JPS62159490A - Method for selection of semiconductor laser - Google Patents

Method for selection of semiconductor laser

Info

Publication number
JPS62159490A
JPS62159490A JP239286A JP239286A JPS62159490A JP S62159490 A JPS62159490 A JP S62159490A JP 239286 A JP239286 A JP 239286A JP 239286 A JP239286 A JP 239286A JP S62159490 A JPS62159490 A JP S62159490A
Authority
JP
Japan
Prior art keywords
laser
dfb laser
ratio
cleaved
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP239286A
Other languages
Japanese (ja)
Inventor
Yoshihiro Koizumi
善裕 小泉
Ikuo Mito
郁夫 水戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP239286A priority Critical patent/JPS62159490A/en
Publication of JPS62159490A publication Critical patent/JPS62159490A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To select the elements of stable single mode operation by measuring a ratio of external differential quantum efficiency of both beam emitting planes of a both-end cleaved type distribution feedback semiconductor DFB laser and a one-side nonreflective coating type DFB laser. CONSTITUTION:A pulse from a pulse driving circuit (PDC) is applied to an asymmetrical DFB laser in which a reflectance of one side is restrained at 10% by coating it with an SiN film and that of another side as a cleaved plane is made 32% and the ratio of the laser beam outputs from the front and back sides of the DFB laser is measured by a beam receiver (BR). The DFB laser elements whose ratio of the laser beam output of the cleaved plane side to that of the SiN film coated plane side is 0.3-0.8 are selected as nondefectives. In case of a both-end cleaved type DFB laser, the elements whose ratio of the beam outputs of the both edge planes is 0.6-1.3 are selected as nondefectives.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は分布帰還型半導体レーザの選別方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for selecting distributed feedback semiconductor lasers.

〔従来の技術〕[Conventional technology]

レーザ共振器中に回折格子を備えた分布帰還型半導体レ
ーザ(Distributed Fe@d Back 
La5er以下DFBレーザと略す)は、単一軸モード
発振を有する光源であるため、近年、急速に開発が進め
られ長距離大容量光通信用光源、光計測器用光源として
実用化されつつある。しかし、1枚のウェハからDFB
レーザを切り出すと、そのすべてが必ずしも単一軸モー
ド発振するわけではなく、発振軸モードが複数本存在し
たり、発蛋軸モードが単一であっても、出力レベルによ
シ発振軸モードの変化を起こしたりすることがある。(
以下この現象をキンクと称す)。1枚のウェハから、キ
ンクの現われる素子数を減らす対策として片側の光出射
面を無反射コーティング(反射率約10%)する方法が
ある。しかし、この構造を採υ入れても完全にキンクの
起こる素子をなくすことはできない。
Distributed feedback semiconductor laser (Distributed Fe@d Back) equipped with a diffraction grating in the laser cavity
Since the La5er (hereinafter abbreviated as DFB laser) is a light source having single-axis mode oscillation, its development has progressed rapidly in recent years, and it is being put into practical use as a light source for long-distance, large-capacity optical communications and a light source for optical measuring instruments. However, DFB from one wafer
When a laser is cut out, not all of it oscillates in a single axis mode, and even if there are multiple oscillation axis modes or a single oscillation axis mode, the oscillation axis mode changes depending on the output level. It may cause (
(Hereinafter, this phenomenon will be referred to as kink). As a measure to reduce the number of elements in which kinks appear from one wafer, there is a method of coating one side of the light emitting surface with an anti-reflection coating (reflectance of about 10%). However, even if this structure is adopted, elements that cause kink cannot be completely eliminated.

〔従来技術の問題点〕[Problems with conventional technology]

DFBレーザは、安定に単−葡モード動作することが必
須条件であるため、そのような素子を選別することが重
要になってくる。従来、単一軸モード動作の素子を選別
する方法として、その発振スペクトルを見たシ、入力電
流対微分光出力特性を見たりする方法があったが、これ
らの方法は直流入力電流のもとで動作させることが多く
、そのためにDFBレーザを1つ1つヒートシンクに取
り付けなければいけない等の工程を含んでいた。
Since stable single-mode operation is an essential condition for a DFB laser, it is important to select such a device. Conventionally, there have been methods to select devices operating in single-axis mode by looking at their oscillation spectra or by looking at differential optical output characteristics versus input current, but these methods only work under DC input current. The DFB lasers were often operated, and this included steps such as having to attach each DFB laser to a heat sink one by one.

本発明では単一軸モード半導体レーザにおいて、キンク
の少ない安定な単一軸モード動作を有する素子を選別す
る方法を提供することにある。
An object of the present invention is to provide a method for selecting a device having stable single-axis mode operation with few kinks in a single-axis mode semiconductor laser.

〔問題を解決するための手段〕[Means to solve the problem]

本発明は、両端へき開型DFBレーザ、及び片面無反射
コーティング型DFBレーザの両党出射面の外部微分量
子効率の比を測定し、その比よりキンクの出にくい素子
を選別するものである。
The present invention measures the ratio of external differential quantum efficiencies of both emission surfaces of a double-end cleavage type DFB laser and a single-sided anti-reflection coating type DFB laser, and selects an element that is less likely to cause kinks based on the ratio.

〔作用〕[Effect]

第1図に示すような片面lOで無反射コーティング、片
面324へき開面の非対称DF’Bレーザの、両光出射
面の光出力比と、副モードとのしきい値利得差の小さい
素子の分布を計算すると、第2図のようKなる。DFB
レーザの前後光出力比は、レーザ共振器内の回折格子が
、その端面でどの位置で切れているかによって決まる。
As shown in Figure 1, the optical output ratio of both light emitting surfaces of an asymmetric DF'B laser with 1O and anti-reflection coating on one side and 324 cleavage planes on one side, and the distribution of elements with small threshold gain differences with the secondary mode. When calculated, it becomes K as shown in Figure 2. DFB
The front-to-back optical output ratio of the laser is determined by where the diffraction grating in the laser resonator is cut at its end face.

この計算では、端面における回折格子の位相を16通p
K分けて、両端面で計16X16=256通シの場合で
計算したものである。
In this calculation, the phase of the diffraction grating at the end face is determined by 16 p
This is calculated based on the case where the wire is divided into K, and there are a total of 16 x 16 = 256 threads on both end faces.

第2図の結果よシ、片面ARコート型DFBレーザでは
元画後出力比が0.3から0.8の間の素子はキンクの
出る確率が少ないことがわかる。また、光の前後出力比
がこの付近の値をもつ素子は、第3図に示すように、副
モードとのしきい値利得差が大きい。副モードとのしき
い値利得差の大きい素子は、安定な単一軸モード動作を
意味し、温度が変動した場合の単一軸モード性や、変調
時の副モード抑圧比が良好であることを意味する。
The results shown in FIG. 2 show that in single-sided AR-coated DFB lasers, the probability of kink occurring is low in elements with an output ratio after original image of between 0.3 and 0.8. Furthermore, as shown in FIG. 3, an element having a light front-to-back output ratio around this value has a large threshold gain difference with the sub-mode. A device with a large threshold gain difference from the secondary mode means stable single-axis mode operation, good single-axis mode property when the temperature fluctuates, and good secondary mode suppression ratio during modulation. do.

端面をコーティングしていない場合の両光出射面の光出
力比と、副モードとのしきい値利得差の小さい素子の分
布を計算すると第4図のようになる。両端へき開面の場
合は、光出力前後比が0.6〜1.3の素子がキンクが
少なく、単一軸モード性が良いことがわかる。
FIG. 4 shows the distribution of the light output ratio of both light output surfaces when the end surfaces are not coated and the distribution of the element having a small threshold gain difference with the submode. In the case of cleaved planes at both ends, it can be seen that elements with optical output front-to-back ratios of 0.6 to 1.3 have fewer kinks and good single-axis mode properties.

〔発明の実施例〕[Embodiments of the invention]

片面をS1N膜で10優に反射率を抑えた非対称DFB
レーザの光の前後出力比と、キンク発生率の分布の実験
結果を第5図に示す。光の前後出力比が0.7付近を中
心にキンクの少ない素子が集中している。計算結果では
光の前後出力比が0.5付近で一番キンクが少なくなっ
ているが、これは実際の素子の端面反射率が正確には1
0%とはなっていないためであるつ 次に、DF’Bレーザの光の前後出力比の測定例を第6
図に示す。光の前後出力比を測定するには、DFBレー
ザはパルス駆動づ十分である。パルス駆動で評価できる
ため、DFBレーザをヒートシンクに融着して熱を放散
させてやる必要がなく、DFBレーザを治具にはさみ込
むだけで測定することができる。
Asymmetrical DFB with S1N film on one side to reduce reflectance by over 10%
FIG. 5 shows the experimental results of the front-to-back output ratio of laser light and the distribution of kink occurrence rate. Elements with few kinks are concentrated around a light front-to-back output ratio of around 0.7. According to the calculation results, the kink is the least when the front-back output ratio of the light is around 0.5, but this is because the actual end face reflectance of the element is exactly 1.
This is because it is not 0%.Next, we will show an example of measuring the front and rear output ratio of the DF'B laser light in the sixth section.
As shown in the figure. Pulsed driving of a DFB laser is sufficient to measure the front-to-back power ratio of light. Since evaluation can be performed by pulse drive, there is no need to fuse the DFB laser to a heat sink to dissipate heat, and measurement can be performed simply by inserting the DFB laser into a jig.

〔発明の効果〕〔Effect of the invention〕

分布帰遠型半導体レーザ共振器内の回折格子の位相が端
面において、どの位置で切れているかによって特性がま
ちまちであるため、単一軸モード性の良い素子を選別す
るには、従来レーザのスペクトル測定に頼っていた。レ
ーザのスペクトル測定には、熟練者をもってしても1回
5分から10分かかり、1枚のウェハから500素子近
くとれる素子を1つ1つスペクトル測定すると大変な手
間になる。これを光の前後比0.3〜0.8のものを先
に選別すれば、単一軸モードをもつ素子は8割以上あり
、工程の大幅な短縮化が実現できる。また、温度変動時
や、変調時においても、単一軸モードを維持する素子を
高い確率で選別することができる。
Characteristics vary depending on where the phase of the diffraction grating in a distributed return type semiconductor laser resonator is cut off at the end face, so in order to select a device with good single-axis mode property, it is necessary to measure the spectrum of a conventional laser. was relying on It takes 5 to 10 minutes each time even for an experienced person to measure a laser spectrum, and measuring the spectrum of each of the nearly 500 elements that can be obtained from a single wafer is extremely time-consuming. If we first select those with a light front-to-front ratio of 0.3 to 0.8, more than 80% of the elements will have a single-axis mode, and the process can be significantly shortened. Further, even during temperature fluctuations or modulation, elements that maintain a single-axis mode can be selected with high probability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、DFBレーザの例で、片面無反射コーティン
グ(R〜xo96)した素子を示す図。 第2図は、片面無反射コーティング、片面へき開面型D
FBレーザの前後光出力比とキンクの起こシやすさを計
算した結果を示す図である。第3図は、片面無反射コー
ティング、片面へき開面型DFBレーザで、光の前後出
力比が0.4から0.5における副モードとのしきい値
利得差の分布を計算した結果を示す図である。 第4図は、両端面へき開型DFBレーザにおける光の前
後出力比とキンクの起こりやすさの分布を計算した例を
示す図である。 第5図は、片面10g6ARコート型DFBレーザの光
の前後出力比と、キンク発生率の分布の実験結果を示す
図である。 第6図は、光の前後出力比測定系の構成図である。
FIG. 1 is an example of a DFB laser, which shows an element with anti-reflection coating on one side (R~xo96). Figure 2 shows one-sided non-reflective coating, one-sided cleavage type D.
FIG. 3 is a diagram showing the results of calculating the front and rear optical output ratio of an FB laser and the susceptibility to kink. Figure 3 is a diagram showing the results of calculating the distribution of the threshold gain difference with the secondary mode when the front-rear output ratio of light is 0.4 to 0.5 in a single-sided non-reflective coating and single-sided cleavage plane DFB laser. It is. FIG. 4 is a diagram showing an example of calculating the front-rear output ratio of light and the distribution of the likelihood of kink in a double-end facet cleavage type DFB laser. FIG. 5 is a diagram showing the experimental results of the light front and rear output ratios of a single-sided 10 g6 AR coated DFB laser and the distribution of the kink occurrence rate. FIG. 6 is a configuration diagram of a light front and rear output ratio measurement system.

Claims (1)

【特許請求の範囲】  レーザ共振器内に回折格子を備えている分布帰還型半
導体レーザの2つの光出射端面の光出力比が (イ)片面ARコート、片面へき開型分布帰還型半導体
レーザではへき開側光出力/ARコート側光出力=0.
3〜0.8 (ロ)両端へき開型分布帰還半導体レーザでは両端面光
出力比=0.6〜1.3 をもつ素子を良品として選別することを特徴とする選別
方法。
[Claims] In a distributed feedback semiconductor laser with a diffraction grating in the laser resonator, the optical output ratio of the two light emitting end faces is (a) one side AR coated and one side cleaved. Side light output/AR coat side light output = 0.
3 to 0.8 (b) In a double-end cleaved distributed feedback semiconductor laser, a selection method characterized in that elements having a double-end facet optical output ratio of 0.6 to 1.3 are selected as good products.
JP239286A 1986-01-08 1986-01-08 Method for selection of semiconductor laser Pending JPS62159490A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP239286A JPS62159490A (en) 1986-01-08 1986-01-08 Method for selection of semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP239286A JPS62159490A (en) 1986-01-08 1986-01-08 Method for selection of semiconductor laser

Publications (1)

Publication Number Publication Date
JPS62159490A true JPS62159490A (en) 1987-07-15

Family

ID=11527962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP239286A Pending JPS62159490A (en) 1986-01-08 1986-01-08 Method for selection of semiconductor laser

Country Status (1)

Country Link
JP (1) JPS62159490A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1143582A1 (en) * 1999-09-29 2001-10-10 The Furukawa Electric Co., Ltd. Gain-coupled distributed feedback semiconductor laser

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1143582A1 (en) * 1999-09-29 2001-10-10 The Furukawa Electric Co., Ltd. Gain-coupled distributed feedback semiconductor laser
EP1143582A4 (en) * 1999-09-29 2002-04-10 Furukawa Electric Co Ltd Gain-coupled distributed feedback semiconductor laser
US6493369B2 (en) 1999-09-29 2002-12-10 The Furukawa Electrical Co., Ltd. Gain-coupling distributed feedback type semiconductor laser device

Similar Documents

Publication Publication Date Title
Welford et al. Observation of linewidth broadening in (GaAl) As diode lasers due to electron number fluctuations
Fricke et al. High-power 980-nm broad-area lasers spectrally stabilized by surface Bragg gratings
US4754459A (en) Semiconductor lasers
US20060291516A1 (en) Optical semiconductor device and optical module using thereof
Usami et al. Asymmetric λ/4-shifted InGaAsP/InP DFB lasers
Voumard et al. Resonance amplifier model describing diode lasers coupled to short external resonators
EP0647995A1 (en) Optimizing output characteristics of a tunable external cavity laser
JP3887174B2 (en) Semiconductor light emitting device
Chinone et al. Mode-hopping noise in index-guided semiconductor lasers and its reduction by saturable absorbers
Ishikawa et al. 0.98-1.02 mu m strained InGaAs/AlGaAs double quantum-well high-power lasers with GaInP buried waveguides
JPS62159490A (en) Method for selection of semiconductor laser
US7627012B2 (en) Distributed feedback semiconductor laser including wavelength monitoring section
Houssin et al. Simulation of the frequency behavior of external-cavity semiconductor lasers
JP3584508B2 (en) Short wavelength light source
Yamagata et al. Performance and reliability of high power, high brightness 8xx-9xx nm semiconductor laser diodes
Auzanneau et al. High-power and high-brightness laser diode structures at 980 nm using an Al-free active region
Yu et al. Spectral investigation of multimode fiber Bragg grating based external-cavity semiconductor lasers
JP2001515656A (en) Semiconductor laser and method of manufacturing the same
JPS6232680A (en) Integrated type semiconductor laser
Takamori et al. Lasing characteristics of a continuous‐wave operated folded‐cavity surface‐emitting laser
JPH03268379A (en) Semiconductor laser-chip and manufacture thereof
Ettenberg et al. The effect of facet mirror reflectivity on the spectrum of single-mode CW constricted double-heterojunction diode lasers
Taneya et al. Stable quasi 0 phase mode operation in a laser array diode nearly aligned with a phase shifter
JP4431008B2 (en) Semiconductor laser thermal resistance evaluation apparatus and thermal resistance evaluation method
JP3211775B2 (en) Manufacturing method of distributed feedback semiconductor laser