如く先拡がり形状もしくは内
部に多孔板、流路断面変更板等のガス流抵抗体等を設け
た形状またはこれらの両者を組合せた形状であり、前記
主ノズル用酸素流路と前記副ノズル用酸素流路を分離し
て設けたことを特徴とする転炉吹錬用ランス。
(1) In a converter blowing lance that has a secondary combustion nozzle in addition to the main refining nozzle, the secondary nozzle has a tapered shape or a porous interior so that the ejection flow velocity is subsonic. The oxygen flow path for the main nozzle and the oxygen flow path for the sub-nozzle are provided separately. A converter blowing lance characterized by:
JP61003240A 1985-08-20 1986-01-10 Lance for converter blowing Granted JPS62161911A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP61003240A JPS62161911A (en) 1986-01-10 1986-01-10 Lance for converter blowing
US06/897,524 US4746103A (en) 1985-08-20 1986-08-18 Lance for blow-refinement in converter
CA000516195A CA1293121C (en) 1985-08-20 1986-08-18 Lance for blow-refinement in converter
DE8686401842T DE3671472D1 (en) 1985-08-20 1986-08-19 LANZE TO BLOW AND FRESH IN THE CONVERTER.
EP86401842A EP0214902B1 (en) 1985-08-20 1986-08-19 Lance for blow-refinement in converter
BR8603962A BR8603962A (en) 1985-08-20 1986-08-19 BLOW FOR REFINING IN A CONVERTER
KR1019860006818A KR930007311B1 (en) 1985-08-20 1986-08-19 Lance for blow-refinement in converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61003240A JPS62161911A (en) 1986-01-10 1986-01-10 Lance for converter blowing

Publications (2)

Publication Number Publication Date
JPS62161911A true JPS62161911A (en) 1987-07-17
JPH0377248B2 JPH0377248B2 (en) 1991-12-10

Family

ID=11551930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61003240A Granted JPS62161911A (en) 1985-08-20 1986-01-10 Lance for converter blowing

Country Status (1)

Country Link
JP (1) JPS62161911A (en)

Also Published As

Publication number Publication date
JPH0377248B2 (en) 1991-12-10

Similar Documents

Publication Publication Date Title
US3427151A (en) Process and apparatus for introducing a gaseous treating stream into a molten metal bath
AU715437B2 (en) A burner
EP3514248A1 (en) Bottom stirring tuyere and method for operating a basic oxygen furnace
KR930007311B1 (en) Lance for blow-refinement in converter
US5635130A (en) Combined oxygen blowing/fuel burner lance assembly
JPS62161911A (en) Lance for converter blowing
JP4119336B2 (en) Method for melting and refining porous burners and lances and cold iron sources
US5830259A (en) Preventing skull accumulation on a steelmaking lance
JP4206736B2 (en) Top blowing lance and converter operation method using it
US3519259A (en) Furnace jet devices
JP2001220617A (en) Gas blowing lance
JPH0377247B2 (en)
JPS6233710A (en) Method for heating molten steel in converter
JP2002285224A (en) Blowing method into converter and blowing lance for converter
JP4448231B2 (en) Top blowing lance for blowing with expansion control laval nozzle
CN207738801U (en) A kind of dual channel design RH refining furnace top blast nozzles
RU1768874C (en) Burner
JP2010047830A (en) Method for operating converter
JPS636188Y2 (en)
SU855004A1 (en) Tuyere for oxygen blasting of electric arc furnace bath
SU1004476A1 (en) Fuel-oxygen tuyere
SU1765183A1 (en) Method for melting steel in hearth steel-melting unit
JPS636189Y2 (en)
RU1813100C (en) Method of steel production
JPH0512271Y2 (en)