JPS62158870A - Manufacture of multi-layered structure film - Google Patents

Manufacture of multi-layered structure film

Info

Publication number
JPS62158870A
JPS62158870A JP60298040A JP29804085A JPS62158870A JP S62158870 A JPS62158870 A JP S62158870A JP 60298040 A JP60298040 A JP 60298040A JP 29804085 A JP29804085 A JP 29804085A JP S62158870 A JPS62158870 A JP S62158870A
Authority
JP
Japan
Prior art keywords
raw material
gas
multilayer structure
film
material gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60298040A
Other languages
Japanese (ja)
Inventor
Shunichi Ishihara
俊一 石原
Junichi Hanna
純一 半那
Isamu Shimizu
勇 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP60298040A priority Critical patent/JPS62158870A/en
Publication of JPS62158870A publication Critical patent/JPS62158870A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08214Silicon-based
    • G03G5/08278Depositing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/202Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic System
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To easily and quickly manufacture a multi-layered structure film having excellent quality by introducing a gaseous raw material consisting of multi-flow rate components as a main body into a reaction space and introducing a gaseous raw material consisting of small-flow rate component as an object therein at the periodically controlled introducing rate. CONSTITUTION:The gaseous raw material consisting of the multi-flow rate components such as SiF4 as the main body is introduced from an introducing pipe 101 into a reaction chamber 100 in which a prescribed pressure is maintained by an evacuation device 110. The gaseous raw material consisting of the small flow-rate components such as GeF4 as the object is introduced from a gas introducing pipe 102 into the chamber. The introducing rate thereof is periodically controlled by a 3-way solenoid valve 103 which can be changed over to the gas introducing pipe 104 and a gas discharge pipe 105 connected to an evacuation device 106. While the above-mentioned two gaseous raw materials are introduced into the chamber, an electrode 107 is connected to a high-frequency power source 111 and glow discharge is generated between said electrode and an electrode 108 imposed with a substrate 109 to form plasma. The multi-layered structure film consisting of an a-Si film and a-SiGe film, etc., is thereby formed on the surface of the substrate 109.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、機能性膜、殊に半導体デバイス、電子写真用
の感光デバイス、光学的画像入力装置用の光入力センサ
ーデバイス等の電子デバイスなどの用途に有用な多層構
造膜の作製法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is applicable to functional films, particularly electronic devices such as semiconductor devices, photosensitive devices for electrophotography, and optical input sensor devices for optical image input devices. This invention relates to a method for producing a multilayer structure film useful for applications such as

〔従来の技術〕[Conventional technology]

半導体膜、絶縁膜、光導電膜、磁性膜、金属膜等の非晶
質、多結晶質などの多層構造の堆積膜を用いた素子は、
単層構造の堆積膜には望めない物、理的特性や用途を期
待できるため、近年盛んに研究が進められている。特に
、大面積素子という観点から、2種類以上の非晶質層を
積層させた多層構造膜が興味をもたれている。
Elements using deposited films with multilayer structures such as amorphous and polycrystalline materials such as semiconductor films, insulating films, photoconductive films, magnetic films, and metal films are
In recent years, research has been actively conducted on this material, as it promises physical properties and uses that cannot be expected from single-layer deposited films. In particular, from the viewpoint of large-area devices, multilayer structure films in which two or more types of amorphous layers are laminated are of interest.

例えば、非晶質シリコン層と非晶質シリコンカーバイド
層、あるいは非晶質シリコン層と非晶質シリコンゲルマ
ニウム層を交互に積層させた多層構造膜をプラズマCV
D法や光CVD法等此等化学的気相法り作製することが
検討されており、太陽電池やその他のデバイスへの応用
が考えられている。
For example, plasma CV
Chemical vapor phase methods such as the D method and photo-CVD method are being considered, and applications to solar cells and other devices are being considered.

特に、プラズマCVD法による堆積膜の形成は、その反
応機構も不明な点が少なくない等問題点もあるが、生産
性や膜の特性を考えた場合、現在最良の方法であるため
、広く太陽電池、電子写真感光体の製造等に応用されて
いる。しかしながら、堆積膜の形成パラメーターも多く
 (例えば、基体温度、導入ガスの流量と比、形成時の
圧力、高周波電力、電極構造、反応容器の構造、排気の
速度、プラズマ発生方式など)これらの多くのパラメー
ターの組み合せによるため、時にはプラズマが不安定な
状態になり、形成された堆積膜に著しい悪影響を与える
ことが少な(ない。
In particular, the formation of deposited films by the plasma CVD method has some problems, such as the reaction mechanism being unclear, but it is currently the best method in terms of productivity and film characteristics, and is widely used in solar radiation. It is applied to the manufacture of batteries, electrophotographic photoreceptors, etc. However, there are many formation parameters for the deposited film (e.g., substrate temperature, flow rate and ratio of introduced gas, pressure during formation, high frequency power, electrode structure, reaction vessel structure, pumping speed, plasma generation method, etc.). Due to the combination of these parameters, the plasma sometimes becomes unstable, which rarely has a significant negative effect on the deposited film.

特に、プラズマCVD法により多層構造膜を形成する場
合、層を変えるたび毎に放電の制御やガス導入の制御を
行なう必要がある。
In particular, when forming a multilayer structure film by the plasma CVD method, it is necessary to control discharge and gas introduction every time a layer is changed.

しかしながら、ガス導入量を大幅に変化させると反応空
間内の圧力が変化するため、放電の状態が不安定となり
、膜の構造や特性に悪影響を与える。従って、従来放電
をオンにしたままガス導入量の制御のみで多層膜を形成
すると、膜の特性が常に良い条件とするのが難しい。
However, if the amount of gas introduced changes significantly, the pressure within the reaction space changes, which makes the discharge state unstable and adversely affects the structure and properties of the membrane. Therefore, if a multilayer film is conventionally formed only by controlling the amount of gas introduced while the discharge is turned on, it is difficult to maintain conditions in which the film properties are always good.

一方、放電の制御、即ち放電をオフさせてガスを入れ換
え、圧力が平衡になった後放電を再オンして堆積膜を形
成する方法は、時間が極めて長(かかり、生産性が悪い
。また、プラズマ放電において、通常、放電をオンさせ
た直後、放電が安定しないため、特性の悪い界面をもっ
た多層膜となる。
On the other hand, the method of controlling the discharge, that is, turning off the discharge, replacing the gas, and then turning the discharge back on after the pressure has reached equilibrium to form a deposited film, is extremely time consuming and poor in productivity. In plasma discharge, the discharge is usually unstable immediately after the discharge is turned on, resulting in a multilayer film with interfaces with poor characteristics.

〔発明の目的及び概要〕[Purpose and outline of the invention]

本発明の目的は、生産性、量産性に優れ、高品質で電気
的、光学的、半導体的等の物理特性に優れた膜が簡単に
得られる多層構造膜の作製法を提供することにある。
An object of the present invention is to provide a method for producing a multilayer structure film that is highly productive and mass-producible, and can easily produce a film with high quality and excellent physical properties such as electrical, optical, and semiconductor properties. .

上記目的は、化学的気相法により堆積膜を形成するにあ
たり、多流型成分である主体の原料ガス(A)と少流量
成分である客体の原料ガス(B)を反応空間に導入し、
前記客体の原料ガス(B)の導入量を周期的に制御する
ことにより多層構造の堆積膜を形成せしめることを特徴
とする本発明の多層構造膜の作製法によって達成される
The above purpose is to introduce a main raw material gas (A), which is a multi-flow component, and an object raw material gas (B), which is a low-flow component, into a reaction space when forming a deposited film by a chemical vapor phase method.
This is achieved by the method for producing a multilayer structure film of the present invention, which is characterized in that a deposited film with a multilayer structure is formed by periodically controlling the amount of the object raw material gas (B) introduced.

〔発明の詳細な説明及び実施例〕[Detailed description and examples of the invention]

上記の本発明の堆積膜形成法によれば、例えばプラズマ
CVD法等の化学的気相法により膜特性の良い多層構造
膜が得られると同時に大面積化、膜厚均一性、膜品質の
均一性を十分満足させて管理の簡素化と量産化を図り、
量産装置に多大な設備投資も必要とせず、またその量産
の為の管理項目も明確になり、管理許容幅も広く、装置
の調整も簡単になる。
According to the deposited film forming method of the present invention described above, a multilayer structure film with good film properties can be obtained by a chemical vapor phase method such as plasma CVD method, and at the same time, a large area, uniform film thickness, and uniform film quality can be obtained. We aim to simplify management and mass production by fully satisfying the customer's needs.
There is no need for large capital investment in mass production equipment, the management items for mass production are clear, the management tolerance is wide, and equipment adjustment becomes easy.

本発明の多層構造膜の作製法によれば、例えば物性の異
なる2種類の層を交互に積層させた多層膜等2種類以上
の層で構成される多層構造膜を容易且つ迅速に作製する
ことができる。また、夫々の層も、例えば10Å〜20
0人といった極めて薄い層として多層構造膜を作製する
ことができる。
According to the method for producing a multilayer structure film of the present invention, a multilayer structure film composed of two or more types of layers, such as a multilayer film in which two types of layers with different physical properties are alternately laminated, can be easily and quickly produced. I can do it. Further, each layer also has a thickness of, for example, 10 Å to 20 Å.
A multilayer structure film can be produced as an extremely thin layer with zero layers.

前記多流型成分である主体の原料ガス(A)の反応空間
への導入量aに対する少流量成分である客体の原料ガス
(B)の反応空間への導入lbは、1/2a以下、更に
は1/10 a以下とされるのが望ましい。
The introduction amount lb of the object raw material gas (B), which is a small flow rate component, into the reaction space with respect to the amount a of the main raw material gas (A), which is the multi-flow type component, introduced into the reaction space is 1/2a or less, and further is preferably 1/10 a or less.

主体の原料ガス(A)は、多層構造を形成する例えば物
性の異なる2つの層にともに含まれる元素よりなるガス
で構成することができ、かつ反応性が客体の原料ガス(
B)に比べ著しく小さいため客体の原料ガスCB)に比
べ、極めて多量反応空間内に導入しなくてはいけない様
なガスで構成することができる。
The main raw material gas (A) can be composed of a gas consisting of an element contained in, for example, two layers with different physical properties forming a multilayer structure, and the raw material gas (A) whose reactivity is the object (
Since it is significantly smaller than B), it can be composed of a gas that must be introduced into the reaction space in an extremely large amount compared to the object raw material gas CB).

また客体の原料ガス(B)は、多層構造を形成する例え
ば物性の異なる2つの層のうち片方の層のみに含まれる
元素よりなるガスで構成することができ、かつ反応性が
主体の原料ガス(A)に比べ著しく大きいため主体の原
料ガス(A)より少量のガスの導入で良いガスで構成す
ることができる。
In addition, the object raw material gas (B) can be composed of a gas consisting of an element contained in only one of two layers with different physical properties forming a multilayer structure, and the raw material gas (B) is mainly reactive. Since it is significantly larger than (A), it can be configured with a gas that can be introduced in a smaller amount than the main raw material gas (A).

このような2種類のガスで多層構造膜を作ろうとすると
、AとBとの元素を含む膜を成膜するときには、主体の
原料ガス(A)を多量に、客体の原料ガス(B)を少量
に導入してもグロー放電分解の結果はぼ均等に近い元素
比のAとBの元素よりなる膜が得られる。
When trying to make a multilayer structure film using these two types of gases, when forming a film containing elements A and B, a large amount of the main raw material gas (A) and a large amount of the object raw material gas (B) are required. Even when introduced in a small amount, glow discharge decomposition results in a film consisting of elements A and B in a nearly equal element ratio.

次にAのみの元素よりなる膜を成膜しようとし、客体の
原料ガス(B)の反応空間への導入を停止しても、反応
チャンバー内の圧力変化は極めて小さい。
Next, even if an attempt is made to form a film made of only element A and the introduction of the object raw material gas (B) into the reaction space is stopped, the pressure change within the reaction chamber is extremely small.

具体的にSi元素を中心とした多層構造膜、例えばa−
3iとa−5iGeとの多層構造膜、あるいはa−3i
とa−5iCとの多層構造膜を作る場合を考えると、主
体となる原料ガス(A)としては5iFa、5iC14
゜5iFzC1z等のケイ素の化合物等が挙げられる。
Specifically, a multilayer structure film mainly containing Si element, such as a-
Multilayer structure film of 3i and a-5iGe, or a-3i
Considering the case of making a multilayer structure film of a-5iC and a-5iC, the main source gas (A) is 5iFa, 5iC
Examples include silicon compounds such as ゜5iFzC1z.

また客体となる原料ガス(B)としては、GeFa、G
eF2C12゜GeCl4等のゲルマニウムの化合物、
CF4.C2F6.CCl4等の炭素の化合物が挙げら
れる。
In addition, as the object raw material gas (B), GeFa, G
Germanium compounds such as eF2C12゜GeCl4,
CF4. C2F6. Examples include carbon compounds such as CCl4.

例えば、5i−F4とGeF 4よりa−5iGe膜を
作る場合、成膜した膜に求める物性量によってことなる
が、通常5i−FaとGeF、の比は10:1以下、望
ましくは100:1以下になるように流す。
For example, when making an a-5iGe film from 5i-F4 and GeF4, the ratio of 5i-Fa to GeF is usually 10:1 or less, preferably 100:1, although it depends on the physical properties required for the formed film. Flow as shown below.

ところで、ハロゲン化ケイ素系化合物のガスは、それ自
体ではほとんど成膜する能力がないため、水素ガスを導
入し、グロー放電で分解して生成される水素の活性種と
ハロゲン化ケイ素系化合物の活性種との反応により成膜
能力を高めなければならない。導入する水素ガス量は通
常例えばSiF、の流量に対し174〜1の限られた範
囲とされる。
By the way, the gas of the silicon halide compound has almost no ability to form a film by itself, so hydrogen gas is introduced and decomposed by glow discharge to generate active species of hydrogen and the activity of the silicon halide compound. Film-forming ability must be increased by reaction with seeds. The amount of hydrogen gas to be introduced is usually within a limited range of 174 to 1 relative to the flow rate of SiF, for example.

第1図は本発明の多層構造の堆積膜形成法を具現するに
好適な装置の1例を示すものである。
FIG. 1 shows an example of an apparatus suitable for implementing the method of forming a deposited film having a multilayer structure according to the present invention.

101は主体となる原料ガスの導入口であり、102は
客体となる原料ガスの導入口である。
101 is an inlet for the main raw material gas, and 102 is an inlet for the object raw material gas.

103は三方コニックの電磁弁で反応チャンバー100
内につながっているガス導入管104あるいは排気装置
106につながっているガス排出管105に接続される
。107はRF電源1)1につながった電極で、下の電
極108との間にグロー放電プラズマが起こせる構造に
なっている。
103 is a three-way conic solenoid valve that connects the reaction chamber 100.
It is connected to a gas inlet pipe 104 that is connected to the interior of the exhaust system or to a gas exhaust pipe 105 that is connected to an exhaust device 106 . Reference numeral 107 is an electrode connected to the RF power source 1) 1, and has a structure in which glow discharge plasma can be generated between it and the lower electrode 108.

109は基板である。1)0は反応チャンバーを排気す
るための真空排気装置である。
109 is a substrate. 1) 0 is a vacuum evacuation device for evacuating the reaction chamber.

以下実施例にもとづき本発明を具体的に説明する。The present invention will be specifically described below based on Examples.

〔実施例1〕 第1図に示した堆積膜形成装置を用いてa−3iGe:
H(F)膜とa−3i:H(F)膜の多層構造膜を有す
る読み取りセンサーを形成した。ガス導入管101を通
して、主体の原料ガスとして5iFn及びH2ガスをチ
ャンバー100内に導入した。また、ガス導入管102
を通して客体の原料ガスとしてGeF4ガスもチャンバ
ー100内に導入した。ガス導入管102には、三方弁
のついた電磁弁103が接続されており、電気信号によ
りガス導入管102がガス導入管104に接続されるか
、あるいはガス排出管105に接続されるか選択的に切
り換えられるようになっている。ガス排出管105は、
真空排気装置106に接続されている。
[Example 1] Using the deposited film forming apparatus shown in FIG. 1, a-3iGe:
A reading sensor having a multilayer structure of an H(F) film and an a-3i:H(F) film was formed. 5iFn and H2 gas were introduced into the chamber 100 as main source gases through the gas introduction pipe 101. In addition, the gas introduction pipe 102
GeF4 gas was also introduced into the chamber 100 as an object raw material gas through the chamber 100. A solenoid valve 103 with a three-way valve is connected to the gas introduction pipe 102, and an electric signal selects whether the gas introduction pipe 102 is connected to the gas introduction pipe 104 or the gas discharge pipe 105. It is possible to switch between them. The gas exhaust pipe 105 is
It is connected to a vacuum evacuation device 106.

このような装置構成により、つねに一定流量のGeF 
aガスが電気信号によって断続的にチャンバー内に導入
され、導入されたガスは、電極107と電極108とに
印加された13.56MHzの高周波電力により、グロ
ー放電分解され、発生したラジカルの化学反応により、
a−SiGe:II(F)とa−5i:H(F)との多
層構造膜がガラス基板(コーニング7059)上に堆積
される。
With this equipment configuration, a constant flow rate of GeF is always available.
A gas is intermittently introduced into the chamber by an electric signal, and the introduced gas is decomposed by glow discharge by the 13.56 MHz high frequency power applied to the electrodes 107 and 108, and a chemical reaction of the generated radicals occurs. According to
A multilayer film of a-SiGe:II(F) and a-5i:H(F) is deposited on a glass substrate (Corning 7059).

成膜に寄与しなかったガスは、真空排気装置1)0によ
り、チャンバー外に排気される。
Gas that did not contribute to film formation is exhausted to the outside of the chamber by a vacuum exhaust device 1)0.

以下読み取りセンサー内のa−3iGe:H(F)膜と
、a−Si :H(F)膜との多層構造よりなる読み取
りセンサーの作製方法について記述する。SiF4ガス
を39.73secm 、 Hzガスを12secmを
ガス導入管101よりGeF aガスを0.4secm
ガス導入管102よりチャンバー内に導入した。基板と
してはコーニング7059ガラスを用いた。ガラス基板
温度は300℃に設定した。
A method for manufacturing a read sensor having a multilayer structure of an a-3iGe:H(F) film and an a-Si:H(F) film within the read sensor will be described below. SiF4 gas for 39.73 sec, Hz gas for 12 sec, and GeFa gas for 0.4 sec from the gas introduction pipe 101.
The gas was introduced into the chamber through the gas introduction pipe 102. Corning 7059 glass was used as the substrate. The glass substrate temperature was set at 300°C.

このときチャンバー内の圧力は、300ミリtorrで
、GeF aを流すときと流さないときの差は2ミリt
orr以内であった。この状態で13.56M1fzO
高周波電力を30W印加えした。(電力密度IW/cn
f)。
At this time, the pressure inside the chamber was 300 millitorr, and the difference between when GeFa was flowing and when it was not flowing was 2 millitorr.
It was within orr. In this state 13.56M1fzO
A high frequency power of 30W was applied. (Power density IW/cn
f).

GeF 4の流れをオン・オフさせても、放電状態には
、はとんど変化がみられなかった。
Even when the flow of GeF 4 was turned on and off, there was almost no change in the discharge state.

この状態で70秒ごとにGeF aの導入管上にある三
方弁を切り換えた。約200回の三方弁のオン・オフの
繰り返しの後、放電をとめ、ガスをとめ、基板を室温ま
で冷却し反応チャンバーよりとりだし別の真空蒸着装置
でAIのくし形電極(ギャップ長200μm)をつけた
後、試料を真空クライオスタンド中にいれ暗導電率(σ
d)、及び600nm、0.3mW/adの光照射時の
導電率σpを測定した。
In this state, the three-way valve on the GeFa inlet pipe was switched every 70 seconds. After turning the three-way valve on and off about 200 times, the discharge was stopped, the gas was stopped, the substrate was cooled to room temperature, and the substrate was taken out from the reaction chamber and a comb-shaped electrode (gap length 200 μm) of AI was formed using another vacuum evaporation device. After that, the sample was placed in a vacuum cryostand and the dark conductivity (σ
d) and conductivity σp upon irradiation with light of 600 nm and 0.3 mW/ad.

得られた値は σd = 2 X I Q−” S/cmσI) = 
I X 10−6S/cmと、極めてσp/σd比の良
い光センサーが得られた。
The obtained value is σd = 2 X I Q-”S/cmσI) =
An optical sensor with an extremely good σp/σd ratio of I×10 −6 S/cm was obtained.

〔実施例2〕 第1図に示した装置を用い、1000人のITO膜を堆
積したガラス基板上にPIN構造の光ダイオードを作製
した。基板をセットした後、基板温度を250℃に保っ
た。まずガス導入管101を通して、主体の原料ガスと
して3000ppmの8□1)、を添加したa 5iF
4ガスを35secm、 H2ガスを12secmチャ
ンバー100内に導入した。
[Example 2] Using the apparatus shown in FIG. 1, a PIN-structured photodiode was fabricated on a glass substrate on which 1000 ITO films were deposited. After setting the substrate, the substrate temperature was maintained at 250°C. First, through the gas introduction pipe 101, 3000 ppm of 8□1) was added as the main raw material gas.
4 gas was introduced into the chamber 100 for 35 seconds, and H2 gas was introduced for 12 seconds into the chamber 100.

またガス導入管102を通して客体の原料ガスとしてC
1F6ガス5 sccmもチャンバー100内に導入し
た。RF電源より30Wの高周波電力を電極107に印
加し、プラズマをたてた。ガス導入管102に接続して
いる三方弁をオンを100秒オフを50秒で3回くりか
えした。その結果約50人厚のa−SiC層と約50人
厚のa−5i層との多層膜のP型の膜が約300人形成
された。その後C,Ft、ガスをGeF aガスにいれ
かえた後、実施例1に記載したのと同じ条件でドーピン
グしていないa−SiGe層とa−3i層との多層膜を
約8000人形成した。その後、GeF4のガスの流れ
をとめた後、ガス導入管101より3000ppmのP
Hsを添加したSiF4ガスを40secm、 Hzガ
スを12secmチャンバー内に導入し、30Wの高周
波電力を5分間印加し、約300人のN型のa−Si膜
をその上に成膜した。ガスを十分に排気した後、基板が
室温にもどってから、その上にφ10mmのA1電極を
蒸着した。
In addition, C as the raw material gas of the object is passed through the gas introduction pipe 102.
5 sccm of 1F6 gas was also introduced into the chamber 100. A high frequency power of 30 W was applied to the electrode 107 from an RF power source to generate plasma. The three-way valve connected to the gas inlet pipe 102 was turned on and off for 100 seconds and then turned off for 50 seconds three times. As a result, about 300 multilayer P-type films including an a-SiC layer with a thickness of about 50 layers and an a-5i layer with a thickness of about 50 layers were formed. Thereafter, after replacing the C, Ft, and gases with GeFa gas, about 8,000 people formed a multilayer film of an undoped a-SiGe layer and an a-3i layer under the same conditions as described in Example 1. After that, after stopping the flow of GeF4 gas, 3000 ppm of P was introduced from the gas introduction pipe 101.
Hs-added SiF4 gas was introduced into the chamber for 40 seconds and Hz gas was introduced for 12 seconds into the chamber, and a high frequency power of 30 W was applied for 5 minutes to form about 300 N-type a-Si films thereon. After the gas was sufficiently exhausted and the substrate returned to room temperature, an A1 electrode with a diameter of 10 mm was deposited thereon.

その結果ガラス基板、ITO膜、P型a−5iC及びa
−3iの多層構造膜、ドーピングしていないa−3iG
e及びa−Siの多層構造膜、n型a−5i膜、及びA
Iの積層体となった。PXN構造の光ダイオードが形成
された。AM−1,100mW/cnlの光を照射し、
太陽電池特性を測定したところ、 開放電圧    0.9■ 短絡電流    14mA/cd で変換効率8.8%の良好な値を得た。
As a result, glass substrate, ITO film, P type a-5iC and a
-3i multilayer structure film, undoped a-3iG
e and a-Si multilayer structure film, n-type a-5i film, and A
This resulted in a laminate of I. A photodiode with a PXN structure was formed. AM-1, irradiated with light of 100 mW/cnl,
When the solar cell characteristics were measured, good values of an open circuit voltage of 0.9 mm, a short circuit current of 14 mA/cd, and a conversion efficiency of 8.8% were obtained.

〔実施例3〕 へ1基板の上に表1の手順でA1基板/P型a−Si層
/a−3iGeとa−5iとの多層構造flu/a−s
icとa−3iの多層構造膜より電子写真感光体を成膜
した。
[Example 3] A multilayer structure flu/as of A1 substrate/P type a-Si layer/a-3iGe and a-5i was prepared on the first substrate according to the procedure shown in Table 1.
An electrophotographic photoreceptor was formed from a multilayer structure film of ic and a-3i.

表  1 SiF4ガス、H2ガスは導入管101より、GeFa
、 CzFbはガス導入管102より導入し、三方弁で
ガスの反応チャンバーへの導入を制御した。
Table 1 SiF4 gas and H2 gas are supplied from the introduction pipe 101 to GeFa
, CzFb was introduced from the gas introduction pipe 102, and the introduction of the gas into the reaction chamber was controlled by a three-way valve.

その他の成膜条件は、 内   圧  3Q C1)tn  torr基板温度
 250°に の電子写真感光体に■のコロナ帯電を0.2秒し゛たと
ころ、受容電位360■を得た。
Other film-forming conditions were: internal pressure: 3Q C1) tn torr, substrate temperature: 250°, and an electrophotographic photoreceptor was corona-charged for 0.2 seconds to obtain an acceptance potential of 360°.

その後788r+m、 2μJの光強度の半導体レーザ
ー光で露光したところ、35Vになった。
Thereafter, exposure to semiconductor laser light at 788r+m and a light intensity of 2 μJ resulted in a voltage of 35V.

〔発明の効果〕〔Effect of the invention〕

本発明の多層構造膜の作製法によれば、特性の著しい向
上がはかれる。また、本発明の方法は製造条件のコント
ロールの制御及びプロセスが容易であり、量産化に適し
ている。
According to the method for producing a multilayer structure film of the present invention, the characteristics can be significantly improved. Further, the method of the present invention is easy to control manufacturing conditions and processes, and is suitable for mass production.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の多層構造膜の作製法を実施するための
装置の1例を示す模式的説明図である。 101・・・主体の原料ガスの導入管、102・・・客
体の原料ガスの導入管、103・・・三方弁、104・
・・ガスの導入管、105・・・ガスの排出管、106
・・・排気装置、107,108・・・電極、100・
・・反応チャンバー、109・・・基板、1)0・・・
真空排気装置、1)1・・・高周波電源。 代理人 弁理士  山 下 穣 平 図面の浄I(内容に変更なし) 第1図 手続補正書 昭和61年 2月27日 特許庁長官  宇 賀 道 部  殿 1、事件の表示 特願昭60−298040号 2、発明の名称 多層構造膜の作製法 3、補正をする者 事件との関係 特許出願人 名 称  (100)キャノン株式会社4、代理人 住所 東京都港区虎ノ門五丁目13番1号虎ノ門40森
ビル氏名 (6538)  弁理士  山  下  積
  乎丁;−)5、補TE(7)対え        
            jl’i”::・・:図面の
浄書及び委任状 一〜−一 1〜   /′ 手続補正書 昭和61年 3月 4日
FIG. 1 is a schematic explanatory diagram showing an example of an apparatus for carrying out the method for producing a multilayer structure film of the present invention. 101...Main material gas introduction pipe, 102...Object material gas introduction pipe, 103...Three-way valve, 104.
...Gas inlet pipe, 105...Gas discharge pipe, 106
...exhaust device, 107,108...electrode, 100.
...Reaction chamber, 109...Substrate, 1)0...
Vacuum exhaust equipment, 1) 1...High frequency power supply. Agent Patent attorney Jo Yamashita Drawing I (no change in content) Figure 1 procedural amendment February 27, 1985 Commissioner of the Patent Office Michibe Uga 1, patent application for indication of case 1988-298040 No. 2, Name of the invention Method for producing a multilayer structure film 3, Relationship with the amended case Patent applicant name (100) Canon Co., Ltd. 4, Agent address 40 Toranomon, 5-13-1 Toranomon, Minato-ku, Tokyo Mori Building Name (6538) Patent Attorney Seki Yamashita ;-) 5, Opponent to Assistant TE (7)
jl'i"::...: Engraving of drawings and power of attorney 1~-11~ /' Procedural amendment March 4, 1986

Claims (8)

【特許請求の範囲】[Claims] (1)化学的気相法により堆積膜を形成するにあたり、
多流量成分である主体の原料ガス(A)と少流量成分で
ある客体の原料ガス(B)を反応空間に導入し、前記客
体の原料ガス(B)の導入量を周期的に制御することに
より多層構造の堆積膜を形成せしめることを特徴とする
多層構造膜の作製法。
(1) When forming a deposited film by chemical vapor phase method,
Introducing the main raw material gas (A), which is a high flow rate component, and the object raw material gas (B), which is a low flow rate component, into the reaction space, and periodically controlling the amount of the introduced object raw material gas (B). A method for producing a multilayer structure film, characterized by forming a deposited film with a multilayer structure.
(2)多層構造膜の夫々の層の層厚が10Å〜200Å
の範囲にある特許請求の範囲第(1)項記載の多層構造
膜の作製法。
(2) The thickness of each layer of the multilayer structure film is 10 Å to 200 Å
A method for producing a multilayer structure film according to claim (1).
(3)主体の原料ガス(A)の導入量aに対し、客体の
原料ガス(B)の導入量bを1/2a以下とする特許請
求の範囲第(1)項記載の多層構造膜の作製法。
(3) The multilayer structure film according to claim (1), wherein the amount b of the object raw material gas (B) introduced is 1/2a or less with respect to the introduced amount a of the main raw material gas (A). Fabrication method.
(4)主体の原料ガス(A)としてケイ素の化合物を用
いる特許請求の範囲第(1)項記載の多層構造膜の作製
法。
(4) A method for producing a multilayer structure film according to claim (1), in which a silicon compound is used as the main raw material gas (A).
(5)客体の原料ガス(B)としてゲルマニウムの化合
物を用いる特許請求の範囲第(4)項記載の多層構造膜
の作製法。
(5) A method for producing a multilayer structure film according to claim (4), in which a germanium compound is used as the object raw material gas (B).
(6)客体の原料ガス(B)として炭素の化合物を用い
る特許請求の範囲第(4)項又は第(5)項記載の多層
構造膜の作製法。
(6) A method for producing a multilayer structure film according to claim (4) or (5), using a carbon compound as the object raw material gas (B).
(7)主体の原料ガス(A)に水素ガスを含める特許請
求の範囲第(4)項乃至第(6)項のうちの1に記載の
多層構造膜の作製法。
(7) The method for producing a multilayer structure film according to any one of claims (4) to (6), wherein the main raw material gas (A) includes hydrogen gas.
(8)客体の原料ガス(B)に水素ガスを含める特許請
求の範囲第(4)項乃至第(6)項のうちの1に記載の
多層構造膜の作製法。
(8) The method for producing a multilayer structure film according to any one of claims (4) to (6), in which hydrogen gas is included in the object raw material gas (B).
JP60298040A 1985-12-28 1985-12-28 Manufacture of multi-layered structure film Pending JPS62158870A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60298040A JPS62158870A (en) 1985-12-28 1985-12-28 Manufacture of multi-layered structure film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60298040A JPS62158870A (en) 1985-12-28 1985-12-28 Manufacture of multi-layered structure film

Publications (1)

Publication Number Publication Date
JPS62158870A true JPS62158870A (en) 1987-07-14

Family

ID=17854342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60298040A Pending JPS62158870A (en) 1985-12-28 1985-12-28 Manufacture of multi-layered structure film

Country Status (1)

Country Link
JP (1) JPS62158870A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02282481A (en) * 1989-04-24 1990-11-20 Matsushita Electric Ind Co Ltd Formation of amorphous multilayered thin film
JPWO2004085309A1 (en) * 2003-03-24 2006-06-29 独立行政法人科学技術振興機構 Highly efficient synthesis method of carbon nanostructure, apparatus and carbon nanostructure
US7565880B2 (en) 2002-12-18 2009-07-28 Sharp Kabushiki Kaisha Plasma CVD apparatus, and method for forming film and method for forming semiconductor device using the same
CN103132049A (en) * 2011-11-25 2013-06-05 中芯国际集成电路制造(上海)有限公司 Forming method of silicon thin film and forming device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02282481A (en) * 1989-04-24 1990-11-20 Matsushita Electric Ind Co Ltd Formation of amorphous multilayered thin film
US7565880B2 (en) 2002-12-18 2009-07-28 Sharp Kabushiki Kaisha Plasma CVD apparatus, and method for forming film and method for forming semiconductor device using the same
JPWO2004085309A1 (en) * 2003-03-24 2006-06-29 独立行政法人科学技術振興機構 Highly efficient synthesis method of carbon nanostructure, apparatus and carbon nanostructure
JP4691625B2 (en) * 2003-03-24 2011-06-01 独立行政法人科学技術振興機構 Method and apparatus for highly efficient synthesis of carbon nanostructures
US8505478B2 (en) 2003-03-24 2013-08-13 Taiyo Nippon Sanso Corporation Apparatus for high-efficiency synthesis of carbon nanostructure
CN103132049A (en) * 2011-11-25 2013-06-05 中芯国际集成电路制造(上海)有限公司 Forming method of silicon thin film and forming device

Similar Documents

Publication Publication Date Title
JPS62158316A (en) Preparation of multilayer structure film
US4292343A (en) Method of manufacturing semiconductor bodies composed of amorphous silicon
JPH02155225A (en) Method of forming amorphous semiconductor thin-film
JPS62158870A (en) Manufacture of multi-layered structure film
JPS62151572A (en) Deposited film forming device
JP2001291882A (en) Method of manufacturing thin film
JPH0273979A (en) Formation of thin film
JP2890032B2 (en) Silicon thin film deposition method
JP2723112B2 (en) Thin film formation method
JPS6299463A (en) Deposited film formation
JPS5916326A (en) Manufacture of thin film
JPS62163314A (en) Thin-film multilayer structure and forming method thereof
JPS62151571A (en) Deposited film forming device
JPS6296675A (en) Formation of deposited film
JPH0645258A (en) Manufacture of amorphous semiconductor thin film
JP2704986B2 (en) Thin film semiconductor device and method of forming the same
JPS59147427A (en) Novel silicon semiconductor and manufacture thereof
JPS61222116A (en) Forming method for deposit-film
JPS61179868A (en) Method of forming accumulated film
JPH0573248B2 (en)
JPS61281872A (en) Formation for amorphous silicon germanium film
JPS61278131A (en) Manufacture of silicon group alloy thin-film
JPS62149878A (en) Formation of deposited film
JPH04204852A (en) Production of amorphous silicon photosensitive body
JPS61102027A (en) Method of forming deposited film