JPS62158361A - Manufacture of photoelectric conversion device - Google Patents

Manufacture of photoelectric conversion device

Info

Publication number
JPS62158361A
JPS62158361A JP61001007A JP100786A JPS62158361A JP S62158361 A JPS62158361 A JP S62158361A JP 61001007 A JP61001007 A JP 61001007A JP 100786 A JP100786 A JP 100786A JP S62158361 A JPS62158361 A JP S62158361A
Authority
JP
Japan
Prior art keywords
laminate
organic resin
semiconductor
photosensitive
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61001007A
Other languages
Japanese (ja)
Inventor
Shunpei Yamazaki
舜平 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP61001007A priority Critical patent/JPS62158361A/en
Priority to DE3650363T priority patent/DE3650363T2/en
Priority to EP86118154A priority patent/EP0229397B1/en
Priority to KR1019870000015A priority patent/KR900003842B1/en
Priority to CN87100057A priority patent/CN1008783B/en
Publication of JPS62158361A publication Critical patent/JPS62158361A/en
Priority to US07/124,565 priority patent/US4810661A/en
Priority to US07/244,992 priority patent/US5187563A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14665Imagers using a photoconductor layer

Abstract

PURPOSE:To prevent the generation of leakage currents in the side peripheral section of a photosensitive semiconductor by laminating a first electrode, the semiconductor and a second electrode and selectively filling the whole side peripheries of the laminate with an organic resin. CONSTITUTION:Leads 19 are prepared on a heat-resistant light-transmitting substrate 1 by using a first photo-mask (1) by a light-transmitting conductive film, and a first conductor 2, a photosensitive semiconductor 3 and a second conductor 5 are laminated on the leads 19. When the surface is patterned by employing a second photo-mask (2), these whole surfaces are coated with an organic resin 6 such as a photosensitive polyimide resin and the back side of the glass substrate 1 is exposed by ultraviolet beams 15, the organic resin in the upper section, which is shaded with respect to the laminate 10, of the laminate 10 is not photosensitized, and only the organic resin in the side periphery of the laminate is photosensitized. The whole is developed, the organic resin in the upper sections of the non-photosensitive laminates is melted and removed by a rinsing liquid, and the upper surfaces of second electrodes and the surfaces of insulators consisting of the polyimide resin in the peripheral sections are brought to approximately the same plane. Accordingly, the generation of leakage currents can be prevented.

Description

【発明の詳細な説明】 「発明の利用分野」 この発明は光電変換装置、特にイメージセンサまたは液
晶プリンタに応用目的のため、−次元または二次元にア
レー状に多数配列された光電変換装置の作成方法に関す
る。
Detailed Description of the Invention "Field of Application of the Invention" This invention relates to the creation of a large number of photoelectric conversion devices arranged in a -dimensional or two-dimensional array for the purpose of application to photoelectric conversion devices, particularly image sensors or liquid crystal printers. Regarding the method.

「従来の技術」 従来、ファクシミリ用の密着型イメージセンサとしては
、第1図にその概要を示すが、3種類のマスクを用いて
感光性半導体を第1の電極と第2の電極とによりサンド
ウィッチ構造をさせる構成が試みられていた。
"Prior Art" Conventionally, as a contact image sensor for facsimile, the outline of which is shown in Fig. 1, a photosensitive semiconductor is sandwiched between a first electrode and a second electrode using three types of masks. Attempts were made to create a structure.

この第1図の構造を略記すると、基板(1)上にクロム
の導体を設け、第1のマスク■によりバターニングをし
て、基板側の第1の電極リード(2)を作る。さらこの
上に■型アモルファスシリコンの感光性半導体(3)を
1μの厚さにグロー放電法を利用して形成する。この工
程はメタルマスク■を被膜形成時に施し、マスクずれを
考慮し、十分筒1の電極(2)を覆うようにして作る。
To briefly describe the structure shown in FIG. 1, a chromium conductor is provided on a substrate (1), and patterning is performed using a first mask (2) to form a first electrode lead (2) on the substrate side. Furthermore, a photosensitive semiconductor (3) of 1-type amorphous silicon is formed on this to a thickness of 1 μm using a glow discharge method. In this step, a metal mask (2) is applied at the time of film formation, and is made in such a way that it sufficiently covers the electrode (2) of the tube 1, taking mask misalignment into consideration.

さらにこの上にITO(酸化インジェーム・スズ)を形
成し、第3のマスク■によりバターニングを施し、上側
の第2の電極(4)およびリードを形成する。
Furthermore, ITO (injem tin oxide) is formed on this, and patterning is performed using a third mask (2) to form the upper second electrode (4) and leads.

このITOと真性の導電型(I型)アモルファスシリコ
ンとの間にショットキ構成(MI接合)を有せしめるた
め、ダイオード特性を構成させることができる。
Since a Schottky configuration (MI junction) is provided between this ITO and the intrinsic conductivity type (I type) amorphous silicon, diode characteristics can be configured.

そして信号用の光(30)が上方より照射されると■型
半導体中でホール(22) 、 (22’ )および電
子(21) 。
When the signal light (30) is irradiated from above, holes (22), (22') and electrons (21) are formed in the ■-type semiconductor.

(21”)のキャリアを生じ、電極(2) 、 (4)
にドリフトする。そしてこのキャリアの量は光の強度に
比例するため、感光性の半導体素子(20)として動作
させ得る。
(21”) carriers are generated, and the electrodes (2) and (4)
drift to. Since the amount of carriers is proportional to the intensity of light, it can be operated as a photosensitive semiconductor element (20).

しかし、かかるイメージセンサはそれぞれを高精度なバ
ターニングを必要としないという特徴を有しつつも、一
方の電極(ここでは(2))に比べ半導体(3)の方が
大きい構造を有している。
However, although such image sensors have the characteristic that they do not require highly precise patterning, the semiconductor (3) has a larger structure than one of the electrodes (here, (2)). There is.

[発明が解決しようとする問題点] このため、素子(20)の外周辺部(20’)でも感光
性を有し、これが第1図(A)の矢印に示す如く、横方
向へのキャリアのドリフト(21’ ) (22”)を
生じしあう。そのためこの横方向のドリフトが素子部で
の縦方向(電極方向)へのキャリアのドリフトに比べて
10〜100倍もの時間がかかってしまい、周波数特性
を著しく下げてしまうという大きな欠点を有することが
判明した。
[Problems to be Solved by the Invention] Therefore, the outer periphery (20') of the element (20) also has photosensitivity, and this causes the carrier to move in the lateral direction as shown by the arrow in FIG. 1(A). Therefore, this lateral drift takes 10 to 100 times longer than the drift of carriers in the vertical direction (electrode direction) in the element section. However, it has been found that this method has the major drawback of significantly lowering the frequency characteristics.

さらに使用マスク数も三枚を必要とする。加えてこのI
型半導体はその表面を露呈している部分(23)にてN
型化がおきやすく、寄生チャネル(23)を構成しやす
い。そのため、暗電流が大きくなりやす(、また製品の
バラツキおよび時間バラツキも発生しやすいという大き
な欠点を有する。
Furthermore, three masks are required. In addition, this I
The type semiconductor has N at the exposed surface part (23).
It is easy to form a mold, and it is easy to form a parasitic channel (23). Therefore, it has a major drawback in that dark current tends to increase (and product variations and time variations also tend to occur).

「問題を解決するための手段」 本発明はかかる欠点を除去するもので、第1の電極(下
側電極)、感光性半導体、第2の電極(上側電極)を積
層して設けた積層体を設け、この積層体のすべての側周
辺に選択的に有機樹脂を充填させる。そしてその結果、
半導体の側周辺部でのリーク電流の発生を防止する。即
ち、この有機絶縁物の周辺部への形成に対し、何らの新
たなフォトマスクを用゛いずに実施するものである。
"Means for Solving the Problem" The present invention eliminates such drawbacks, and provides a laminate in which a first electrode (lower electrode), a photosensitive semiconductor, and a second electrode (upper electrode) are laminated. is provided, and organic resin is selectively filled around all sides of this laminate. And as a result,
Prevents leakage current from occurring around the side of the semiconductor. That is, the formation of this organic insulator in the peripheral area is carried out without using any new photomask.

さらにこの周辺部が絶縁物で充填されているため、半導
体の下側および上側の電極は半導体と同一または実質的
に同一(意図的に大きくまたは小さくせず製造プロセス
特にエツチング工程におけるバラツキの範囲以内におい
て同一)形状・大きさを有せしめたことである。
Furthermore, because this peripheral area is filled with an insulator, the lower and upper electrodes of the semiconductor are the same or substantially the same as the semiconductor (within the range of variations in the manufacturing process, especially the etching process, without intentionally making them larger or smaller). (same) shape and size.

「作用」 その結果、光電変換素子の光照射により感光し発生した
キャリアを何ら「遅延」することなく高速で、即ち半導
体の厚さ分をキャリアがドリフトする速度で応答させ得
るものである。
"Operation" As a result, the carriers generated by being exposed to light by the photoelectric conversion element can be made to respond at high speed without any "delay", that is, at a speed at which the carriers drift through the thickness of the semiconductor.

さらにこの工程にフォトマスクは3種類使用するが、1
つの第3のマスクは導体形成の際に用いられる金属マス
クでよく、実質的に2枚である。
Furthermore, three types of photomasks are used in this process;
The three third masks may be metal masks used when forming conductors, and are substantially two in number.

結果として製造歩留まりの向上を期待できる。加えてマ
スク合わせに精密な精度のあわせごみをまったく必要と
しないという他の特長をも有する。
As a result, an improvement in manufacturing yield can be expected. In addition, it has another feature in that it does not require any precision alignment material for mask alignment.

また光電変換素子の大きさが1枚のマスクのパターンに
より一義的に決定できるため、製品間でバラツキが少な
い。
Furthermore, since the size of the photoelectric conversion element can be uniquely determined by the pattern of one mask, there is little variation between products.

以下に実施例に従って本発明を説明する。The present invention will be explained below according to examples.

「実施例1」 第2図および第3図は本発明の製造工程を示したもので
ある。そして第3図(E−1) 、 (E−2) 、 
(E−3)にその完成図の構造を示す。加えてこの第3
図の変形の他の本発明の構造を第4図(A−1)  ・
・(A−3)および(B−1)  ・・(B−3)に示
す。
"Example 1" FIGS. 2 and 3 show the manufacturing process of the present invention. And Figure 3 (E-1), (E-2),
(E-3) shows the structure of the completed structure. In addition to this third
Figure 4 (A-1) shows another structure of the present invention which is a modification of the figure.
- Shown in (A-3) and (B-1) ... (B-3).

図面に従って本発明構造の概要および製造工程を示す。The outline and manufacturing process of the structure of the present invention are shown according to the drawings.

第2図(A−1)の平面図におけるA−A’の縦断面図
を(A−2)に示す。即ち耐熱性透光性基板例えば石英
またはパイレックスガラス基板(1)上にリード(19
)を透光性導電膜例えば酸化スズにより第1のフォトマ
スク■を用いて作成する。さらにこの上に第1の導体(
2)、感光性半導体(3)、第2の導体(5)を積層し
て形成する。具体的には、第1の導体をITO(酸化イ
ンジューム・スズ)を用いて2000人の厚さに形成す
る。さらにPIN接合、旧N接合、旧接合構造等の不純
物を意図的に添加しない真性の導電型を有する半導体ま
たはホウ素を添加してより真性になるようにした実質的
に真性の導電型を有する半導体、特に例えばアモルファ
スシリコン半導体を有する感光性半導体(3)を公知の
プラズマCVD法により形成する。例えばPIN接合と
するにはP型半導体200人、I型半導体3500人、
N型半導体300人としたマルチチャンバ方式のフラズ
マCvD装置(特願昭54−104452号 登録決定
済み)により形成した。さらに第2の導体(5)として
クロムを1000人の厚さにこの半導体(3)上に形成
する。するとこのクロムの第2の導体(5)と半導体(
3)との間にはクロム・シリサイド(4)の透光性導電
膜が10〜200人の厚さに同時に形成される。
(A-2) shows a vertical cross-sectional view taken along line AA' in the plan view of FIG. 2 (A-1). That is, the leads (19
) is made of a light-transmitting conductive film, such as tin oxide, using the first photomask (2). Furthermore, the first conductor (
2) A photosensitive semiconductor (3) and a second conductor (5) are laminated and formed. Specifically, the first conductor is formed using ITO (indium tin oxide) to a thickness of 2000 mm. Furthermore, a semiconductor having an intrinsic conductivity type without intentionally adding impurities such as a PIN junction, an old N junction, or an old junction structure, or a semiconductor having a substantially intrinsic conductivity type made more intrinsic by adding boron. In particular, a photosensitive semiconductor (3) having, for example, an amorphous silicon semiconductor is formed by a known plasma CVD method. For example, to make a PIN junction, 200 P-type semiconductors, 3500 I-type semiconductors,
It was formed using a multi-chamber type plasma CVD apparatus (Japanese Patent Application No. 104452/1984, registered) using 300 N-type semiconductors. Furthermore, chromium is formed as a second conductor (5) to a thickness of 1000 nm on this semiconductor (3). Then, this chromium second conductor (5) and the semiconductor (
3), a transparent conductive film of chromium silicide (4) is simultaneously formed to a thickness of 10 to 200 mm.

次に第2のフォトマスク■を用いて第2図(B−1)・
・CB−3)の如くにパターニングを行う。図面におい
て(B−1)の八−A’ 、 B−B’ の縦断面図を
それぞれ(B−2) 、 (B−3)に示す。
Next, using the second photomask ■, see Figure 2 (B-1).
・Perform patterning as in CB-3). In the drawings, vertical cross-sectional views along lines 8-A' and BB' in (B-1) are shown in (B-2) and (B-3), respectively.

このパターニングで残った部分の積層体(10)は感光
性半導体を有する素子を構成する。このため、このパタ
ーニングの形状は密着型イメージセンサに応用する場合
においては、例えば長さ150μm幅100μ、素子間
隔30μmのアレー構成を有せしめる。
The portion of the laminate (10) remaining after this patterning constitutes an element having a photosensitive semiconductor. Therefore, when this patterning shape is applied to a contact image sensor, it has an array configuration of, for example, a length of 150 μm, a width of 100 μm, and an element interval of 30 μm.

次に第2図(C)に示す如く、これらの全面に有機樹脂
(6)例えば感光性ポリイミド樹脂をコーティング法に
て約1.6μの厚さに形成させた。この有機樹脂は積層
体上のみならずその側周辺のすべてを囲んで形成させる
。コーティング状態では全芳香族ポリイミド前駆体溶液
である。かくして、積層体(10)の上面(8゛)とポ
リイミド樹脂(7)の上面(8)とは積層体(10)の
上表面を露呈せしめ、かつキュア後で概略同一平面(絶
縁物表面(8)と積層体表面(8°)とがなめらかに連
続している)となるようにさせた。例えば、現像とキュ
アにより体積が約172に減少するため、積層体が約0
.8μである場合、約1.6μの厚さに有機樹脂(6)
を形成させた。
Next, as shown in FIG. 2(C), an organic resin (6) such as a photosensitive polyimide resin was formed on the entire surface of these to a thickness of about 1.6 μm by a coating method. This organic resin is formed not only on the laminate but also surrounding the entire periphery thereof. In the coated state, it is a wholly aromatic polyimide precursor solution. In this way, the upper surface (8゛) of the laminate (10) and the upper surface (8) of the polyimide resin (7) expose the upper surface of the laminate (10), and after curing are approximately on the same plane (insulator surface ( 8) and the laminate surface (8°) were smoothly continuous. For example, the volume decreases to about 172 due to development and curing, so the laminate becomes about 0.
.. 8μ, organic resin (6) to a thickness of about 1.6μ
formed.

次にプリベークをクリーンオーブン中80℃、60分行
った。さらにガラス基板(1)側の裏面側より紫外光(
15)を公知のマスクアライナによりマスクを用いるこ
となく露光させた。
Next, prebaking was performed in a clean oven at 80° C. for 60 minutes. Furthermore, ultraviolet light (
15) was exposed using a known mask aligner without using a mask.

例えばコビルト社のアライナ−では約2分間露光した。For example, with Cobilt's aligner, the exposure time was about 2 minutes.

その強度が300〜400nmの波長の紫外光(10m
W/cが)においては15〜30秒で十分である。
Ultraviolet light with a wavelength of 300 to 400 nm (10 m
W/c), 15 to 30 seconds is sufficient.

すると第2図(D)に示す如く、(16)の側面を有す
る積層体(10)に対し陰となるその上方の有機樹脂は
感光せず、その側周辺の有機樹脂のみが感光する。さら
に現像を行った後、リンス液により非感光性の積層体上
方の有機樹脂を溶去した。
Then, as shown in FIG. 2(D), the organic resin above the laminate (10) having the side surface (16), which is in the shadow, is not exposed to light, and only the organic resin around that side is exposed to light. After further development, the organic resin above the non-photosensitive laminate was dissolved away using a rinsing solution.

次にこれらすべてを180℃30分+300℃30分+
400℃30分の加熱を窒素中で行いキュアさせた。か
くして積層体(10)の上面である感光性半導体素子の
第2の電極を新たなフォトマスクを用いることなく露呈
せしめるに加えて、この上面と周辺部のポリイミド樹脂
の絶縁物の表面とを概略同一平面を構成させることが可
能となった。
Next, do all of this at 180℃ for 30 minutes + 300℃ for 30 minutes +
Cure was performed by heating at 400° C. for 30 minutes in nitrogen. In this way, in addition to exposing the second electrode of the photosensitive semiconductor element, which is the upper surface of the laminate (10), without using a new photomask, this upper surface and the surface of the polyimide resin insulator in the peripheral area can be roughly It became possible to construct the same plane.

かくして第2図(D)に示すごとく、積層体(10)の
上面を何らのフォトマスクを用いずに露呈せしめ、かつ
積層体の側周辺のすべてを絶縁物で充填し覆うことがで
きた。加えて、積層体(10)の上面(8)と絶縁物(
7)の上面(8°)とが滑らかに連続する概略同一平面
とすることができた。
In this way, as shown in FIG. 2(D), the upper surface of the laminate (10) was exposed without using any photomask, and the entire periphery of the laminate was filled and covered with an insulating material. In addition, the upper surface (8) of the laminate (10) and the insulator (
The upper surface (8°) of 7) could be made to be smoothly continuous and approximately on the same plane.

この図面で積層体(10)と有機樹脂(7)との境界(
16)の部分を拡大し、この部分に亀裂がないかどうか
、又表面(8)、(8’)は概略同一平面を有するかを
電子顕微鏡を用いて調べた。
In this drawing, the boundary between the laminate (10) and the organic resin (7) (
The part 16) was enlarged and examined using an electron microscope to see if there were any cracks in this part and whether the surfaces (8) and (8') were approximately the same plane.

その結果、何らのクラ・ツクはなく積層体(10)の上
面(8)と有機樹脂(7)の上面(8”)とは境界に若
干の凸部を有するも、もしこの上に配&?IIiを形成
しても何らの断線の心配のない滑らかに連続しているこ
とが判明した。その結果、この境界をわたってCTFを
コートさせることが可能となった。この境界にクラック
が生じると、このクランク中に導体材料の一部がまわり
こみ、上下の電極よりショートさせ得るため、絶縁物が
半導体の側周辺と密着し、かつそれぞれの表面が滑らか
に連続していることがきわめて重要である。
As a result, there were no cracks and although there was a slight protrusion at the boundary between the top surface (8) of the laminate (10) and the top surface (8") of the organic resin (7), if It was found that even if ?IIi was formed, it was smooth and continuous without any fear of breakage.As a result, it became possible to coat CTF across this boundary.Cracks would occur at this boundary. Then, some of the conductive material may wrap around the crank and cause a short circuit between the upper and lower electrodes, so it is extremely important that the insulator is in close contact with the semiconductor side and that the surfaces of each are smooth and continuous. be.

図面においては、この第3図(E−1)  ・・(E−
3)に示す如く、上面全面にアルミニューム(9) 、
 (13)を0.1〜0.5μの厚さに形成せしめた。
In the drawings, this figure 3 (E-1) ... (E-
As shown in 3), the entire top surface is covered with aluminum (9),
(13) was formed to a thickness of 0.1 to 0.5 μm.

第3図(E−1)のA−A’ 、 B−B’縦断面図に
対応した平面図を(E−2) 、 (E−3)に示す。
(E-2) and (E-3) show plan views corresponding to the AA' and BB' longitudinal cross-sectional views of FIG. 3 (E-1).

さらに第3のフォトマスク■によりこのアルミニューム
を選択エツチングした。このマスクはアルミニューム形
成の際メタルマスクで周辺部を覆って形成することがで
きる。するとこの第3図(E)の工程を完成するのに実
質的に2種類のフォトマスクを用いるのみであることが
わかる。
Furthermore, this aluminum was selectively etched using a third photomask (3). This mask can be formed by covering the peripheral portion with a metal mask when forming aluminum. It can be seen that essentially only two types of photomasks are used to complete the process shown in FIG. 3(E).

又、光電変換素子(20)は下側の第1の電極(2)。Further, the photoelectric conversion element (20) is the lower first electrode (2).

半導体(3)、上側の第2の電極(4)、さらにその上
側の他の電極(9)を有し、下側の第1の電極(2)に
連続したリード(19)および上側の第2の電極(4)
It has a semiconductor (3), an upper second electrode (4), another electrode (9) above it, a lead (19) continuous to the lower first electrode (2), and an upper second electrode (9). 2 electrodes (4)
.

(9)に連結したリード(13)を有する。そしてこの
光電変換素子(20)のすべての側周辺は有機樹脂(7
)で覆われており、半導体の表面(16)で寄生チャネ
ルが形成されることによるリーク電流の発生を防ぐこと
ができた。
It has a lead (13) connected to (9). The area around all sides of this photoelectric conversion element (20) is an organic resin (7
), and was able to prevent the generation of leakage current due to the formation of a parasitic channel on the semiconductor surface (16).

さらに半導体(3)に比べてその下側および上側の電極
は同一の大きさおよび形状を有し、少なくともパターニ
ングの精度に従ってそのバラツキの範囲で電極が半導体
に比べて同一(実質的に同一)の形状・大きさを有しめ
得ることが判明した。
Furthermore, compared to the semiconductor (3), the lower and upper electrodes have the same size and shape, and the electrodes are the same (substantially the same) compared to the semiconductor (3), at least within the range of variation according to the patterning accuracy. It turns out that it can have different shapes and sizes.

かかる構造の光電変換装置をこの実施例では横方向にア
レーを構成せしめ、1mmあたり8〜16個の素子を設
けた密着型のイメージセンサを構成させることができた
In this example, photoelectric conversion devices having such a structure were arranged in an array in the lateral direction, and a contact type image sensor having 8 to 16 elements per 1 mm could be constructed.

更にこの感光性半導体がPIN接合を存した時その得ら
れた特性結果例を以下に示す。即ち、3vにて1.8 
xlo−1″A(セル面積100μ×150μ)を有し
、100Lxの光信号(30)を上方より加えると、3
.5 X10−”Aの光電流を得ることができた。この
光の印加電圧、周波数を1μ秒毎にオン、オフ信号をさ
せたが、充分に追従させることができた。
Furthermore, an example of the characteristic results obtained when this photosensitive semiconductor had a PIN junction is shown below. That is, 1.8 at 3v
xlo-1"A (cell area 100μ x 150μ), and when a 100Lx optical signal (30) is applied from above, 3
.. A photocurrent of 5.times.10-''A was obtained.The applied voltage and frequency of this light were turned on and off every 1 .mu.sec, and it was possible to track the light sufficiently.

この高い周波数特性は第1図に示した従来例ではまった
く期待することができない。
This high frequency characteristic cannot be expected at all in the conventional example shown in FIG.

またこの感光性半導体にNIN接合を有せしめた時、O
vに対し対称型の電流が流れる。このため例えば0.5
vの電圧に印加すると、暗電流は4X10−13Aの電
流が流れたが、100Lxの光に対し6X10−1lA
の電流を得た。さらにその周波数特性は0.2μ秒毎に
オン、オフをさせたが、充分に追従させることができる
ものであった。
Furthermore, when this photosensitive semiconductor is provided with an NIN junction, O
A symmetrical current flows with respect to v. For this reason, for example, 0.5
When applied to a voltage of
The current was obtained. Furthermore, the frequency characteristics were turned on and off every 0.2 microseconds, and could be sufficiently followed.

実施例2 この実施例は実施例1の変形である。Example 2 This embodiment is a modification of the first embodiment.

第4図(A−1)  ・・・(A−3)にその概要を示
す。
The outline is shown in Fig. 4 (A-1) ... (A-3).

(A−1)におけるA−^’ 、 B−B’ の縦断面
図をそれぞれ(A−2) 、 (A−3)に示す。
Vertical cross-sectional views of A-^' and BB' in (A-1) are shown in (A-2) and (A-3), respectively.

図面の構造において、基板(1)上に設けられた光電変
換素子(20)は第1の電極(2)を1TOおよびそれ
に連続したリード(19)を酸化スズで設け、感光性半
導体(3)およびこれに密着したCTF (9)よりな
り、リード(19) 、 (13)は共に透光性導電膜
(例えばITO)で作成したものである。
In the structure of the drawing, a photoelectric conversion element (20) provided on a substrate (1) has a first electrode (2) of 1TO and a continuous lead (19) of tin oxide, and a photosensitive semiconductor (3). The leads (19) and (13) are both made of a transparent conductive film (for example, ITO).

実施例1と比べ、信号用の光を上方より入射させている
点で異なる。
This embodiment differs from the first embodiment in that the signal light is incident from above.

その他は実施例1と同様である。The rest is the same as in Example 1.

実施例3 この実施例は実施例1の変形であり、素子を二次元に配
列(20) 、 (20’ )させたアレー構成の例を
示す。第4図(B−1) (B−2) 、 (B−3)
にその概要を示す。
Example 3 This example is a modification of Example 1, and shows an example of an array configuration in which elements are arranged two-dimensionally (20) and (20'). Figure 4 (B-1) (B-2), (B-3)
The outline is shown below.

第4図(B−1)のA−A”、 B−8’ の縦断面図
をそれぞれ(B−2) 、 (B−3)に示す。光信号
(30)は基板(1)下側より与えられる。
(B-2) and (B-3) are longitudinal cross-sectional views of A-A'' and B-8' in Figure 4 (B-1), respectively. More given.

このため、構造は第1の電極(2)およびリード(19
)をCTF例えば酸化スズで設け、さらにその上に感光
性半導体(3)、クロムシリサイド合金(4)、クロム
電極(5)、他の電極リード(9) 、 (13)をア
ルミニュームで設けている。
For this reason, the structure consists of a first electrode (2) and a lead (19).
) is provided with a CTF, for example, tin oxide, and on top of that, a photosensitive semiconductor (3), a chromium silicide alloy (4), a chromium electrode (5), and other electrode leads (9) and (13) are provided with aluminum. There is.

その他の製造工程は実施例1と同様である。Other manufacturing steps are the same as in Example 1.

「効果」 本発明は以上に示す如く、基板上の巾が狭く高さの高い
積層体に対し、それが基板よりピーリングしたり、また
折れたりすることがないようにその側周辺を有機樹脂で
充填したものである。その際、積層体の上面はこの充填
を薫ったく行わないと同様に露呈している。また、その
境界は何等の亀裂もなく、かつキュアにて体積収縮を考
慮しつつ形成すると、積層体と有機樹脂の表面とが概略
同一平面とすることが可能となった。
"Effects" As described above, the present invention applies organic resin to the side of a laminate on a substrate that is narrow in width and high in height to prevent it from peeling or breaking from the substrate. It is filled. In this case, the upper surface of the laminate is exposed in the same manner as if this filling were not carried out thoroughly. In addition, the boundary was free of any cracks, and if it was formed while taking into account volumetric shrinkage during curing, it became possible to make the laminate and the surface of the organic resin approximately on the same plane.

もちろんキュア後にて積層体の上面に比べ絶縁物の上面
を高くし、または低く形成することはその設計事項とし
て可能である。
Of course, it is possible as a matter of design to make the upper surface of the insulator higher or lower than the upper surface of the laminate after curing.

さらにこのため、有機樹脂の積層体のすべての側周辺へ
の充填を何らのフォトマスクを用いずに成就できるため
、積層体の上側の形状よりその下側の半導体および下側
電極の形状・大きさを一義的に決定できる。このため、
半導体に比べてその上側、下側の電極を同一または概略
同一形状・大きさとすることが可能となった。
Furthermore, because it is possible to fill the periphery of all sides of the stacked body with organic resin without using any photomask, the shape and size of the semiconductor and lower electrode on the lower side of the stacked body is smaller than the shape of the upper side of the stacked body. can be determined uniquely. For this reason,
Compared to semiconductors, it has become possible to make the upper and lower electrodes the same or approximately the same shape and size.

周辺を有機樹脂で覆っているため、半導体それ自体の信
頼性が向上するとともに、半導体の積層体の幅が狭くな
り、また素子間隔も3〜10μと小さくなっても、この
積層体が長期の使用また機械的引っ掻き等に対し周辺を
固体で充填しているためへきかいしてしまうことがなり
、ll1lI11あたり16〜64本の多数の素子を配
列せんとする光電変換装置に対しても有効であると推定
される。
Since the periphery is covered with organic resin, the reliability of the semiconductor itself is improved, and even if the width of the semiconductor stack is narrowed and the element spacing is reduced to 3 to 10μ, this stack will last for a long time. Since the periphery is filled with solid material, it may crack when used or mechanically scratched, so it is also effective for photoelectric conversion devices in which a large number of 16 to 64 elements per 11 to 11 elements are arranged. It is estimated to be.

本発明は一次元の密着型のイメージ(特定の像を描写す
る)のためのセンサとして記述した。しかし、またプリ
ンタ用のセンサ、さらに怒光性素子が1〜複数ケしかな
い場合の構造に対しても有効である。
The invention has been described as a sensor for one-dimensional close-contact imaging (depicting a specific image). However, it is also effective for sensors for printers, and also for structures where there are only one or more photogenic elements.

また光電変換装置としての半導体の構造は、この実施例
ではPIN接合またはNIN接合構造を示した。しかし
真性または実質的に真性の半導体、PI。
Further, the structure of the semiconductor as a photoelectric conversion device is a PIN junction or NIN junction structure in this embodiment. However, an intrinsic or substantially intrinsic semiconductor, PI.

N1.MI(ショットキ接合)、MIP、MIN接合構
造を有せしめてもよい、またこれに用いられる半導体は
水素またはハロゲン元素が添加されたアモルファスシリ
コンのみならず、5ixGe+−x(0<X≦1)、5
ixC,−1゜(0<x≦1)+SixSn1−g (
Q<X≦1)がその一部または全部に用いられたもので
あってもよいことはいうまでもない。
N1. It may have an MI (Schottky junction), MIP, or MIN junction structure, and the semiconductor used therein is not only amorphous silicon doped with hydrogen or a halogen element, but also 5ixGe+-x (0<X≦1), 5
ixC, -1° (0<x≦1)+SixSn1-g (
It goes without saying that Q<X≦1) may be used for part or all of it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のイメージセンサの概要を示す。 第2図、第3図は本発明のイメージセンサの製造工程を
示す図面群である。 第4図は本発明の他のイメージセンサの実施例である。
FIG. 1 shows an overview of a conventional image sensor. FIGS. 2 and 3 are a group of drawings showing the manufacturing process of the image sensor of the present invention. FIG. 4 shows an embodiment of another image sensor of the present invention.

Claims (1)

【特許請求の範囲】 1、透光性基板上に感光性半導体を有する積層体を形成
する工程と、該積層体上および側周辺の基板上に感光性
を有する有機樹脂を形成する工程と、前記基板側より光
を照射して前記積層体上方を除く他部の有機樹脂を感光
せしめる工程と、前記積層体上方の非感光領域の前記有
機樹脂を除去して前記積層体の上面を露呈せしめる工程
とともに前記積層体の側周辺のすべてを有機樹脂で囲ん
で形成する工程とを有することを特徴とする光電変換装
置の作成方法。 2、透光性基板上に感光性半導体を有する積層体を形成
する工程と、該積層体上および側周辺の基板上に感光性
を有する有機樹脂を形成する工程と、前記基板側より光
を照射して前記積層体上方を除く他部の有機樹脂を感光
せしめる工程と、前記積層体上方の非感光領域の前記有
機樹脂を除去して前記積層体の上面を露呈せしめる工程
とともに前記積層体の側周辺のすべてを有機樹脂で囲ん
で形成する工程と、前記積層体および前記感光した有機
樹脂上に電極および該電極より延在するリードを形成す
る工程とを有せしめることにより、半導体と同一または
概略同一形状を有する一対の電極を前記半導体の下側及
び上側に形成してなることを特徴とする光電変換装置の
作成方法。 3、特許請求の範囲第1項および第2項において、半導
体上に形成された導体は一部または全部を除去せしめ、
さらにこの後、この上面に密接して電極が形成されたこ
とを特徴とする光電変換装置の作成方法。 4、特許請求の範囲第1項および第2項において、感光
性半導体の下側および上側に設けられた電極の少なくと
も一方は透光性を有することを特徴とする光電変換装置
の作成方法。 5、特許請求の範囲第1項および第2項において、積層
体の上表面と有機樹脂の上表面とは滑らかに連続して形
成されたことを特徴とする光電変換装置の作成方法。
[Scope of Claims] 1. A step of forming a laminate having a photosensitive semiconductor on a light-transmitting substrate; a step of forming a photosensitive organic resin on the laminate and the substrate around the side; irradiating light from the substrate side to expose the organic resin in other parts except the upper part of the laminate, and removing the organic resin in the non-photosensitive area above the laminate to expose the upper surface of the laminate. A method for producing a photoelectric conversion device, comprising the step of forming an organic resin around the entire side of the laminate. 2. A step of forming a laminate having a photosensitive semiconductor on a light-transmitting substrate, a step of forming a photosensitive organic resin on the laminate and the substrate around the side, and a step of emitting light from the substrate side. A step of exposing the organic resin in other parts except the upper part of the laminate by irradiating the laminate, and a step of removing the organic resin in the non-photosensitive area above the laminate to expose the upper surface of the laminate. By including the steps of forming the entire side periphery surrounded by organic resin, and forming electrodes and leads extending from the electrodes on the laminate and the photosensitive organic resin, A method for producing a photoelectric conversion device, comprising forming a pair of electrodes having approximately the same shape on the lower side and the upper side of the semiconductor. 3. In claims 1 and 2, the conductor formed on the semiconductor is partially or completely removed;
Furthermore, after this, an electrode is formed in close contact with the upper surface. 4. A method for producing a photoelectric conversion device according to claims 1 and 2, characterized in that at least one of the electrodes provided below and above the photosensitive semiconductor has a light-transmitting property. 5. A method for producing a photoelectric conversion device according to claims 1 and 2, characterized in that the upper surface of the laminate and the upper surface of the organic resin are formed smoothly and continuously.
JP61001007A 1986-01-06 1986-01-06 Manufacture of photoelectric conversion device Pending JPS62158361A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP61001007A JPS62158361A (en) 1986-01-06 1986-01-06 Manufacture of photoelectric conversion device
DE3650363T DE3650363T2 (en) 1986-01-06 1986-12-30 Photoelectric conversion device and its manufacturing method.
EP86118154A EP0229397B1 (en) 1986-01-06 1986-12-30 Photoelectric conversion device and method for manufacturing the same
KR1019870000015A KR900003842B1 (en) 1986-01-06 1987-01-06 Photoelectric conversion device
CN87100057A CN1008783B (en) 1986-01-06 1987-01-06 A kind of image sensor
US07/124,565 US4810661A (en) 1986-01-06 1987-11-24 Photoelectric conversion device and method for manufacturing the same
US07/244,992 US5187563A (en) 1986-01-06 1988-08-16 Photoelectric conversion device with Al/Cr/TCO electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61001007A JPS62158361A (en) 1986-01-06 1986-01-06 Manufacture of photoelectric conversion device

Publications (1)

Publication Number Publication Date
JPS62158361A true JPS62158361A (en) 1987-07-14

Family

ID=11489521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61001007A Pending JPS62158361A (en) 1986-01-06 1986-01-06 Manufacture of photoelectric conversion device

Country Status (1)

Country Link
JP (1) JPS62158361A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6240784A (en) * 1985-08-19 1987-02-21 Fujitsu Ltd Manufacture of photodiode

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6240784A (en) * 1985-08-19 1987-02-21 Fujitsu Ltd Manufacture of photodiode

Similar Documents

Publication Publication Date Title
JP3840058B2 (en) Microlens, solid-state imaging device and manufacturing method thereof
JP5366400B2 (en) Integrated MIS photoelectric device using continuous film
JP5441721B2 (en) Integrated MIS photoelectric device using continuous film
EP0187535B1 (en) Electronic device and its manufacturing method
WO2014015598A1 (en) Sensor and manufacturing method therefor
EP1217653B1 (en) Method of fabricating an active matrix photodiode array
US20230253418A1 (en) Method of manufacturing an electronic device
JPS62158361A (en) Manufacture of photoelectric conversion device
US9773938B2 (en) Manufacturing method of an amorphous-silicon flat-panel X-ray sensor
JPH05276311A (en) Photoelectric converter
US4810661A (en) Photoelectric conversion device and method for manufacturing the same
JPS62158360A (en) Photoelectric conversion device
US20050139819A1 (en) Process for fabricating nanoelectronic device by intermittent exposure
JPS62158362A (en) Manufacture of photoelectric conversion device
JP2639645B2 (en) Method for creating photoelectric conversion device
JPS62158371A (en) Photoelectric conversion device
JPS5996778A (en) Manufacture of photoelectric conversion device
TWI466298B (en) Method for manufacturing pixel structure
KR101528506B1 (en) Array substrate and method of fabricating the same
CN114050167B (en) Medical field-oriented semiconductor silicon-based hybrid imaging chip and preparation method thereof
KR101939371B1 (en) Thin film transistor array substrate for X-Ray Detector and Method for manufacturing the same
KR840001604B1 (en) Method for fabrication a solid - state imaging device
JPH0745853A (en) Photovoltaic device and manufacture thereof
JPH0462569B2 (en)
JPH02295132A (en) Manufacture of thin-film transistor